Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Preface

Introduction

Some of the most formidable operating system software to understand—and to
write—is the 1/0 subsystem. Device drivers are essential components of the I/O
subsystem. They control the peripherals required for a multipurpose, flexible
computer system.

In some systems, device drivers are closely entwined with the operating system,
requiring that you have an extensive knowledge of the implementation of the
operating system to write a driver.

Writing a driver for the NEXTSTERystem doesn’t demand such difficult
prerequisites. You can write a NEXTSTEP device driver in a very modular fashion,
without knowing a great deal about NEXTSTEP. NeéKas packaged together the
software and tools you need to write in a driver intoRQhger Kit®, a part of the
NEXTSTEP Developer software. Writing a device driver using the Driver Kit is more
like writing an application using the NEXTSTEP Application Kit than like writing a
driver for other operating systems.

The Driver Kit provides a framework to help you create device drivers for computers
running NEXTSTEP. Although every driver is unique, drivers do have common
elements. The Driver Kit generalizes the software required for a driver, removing the
hardware-specific details. To create a driver, you essentially fill in the
hardware-dependent “blanks” in the Driver Kit software with code that performs the
desired operations on your hardware.

By using the structure that the Driver Kit offers, you can greatly reduce the time and
effort required to write a driver. The conceptual model of a Driver Kit driver is
simpler than that of a driver on other systems. This design simplifies writing a driver
and eliminates many of the problems that make debugging drivers difficult.

This document is part 3 5FEXTSTEP Operating System Softw&bapter 1,
“Driver Kit Architecture,” introduces you to the structure of the Driver Kit. You learn
about designing a Driver Kit driver in Chapter 2, “Designing a Driver.” Chapter 3,

“Support for Specific Devices,” acquaints you with some of the details needed to
write specific types of drivers such as network drivers. The fourth, and last, concepts
chapter, “Building, Configuring, and Debugging Drivers,” describes these topics.
Chapter 5, “Driver Kit Reference,” discusses the classes and other associated tools
provided by the Driver Kit.

The Driver Kit is supported on all NEXTSTEP platforms except 680x0-based
computers.

Before You Read This Document

This document covers only the parts of driver writing that are specific to the Driver
Kit.

To understand this document, however, you need to be familiar with several topics
that aren’t covered here. Some of these topics are discussed in other
NeXTPdocumentation.

NeXT Documentation to Read

You need to know the Objective C language, since the Driver Kit is written in this
language. Objective C provides a set of simple, object-oriented extensions to ANSI C.

NEXTSTEP systems use the Mach operating system. Writing most drivers requires
that you understand such Mach concepts as tasks and threads, and writing many
requires familiarity with Mach ports and Mach messages. The Mach Kit contains
useful tools such as facilities for locks. Driver Kit drivers are a part of the Mach
kernel and are known &sadable kernel serverso you must be familiar with this
concept as well. Access to most of the Mach facilities you need is included with the
Driver Kit in its set of Mach functions.

The following table shows where you can learn about these topics:

Topic Where to Read about It

Objective C language Chapters 1, 2, anBXTSTEP Object-Oriented
Programming and the Objective C Language

Mach operating system ChapteNEXTSTEP Operating System Software
(read the introduction, “Design Philosophy,” and
“The Mach Kernel”)

Mach Kit Chapter 9NEXTSTEP General Reference

Loadable kernel servers ChapteNIbXTSTEP Operating System Software

You can get updates to NeXT documentation on archive servers through the
NeXTanswerSprogram. Send e-mail teextanswers@next.conwith the two-word
subjectINDEX HELP . Or if you can’t receive NeXT mail, add a third woAECII .
You'll receive the current index of documents and instructions for requesting more
information.

Other Reading

It's helpful if you know how to write a device driver on some system other than
NEXTSTEP. If you haven't written a driver before, see “Suggested Reading” in the
Appendix for a list of books that can help you learn about drivers. If you've never
written a driver for a multitasking operating system, you should familiarize yourself
with the issues involved. The “Suggested Reading” section also lists books that deal
with these issues.

Finally, you should be very familiar with the hardware your driver will control.
Besides your device’'s documentation, you'll also need specifications for the bus your
device attaches to. Some sources of bus documentation are listed in “Suggested
Reading” in the Appendix.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Driver Kit Architecture

The Driver Kit is a tool kit for writing object-oriented device drivers. Part of the
NEXTSTEP Developer software (except for 680x0-based computers), it simplifies
writing device drivers for NEXTSTEP systems. The Driver Kit provides as much of
the software in a device driver as possible without specific information about the
device. The Driver Kit developers have already done much of the work of writing a
NEXTSTEP device driver for you.

The preface briefly described the Driver Kit and mentioned a few of its advantages.
This chapter provides greater detail about what a Driver Kit driver is and how it’'s
structured. It discusses the components of the Driver Kit and what they do. It
contrasts developing a Driver Kit driver to developing a typical UNIKKer—this
contrast shows some of the advantages of the Driver Kit approach. It talks about the
various Driver Kit classes and how you create a driver with them. The chapter
finishes with a discussion of how drivers are integrated into the system at startup
time, how interrupts are handled, and how users interface with drivers.

Driver Kit Components

The Driver Kit consists of the following tools:

» Objective C classes and protocols that provide the framework for writing drivers
for various types of devices. The first three chapters discuss how to use these
classes. The section “Classes” in Chapter 5, “Driver Kit Reference,” specifies
each class in detail.

* Objective C classes that help user-level programs to configure and communicate
with drivers. Configuration is discussed in Chapter 4, “Building, Configuring, and
Debugging Drivers.” The “The User-Level Interface to Drivers” section in this
chapter and “Interfacing with the Driver” in Chapter 2, “Designing a Driver,” tell
how to communicate with drivers.

» C functions that provide debugging capabilities, kernel services such as memory
and time management, and other services. These functions provide most of the
operating system services your driver should need. The “Functions” section of
Chapter 5, “Driver Kit Reference,” contains specifications for these functions.

» Utility programs that help you load a driver into an already running system and
help you test and debug your driver. Chapter 4, “Building, Configuring, and
Debugging Drivers,” tells you about these programs.

The rest of this chapter describes the basics of Driver Kit architecture.

Why Objective C?

Why is Objective C the required language for the Driver Kit? Part of the reason is that
all other NEXTSTEP Application Program Interfaces (APIs) are object-oriented and
use Objective C. But more importantly, drivers benefit in several ways from
object-orientation and Objective C:

» Naturalness —Object orientation is a natural design method for drivers. Each
hardware object can be modeled by a software object, and functionality common to
a group of drivers (such as display drivers) can be provided by superclasses.

« Flexibility —Objective C provides dynamic typing and binding, which help
different objects communicate without having to be compiled together. For
example, this lets a SCSI peripheral driver determine at run time which SCSI
controller driver it should communicate with. You can simulate dynamism using
function lookup tables and type casting in ANSI C, but this results in code that’s
harder to understand and maintain.

» Code reduction —The Driver Kit provides classes that significantly lessen the
amount of code you have to write. For example, the IODirectDevice class greatly
simplifies configuration and initialization, and IOFrameBufferDisplay takes care of
almost everything that a display driver must do.

See NEXTSTEP Object-Oriented Programming and the Objective C Language for
more information on Objective C.

Device and Bus Support

The Driver Kit has classes to help you write drivers for several kinds of devices:

» Displays

* Network cards for Ethernet and Token Ring networks
» SCSI controllers and peripherals such as tape drives
» Sound cards

The I0Ethernet class, for example, provides much of the functionality required for
Ethernet drivers. To write a driver for a new type of Ethernet card, you need to
implement only six methods, filling in the details of how your hardware performs the
various functions required in an Ethernet driver.

Chapter 3, “Support for Specific Devices,” tells you how to implement a driver for
device types the Driver Kit explicitly supports.

You can write drivers for other kinds of devices than those listed above. The devices
above are merely those that the Driver Kit specifically supports.

In addition, the Driver Kit has general-purpose classes that support these computer
buses:

* ISA (Industry Standard Architecture)

» EISA (Extended Industry Standard Architecture, a superset of ISA)

* VL-Bus (VESA Local Bus, where VESA is Video Electronics Standards
Association)

» PCI (Peripheral Component Interconnect)

» PCMCIA (Personal Computer Memory Card International Association)

Both ISA and VL-Bus are supported through the EISA bus class.

You indicate the bus type that your driver works with in the configuration file for the
driver. See Chapter 4, “Building, Configuring, and Debugging Drivers,” for more
information.

Driver Structure

To appreciate the structural simplicity of a Driver Kit driver, first consider how
standard UNIX drivers are constructed.

UNIX Driver Architecture

A UNIX driver has a “top-half” that is accessed through the system call interface and
runs in the kernel on behalf of a user process. It manages the driver state and initiates
data transfers. The “bottom- half’ runs at interrupt level since it's driven by interrupts
caused by data transfer completion or other asynchronous events. Interrupts are
handled by the driver’s interrupt handler, which may call top-half routines at interrupt

priorities. Indirect devices—devices that are not directly connected to the processor,
such as secondary-bus devices or SCSI peripherals—are each handled in an
individual fashion—there’s no systematic way to treat them.

This design paradigm has several consequences:

* Multiple requests may attempt to access the same hardware or driver data
structures at the same time.

* Interrupts may occur at any time, and their handlers may also need to access
hardware or data structures.

To coordinate access to these hardware and data resources, the driver must use such
tactics as disabling interrupts, changing processor priority, and engaging locks of
various types. The resulting code is often complicated: difficult to write, debug,
understand, and maintain.

Driver Kit Driver Architecture

You can write a UNIX style driver with the Driver Kit, but that's not the best way to
go about it. Driver Kit drivers differ significantly from traditional UNIX or
MS-DOS-drivers. Driver Kit drivers have these characteristics:

» Dirivers areobjects The Driver Kit is written in the Objective C language, which
supports object-oriented programming. This programming approach also allows
code that's common to all drivers—or a set of drivers such as network drivers—to
be written once and inherited by subclasses.

» By default, each driver uses only one thread—Bdhread—to access its
hardware device. All I/O threads reside in a separate kernel task—the I/O kernel
task.

» By default, there’s one 1/O thread for each hardware device. Given any hardware
resource, only one thread deals with that resource at a time. Traditional device
drivers use locks and disable interrupts to protect access to hardware and data
structures. Limiting resource access to only one thread greatly simplifies driver
design.

* Interface methods in the driver are invoked fromuber threadthe thread
running in the kernel on behalf of the user. These methods communicate requests
to the I/O thread using techniques suciMash messagingnd they enqueue
commands for the I/O thread to execute. The I/O thread can then handle one
request at a time instead of being subjected to a barrage of requests to access
multiple resources at the same time. (Interface methods don’t perform 1/O requests
directly, because only the I/O thread should touch hardware and other critical
resources.)

Note: Mach messagesre not the same &bjective C messagdsat are sent to
objects. Mach messaging refers to use of the Mach operating system’s message
system. See the references on the Mach operating system and the Objective C
language in the “Suggested Reading” section of the Appendix.

» The kernel takes all interrupts and notifies the I/O thread via Mach messages.
Drivers don’t need to run with interrupts disabled. The Driver Kit's thread-based
model lets the driver delay responding to interrupts until it's ready to deal with
them. The UNIX concept of a direiciterrupt handler—a section of driver code
that executes as soon as an interrupt is detected by the kernel—has been replaced
by this Mach messaging mechanism. Interrupt handling is discussed in greater
detail in “Servicing Interrupts” in this chapter. You can register your own interrupt
handler if that’s required, but unless you do, your driver will run at the user or I/O
thread level—not at interrupt level.

» Drivers for devices that are connected to the processor indirectly through some
secondary bus—such as SCSI peripherals connected to a SCSI bus—have a
structured way to communicate with the drivers controlling the secondary bus. For
example, SCSI controller objects conform to an Objective C protocol that SCSI
peripheral drivers can employ.

» Diriver Kit drivers are currently kernel-level drivers, either as loadable kernel
servers or as part of the kernel supplied by NeXT. User-level drivers are not yet
supported.

Tip: Running drivers at user level would make testing hardware much easier, and it
would greatly reduce the likelihood of system panics due to driver bugs. This design
goal hasn’t been realized yet. However, when you design your driver, you should keep
in mind the possibility of it becoming a user-level driver. To make porting drivers

from kernel to user level as easy as possible, much of the Driver Kit API is identical

at kernel level and at user level. In future releases, the goal is to allow all drivers to
run at user level.

Although it's possible to write a UNIX style driver with the Driver Kit, that's not the
best way to proceed. You wouldn’t be taking full advantage of the capabilities of the
Driver Kit, and you would be doing a lot of extra work.

Driver Classes and Instances

You implement a driver by creating a subclass of one of the device type classes in the
Driver Kit. A driver object is an instance of this subclass you've defined.

Each Driver Kit class has a set of methods, some of which don't actually do anything.
These methods—even the ones that do nothing—provide a framework for you to build
on. The classes and their methods all ignore hardware-dependent aspects of a driver

to some extent. Of course, every driver must control real hardware, so you must
implement or override the methods provided in the Driver Kit so that they perform
their intended functions with your hardware. You essentially “fill in the blanks” in the
methods to develop much of your driver.

You choose the Driver Kit class for which you're going to create a subclass based on
the device type, such as display, network, sound, and so on.

For example, you can write an Ethernet card driver by creating a subclass of the
IOEthernet class. You then override each method in the IOEthernet superclass by
writing code that performs that method’s functions—using the software interface to
your particular Ethernet card hardware. In other words, you take the generic methods
provided by the IOEthernet class and make them specific to your hardware in the
subclass that you implement.

Most Driver Kit classes are never instantiated. Instead, they serve as abstract classes
that give capabilities to their subclasses. For example, IODisplay is an abstract class
that implements functionality common to all displays.

The hierarchy of Driver Kit classes has three main branches, as shown in Figure 1-1.

| 10DeviceDescription | | I0ConfigTable |

| IOEISADeviceDescription | | |

IODirectDevice		1ODisk		
				I0LogicalDisk
10Audio	[lOSCSIController	[IODisplay		[IOEthernet
IODiskPartition				
	IOFrameBufferDisplay			

Figure 1-1 . Some Core Driver Kit Classes

Note: Classes for developing disk drivers, such as IODisk, aren’t currently
documented.

You create a subclass of a class in the IODevice branch to create your driver. All
drivers are instances of subclasses of IODevice. These classes provide frameworks
for specific types of device drivers.

The other two branches—IODeviceDescription and I0ConfigTable—provide
information about drivers. IOConfigTable objects get configuration information about

particular devices and the system as a whole from configuration tables, which specify
how a driver is to be configured. I0ODeviceDescription objects encapsulate
configuration and other information about the driver and are used for initializing the
driver. These classes allow you to configure the driver into the system and allow it to
communicate with system hardware.

In summary, the Driver Kit provides a framework for developing a driver for
NEXTSTEP systems. It provides many of the pieces you need to create a
driver—classes and protocols, methods, functions, and utilities—and puts the pieces
together for you. A class hierarchy groups methods logically by function and device
type. A thread mechanism, including a default I/O thread, ensures that methods work
together, taking advantage of the NEXTSTEP architecture. You still have to
implement the methods to fit your hardware, but the basic structure is already there.
The paradigm embodied in the Driver Kit fits well with NEXTSTEP, but it's different
from the model that standard UNIX drivers use. You can write a driver using a UNIX
model, but it would require greater effort.

Direct and Indirect Device Drivers

Some devices, such as displays and network devices, are connected directly to the
processor, and their drivers are referred tdigest device driversOther devices are
connected to the processor indirectly through some secondary bus—such as SCSI
peripherals connected to a SCSI bus. Drivers for such devices aremdilledt

device driversDrivers for direct devices talk to the hardware directly. Indirect device
drivers talk to their device hardware indirectly through some direct device. A SCSI
disk driver, for instance, communicates with the disk through a SCSI controller driver,
which controls the SCSI bus.

Thus drivers talk to hardware either directly or indirectly, or they may not deal with
hardware at all. Drivers are thus further classified into these three types:

» Direct device drivers (for example, drivers for SCSI controllers)

» Indirect device drivers (for example, drivers for disks attached to SCSI
controllers)

» Pseudo device drivers (drivers that control no hardware)

These classes work differently, are initialized differently, and require different system
resources. This manual focuses primarily on direct and indirect drivers, not pseudo
device drivers.

Note that the IODevice branch in Figure 1-1 is further split into two branches. On one
side is 10DirectDevice, from which you would create a subclass for a direct device
driver. Indirect device drivers stem from the other branch and are subclasses of
IODevice.

Terminology Used in This Document

The term driver refers to the implementation of a subclass of one of the Driver Kit
device classes—since Driver Kit classes are typically abstract classes. Instances of a
driver are instances of the subclass. Often an object is referred to as an object of one
of its superclasses—for example, as an IOSCSIController object or IODevice
object—to indicate that the object is an instance of any subclass of the superclass.
Finally, device is sometimes used to refer to any IODevice object.

As Figure 1-1 shows, IOSCSIController, IODisplay, and IOEthernet are subclasses of
IODirectDevice. This classification occurs because instances of their subclasses talk
directly to the hardware, performing such operations as handling interrupts, mapping
memory, and performing DMA operations. 10Disk, an indirect device class, is a
subclass of I0Device—but not of IODirectDevice. This occurs because 10Disk
objects don't talk directly to the hardware: They talk indirectly to the hardware by
sending request messages to IODirectDevice objects such as IOSCSIControllers.

Figure 1-2 shows how two objects—one an instance of a direct device driver, the
other an instance of an indirect device driver—combine to control two pieces of
hardware. The indirect driver, an IOSCSIDisk object, uses the direct driver, an
IOSCSIController object, to control the hardware.

Note: IOSCSIDisk is a nonpublic subclass of IODisk.

I0SCSIController

Software
Hardware
i SCSl | e
i Controller iLegend
\ :
N An object
\ :
Y : | Direct communication

.. - E
N, : "
N ' . . L H
@ E Mo Indirect communication :

Figure 1-2 . How Objects Correspond to Hardware

One Device Driver Object per Hardware
Device

There is one device driver object for each hardware device. In Figure 1-3, one
IOSCSIController object manages the SCSI controller, and an IOSCSIDisk object
manages each disk. Both disks are connected to the same SCSI controller, so both
IOSCSIDisk objects communicate with the hardware using the single
IOSCSIController object.

I0SCSiIController

Hardware

1
1
I
i
i
! Software
1
1
1

! scsl i
i Controller i

.\ ;

.\‘ ;
\ 7
‘\‘ ;
) - @ ’

Figure 1-3 . One-to-One Correspondence between Driver Objects and Hardware
Devices

Key Driver Kit Classes

You typically create a subclass of either IODevice or IODirectDevice (or one of its
subclasses) to create a driver.

IODevice: The Generic Device Driver

Every driver is a subclass of IODevice. This class provides a standard programming
interface for probing hardware and for creating, initializing, and registering a driver

instance.

IODirectDevice: The Class for All Direct Devices

IODirectDevice is the class for drivers that directly control hardware. This class adds
data (that is, instance variables) and methods for managing interrupts, DMA
channels, address ranges, and other resources. It contains a configuration table, an
NXStringTable object of key/value pairs that hold configuration data provided by the
system and the user.

The 10DirectDevice class has Objective C categories for specific hardware buses:

» IOEISADirectDevice for EISA-, ISA-, and VL-Bus-based systems
» |OPCIDirectDevice for PCl-based systems
* |IOPCMCIADirectDevice for PCMCIA-based systems

Display, network, SCSI controller, and sound drivers are all direct drivers that can be
implemented as subclasses of IODirectDevice—or its subclasses. I0DirectDevice
has subclasses for each of these specific device types. For example, you can use the
IODisplay class (a subclass of IODirectDevice) to write a display driver.

IODeviceDescription: Device Information

For every I0Device object, there’s a device description object—an instance of the
IODeviceDescription class—that contains information about the device. Thus every
device in a system has a device description that contains information about the
device:

» Device address
» System resources (IRQ, DMA channels, and so on) used by the device
» Other information specific to the bus type

Instance variables in I0Device (of which the driver is a subclass) contain the rest of
the device information, such as device type. The configuration tables, such as
Default.table andinstancen.table, contain the device driver configuration

information. These tables can be modified using the Configure application.

Class Components

When you create a subclass, you add instance variables that are appropriate for your
hardware, such as variables for memory-mapped registers. A subclass might include
the following typical instance variables:

» Pointers to hardware registers

» Device state from volatile or write-only registers

» Driver mode or state

» |/O management variables such as queue heads, locks for critical structures, or

data buffer pointers
» Any per-device private data that normally goes in a UNIX driver’s “softc”
structure

Your subclass inherits a set of methods from its superclass to perform such actions
such as these:

Initialize the driver object

» Get and set values of instance variables

* Send commands to hardware

* Receive notifications such as interrupts, 1/0 completions, and timeouts

In your subclass you can override methods from the superclass, and you can also add
new ones. You customize these methods to work with your device’s hardware.

Suppose, for example, you're implementing a display driver for a display card that can
linearly map the entire frame buffer. Create a subclass of the IOFrameBufferDisplay
class (a subclass of IODisplay), then override four methods to do the following
operations:

* initFfromDeviceDescription: to invokesuper's implementation of
initFromDeviceDescription:, map the display into the memory, and select the
display mode.

» enterLinearMode to place the frame buffer device into the linear frame buffer
mode selected during device initialization.

» revertToVGAMode to set the display to run as a standard VGA device.

» setBrightness:to control screen brightness, if the hardware supports this function.

Once you've done this, you've finished much of your driver.

The User-Level Interface to Drivers

You typically don’t need to be concerned about interfacing with your driver: The
kernel automatically finds the driver and uses its methods to communicate with the
driver. Most display, network, SCSI controller, and sound drivers are integrated into
the system this way. For some devices, such as SCSI peripherals, you may need to
write an interface program called by user programs or other drivers. This interface
program invokes the driver’'s methods to communicate with the driver.

See “Interfacing with the Driver” in Chapter 2 for more discussion of user-level to
driver-level communication.

How 10Device Objects are Created

Drivers are packaged intriver bundlesA driver bundle contains its relocatable

code and configuration information—everything needed to load and configure the
driver. It may also contain help information, programs to be run before and after
loading the driver, and a configuration inspector that the Configure application uses to
access configuration data. Chapter 4, “Building, Configuring, and Debugging

Drivers,” tells you more about bundle contents and how to create a driver bundle.

When the system starts up, it goes through three steps to create each driver object,
using the information in the driver bundle:

1. Load the relocatable code for the driver.
2. Create an IODeviceDescription object for the device.

3. Send robe: message to the IODevice class object to instantiate a driver
object.

The system goes through two phases of driver creation. In the first phase, it performs
these three steps to create all the boot device drivers. Boot drivers are the drivers that
must be loaded before the kernel can be active, such as the driver for the boot device.
In the second phase, the system creates the active device drivers—drivers for the rest
of the devices in the system. T&gstem.config/Instance0.tabldile defines the boot

and active devices.

Some driver objects need to know about each other. For instance, an indirect driver
controlling a SCSI peripheral needs to communicate with the direct driver that
manages the SCSI controller. These drivers get connected with each other during the
startup process. See “Connecting the Driver,” in Chapter 2, “Designing a Driver.”

The system is not limited to creating drivers only at system start up time. You can also
load a driver after the system has started up witllitiverLoader command. See

“Using the driverLoader Command” in Chapter 4, “Building, Configuring, and
Debugging Drivers,” for more information.

Loading Driver Relocatable Code

In the first phase of driver object creation, the kernel loads the driver’s relocatable
code (in the fileDriver_relocin the driver bundle, whei@river is the driver's name)

if necessary. The driver is already loaded if it's in the kernel. If there are multiple
instances of the driver, the relocatable code is loaded only once.

Creating a Device Description

Next, the kernel creates an |IOConfigTable object that provides methods to examine
the appropriate configuration file for the driver (eitbefault.table or

Instancen.table). The IOConfigTable object parses the configuration information it
gets, which is in configuration key/value pairs in this file. From this information, the
kernel instantiates an I0DeviceDescription object, which encapsulates information
about the driver.

The driver’s bus type is indicated in the configuration table as the value associated
with the “Bus Type” configuration key (see “Configuration Keys” in the Appendix).
The kernel creates the appropriate IODeviceDescription object for the bus:

Bus Type IODevice Description Subclass
EISA, ISA, VL-Bus IOEISADeviceDescription
PCI IOPCIDeviceDescription
PCMCIA IOPCMCIADeviceDescription

IOPCIDeviceDescription and IOPCMCIADeviceDescription are subclasses of
IOEISADeviceDescription, which is a subclass of IODeviceDescription.

After instantiating the I0DeviceDescription object, the kernel may do further
initialization, using methods in IODeviceDescription to get configuration information.
For example, for a PCIl-bus device, the kernel might check whether the location of the
object on the bus is correct, and if it isn’t, the kernel doesn't initialize that device.

If the system supporeutomatic detection of devices, it automatically scans all
system buses to determine which devices are present and to obtain additional
configuration information. For more information, see “Auto Detection of Devices” in
“Other Features” of Chapter 5, “Reference.” Some EISA- and PCl-based systems
support this feature.

For more information on configuration tables, see Chapter 4.

Instantiating Drivers

The kernel invokeprobe:, a class method in the IODevice class, to instantiate a
driver. You must override this method in your driver.

The receiver of @robe: message determines whether to create a new instance of
itself, with the help of information passed as phebe: message’s argument—the
IODeviceDescription object created in the previous step. The I0DeviceDescription
object contains information about the device’s logical location in the system, and the
device can query this object for additional information about the way it is configured.
From this informationprobe: can determine whether the device exists. If the device

is presentprobe: instantiates and initializes the driver. Yquobe: method should
invoke theinitFromDeviceDescription: method, which initializes the driver.

Note: Use thealloc andinitFromDeviceDescription: methods to instantiate and
initialize the driver, not theew method.

If probe: creates a driver instance, it returns YES. Otherwise, it returns NO.

Note: Declare youprobe: method to return BOOL—nad.

I/O and Interrupt Requests

Everything a driver does—whether or not it's a Driver Kit driver—is the result of one
of two types of requests:

» 1/O requests (from a user-level program, the kernel, or another driver)
* Interrupt requests (from the hardware)

Interrupt requests include “soft interrupts,” such as timeout notifications. The Driver
Kit thread-based design allows you to manage I/O requests and interrupts one at a
time.

Scheduling Hardware Access with I/O
Threads

Different drivers have different requirements for ordering their accesses to the
hardware. Driver Kit display drivers are very simple in this respect: they don’t have to
gueue requests because the Window Server is the only process that makes requests,
and it sends them one at a time. Display drivers may be particularly simple because
on many systems, display hardware doesn’t generate interrupts.

Other drivers have to be more careful. These drivers use an I/O thread—a single
thread of execution that handles all access to a single hardware device. Some of the
device classes, such as those for SCSI controllers, network, and sound devices, start
up the default I/0 thread for you.

Typically, each driver instance has exactly one 1/O thread. However, some drivers
use a single I/0O thread for more than one instance. What matters is that only one
thread at a time has access to any particular hardware resource.

Note: Some hardware devices can handle more than one request at once. For
example, some SCSI controllers can queue multiple commands.

At any given time, the I/O thread should be doing exactly one of two things:

* Waiting for an I/O request (from a user, the kernel, or another driver) or an
interrupt message
» Executing (dealing with the hardware)

Processes can use a variety of mechanisms to communicate 1/0O requests to the 1/0
thread. One of these mechanisms—Mach messages—is the same way the kernel
informs the 1/O thread that an interrupt has occurred. In this scheme, the kernel
enqueues Mach messages for the 1/0 thread. When the 1/O thread isn’'t executing a
request, it dequeues the message and invokes an appropriate driver method in
response. (You can also write a custom 1/O thread to take whatever action you want
in response to messages.) “Synchronizing with the I/O Thread” in Chapter 2 provides
more details.

The 1/0 thread model greatly simplifies driver development and lessens the time
needed for debugging the driver. Only one thread deals with any hardware resource at
a time, so it's not necessary to use locks and disable interrupts to protect access to
hardware and data structures. The user thread communicates requests to the 1/0
thread, and commands can be enqueued for the I/O thread to execute. The driver can
handle one request at a time—instead of many requests to access multiple resources
at the same time.

Servicing Interrupts

The Driver Kit has a simple scheme for servicing interrupts: The kernel notifies
drivers of interrupts by sending them Mach messages. Each driver can receive these
messages whenever it chooses, typically when it isn’t executing any other requests.

The advantages of this scheme become clear when you consider an alternative—the
traditional UNIX method of handling interrupts. Traditional UNIX drivers handle
interrupts as soon as they happen—even if the driver is already executing an 1/0
request. Each driver registers an interrupt handling function that’s called whenever
the device interrupts. Some systems can't tell exactly which device interrupted, so
they call several drivers’ interrupt handlers until one accepts the interrupt. While an
interrupt is being handled, nothing else in the system (except higher priority interrupt
handlers) can execute.

Under the traditional UNIX scheme, drivers can’t control when interrupts occur. All
they can do is control when interrupisn’t occur by disabling interrupts. Drivers

disable interrupts to protect critical sections of code, such as those that access
hardware or access data structures that are also used by interrupt handlers. However,
disabling interrupts has disadvantages:

» If adriver disables interrupts for too long, the consequences can be anything from
reduced performance to system crashes or hangs.

» If adriver disables interrupts and, through some bug, fails to reenable them, the
system will hang.

» It's easy to fail to protect a critical section—especially when you’re changing
code that someone else wrote—which can result in bugs that are hard to track
down.

The Driver Kit scheme of interrupt handling lets you choose when to handle
interrupts, so you don’t have to protect critical sections from interrupt handlers. This
scheme works well with most hardware devices.

IODirectDevice provides a default I/O thread that intercepts Mach interrupt messages
and notifies drivers of them with Objective C messages. Driver objects are notified of
interrupts with thenterruptOccurred orinterruptOccurredAt: message. See the
sections “Interfacing with the Driver” and “Handling Interrupts” in Chapter 2 and the
IODirectDevice class specification in Chapter 5 for more information.

A few devices require that interrupts be handled immediately. For example, a device
might have a register that must be read within 50 microseconds of the interrupt
occurring. On some devices data overruns occur if interrupts aren’t handled quickly
enough. In these cases, a kernel-level driver might need to register a direct interrupt
handler—a function that’s called as soon as the interrupt is detected. This function
should perform any time-critical operations and, if necessary, send a Mach message
so that the driver can further process the interrupt. The section “Custom Interrupt
Handlers” in Chapter 2 describes how this interrupt handling function should work.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Designing a Driver

The previous chapter covered basic Driver Kit concepts. This chapter discusses
details of how to design Driver Kit drivers:

How to create and initialize a driver

How tasks and threads work in drivers and how to communicate with the I/O
thread

How to handle interrupts

How to connect a driver with other drivers it needs to communicate with

Information about specific kinds of drivers—for example, how to write a SCSI
controller driver—is in Chapter 3, “Support for Specific Devices.”

Driver Writing Guidelines

Here are guidelines to follow in designing and writing a device driver:

Read the specifications for the hardware you’re working with.

Read the first four chapters of this manual.

Read the IODevice and I0DirectDevice class descriptions.

Decide which class your driver will be a subclass of. Read this class description
and the descriptions of any protocols the class conforms to. Read the class
specification for any other related classes. If you're writing a network driver, for
instance, look at IONetwork.

Look at examples of drivers for the type you're writing. Examples are located in
/NextDeveloper/Examples/DriverKitand
/NextLibrary/Documentation/NextDev/Examples/DriverKit

Create a subclass. Add the appropriate instance variables and methods to your
driver subclass.

Override or write methods in your subclass and any protocols it conforms to.
Implement the methods to perform their functions with your hardware.

Creating and Initializing Drivers

You must override thprobe: class method of IODevice in your subclass. This
important method looks for the hardware and instantiates and initializes a device
driver. The 10DeviceDescription object passed as the paramgteatte: provides
information about the driver object, including configuration information.

Warning: You should use thalloc andinitFromDeviceDescription: methods to instantiate
and initialize a driver—not theew method.

For direct device drivers, the I0DeviceDescription parameter contains
architecture-specific information about a device, such as its DMA channels and
interrupts. Your driver subclass should determine whether the device is really
present. If so, it should create an instance of itself, using the information in the
IODeviceDescription. I0DeviceDescription and its subclasses provide access to the
device information.

After probe: instantiates the driver, it should invoke the

initFromDeviceDescription: method to initialize the instance (with help from some
other methods, to0). You typically override this method, although you should
incorporate the superclass’s implementation by invoking this message on super prior
to performing the rest of your initialization.

[super initFromDeviceDescription:aDeviceDescription];

Look at this method’s description in your driver’s superclass to see what functions it
provides for you. For example, the 10DirectDevice class’s
initFromDeviceDescription: reserves address ranges, DMA channels, and IRQs
(interrupt numbers) for a driver.

The initialization sequence must also include registering the driver with
registerDeviceso the rest of the system knows about the driver.

For direct device drivers, attach interrupts usttgchinterruptPort or some other
method that invokeattachinterruptPort . I0DirectDevice’sstartlOThread
invokes it, for example.

Here’s a skeleton of thgrobe: method for a direct device driver of the class
MyClass. Italicized text delineated in angle brackets, that is << >>, is to be filled in
with device-specific code.

+ (BOOL)probe:devDesc
{
MyClass *instance = [self alloc];

IOEISADeviceDescription
*deviceDescription = (IOEISADeviceDescription *)devDesc;

if (instance == nil)
return NO;

[* Check the device description to see that we have some
* 1/O ports, mapped memory, and interrupts assigned. */
if ([deviceDescription numPortRanges] < 1

|| [deviceDescription numMemoryRanges] < 1

|| [deviceDescription numinterrupts] < 1) {

[instance free];

return NO;

}

<< Perform more device-specific validation, e.g. checking to
make
sure the I/O port range is large enough. Make sure the
hardware is really there. Return NO if anything is wrong.
>>

return [instance initFromDeviceDescription:devDesc] != nil;

}

If your driver subclass that receives firebe: message is an indirect device driver,
the IODeviceDescription specifies an I0Device instance (typically for a direct
device) that the indirect device driver might want to work with to communicate with
its hardware. For example, if the indirect device driver controls SCSI disks, then the
IODeviceDescriptions it receives specify instances of IOSCSIController, a direct
device driver. Your driver should determine whether it needs to use the hardware
controlled by the specified IODevice instance (for example, whether the SCSI
controller has disks attached). If so, your driver subclass should create instances of
itself. Here’s an outline gsrobe: for this case:

+ (BOOL)probe:deviceDescription
{

MylndirectDevice *instance = nil;

[*Get |0DirectDevice object this indirect device is connected
to*/

id controller = [deviceDescription directDevice];

BOOL rtn = NO;

for (<< each possible device attached to the direct device >>)

if (instance == nil)
instance = [MylIndirectDevice alloc];

if (<< we can'’t reserve this device
(implying that another driver controls it) >>) {
continue;

}

<< Check whether the device really exists and is a device
we
can control. If so, initialize an instance of this
driver
with a driver-specific version of init. For example:
initRtn = [instance initWithController:controller];
>>

if (<< the instance was successfully initialized >>) {
[instance registerDevice];
/* Do any other driver-specific initialization. */
instance = nil;
rtn = YES;
break;

}

else
<< Release our reservation for this device >>
} I* end of for loop */

if(instance) {
/* Free up any leftover indirect devices. */
[instance free];

}

return rtn;

}

Besides the information specific to direct or indirect devices, the
IODeviceDescription’s IOConfigTable contains miscellaneous configuration
information. A beep driver’'s configuration table, for example, might specify that the
driver is a sound-related device and specify the frequency of beeps. The
IOConfigTable can be retrieved from the IODeviceDescription using the
configTable method. Therobe: method or methods that it invokes may do further
initialization using this information.

Connecting a Driver to Other Drivers

ThedriverLoader program loads your driver’s code into the kernel, either because
you invoke it or as a result of the driver being specified in the system configuration.
ThedriverLoader program uses the loadable kernel server mechanism and is
described in Chapter 4. Once loaded, the driver needs to be connected with the
appropriate direct and indirect device drivers that are already in the kernel.

For example, suppose you load a new indirect device driver that controls a SCSI
scanner. The SCSI scanner driver works in combination with one or more SCSI
controller drivers, so the SCSI scanner driver needs to find each IOSCSIController
object in the system.

For another example, consider a direct device driver that manages a SCSI controller.
Once the driver is loaded and initialized, you want to give all of the SCSI indirect
devices (such as disks and scanners) a chance to connect to this controller. Each
SCSI disk that’s attached to the controller needs a new IODisk instance that’s
connected to an instance of the IOSCSIController.

Terminology: Protocols

A protocol is a list of method declarations, unattached to a class definition. Any
class, and perhaps many classes, can implement a particular protocol.

Protocols are discussed in Chapter 3 of NEXTSTEP Object-Oriented Programming
and the Objective C Language.

Discovering Other Objects

When any I0Device subclass is instantiated and initialized, it's automatically
connected with any IODevices in the system that need to work with it. Here’s how
this happens:

» All IODevices to which an indirect device can be connected must declare their
exported interface as an Objective C protocol. For example, the
IOSCSIController class declares its exported methods (the messages that indirect
devices can send it) in the IOSCSIControllerExported protocol.

» All IODevices that are indirect device drivers must implement the

requiredProtocols class method. This method returns a list of protocols the
driver’s direct devices must conform to.

» Each IODevice must implement tdeviceStyleclass method, which identifies
the driver as a direct, indirect, or pseudo device driver.

» Each IODevice instance must invalegisterDevicewhen it’s initialized
(usually in its implementation @fitFromDeviceDescription:). This method
tells the rest of the system that the driver exists and also probes all indirect
IODevices that require this object’s protocols, giving them a chance to connect to
this object.

When driver code is loaded into the kernel, the kernel probes the newly added class
and possibly other classes in the system. The result is that each class is probed
exactly once per object that it might need to connect to. The kernel probes classes
with theprobe: method as described below.

If the newly loaded class is an indirect device driver (the system determines this
using thedeviceStyleclass method), the kernel does the following:

For each 10Device object (not just IODirectDevices)
If the object supports all protocols needed by the new class
The kernel creates an I0DeviceDescription that has this object as the direct

device
The kernel probes the new class with the I0DeviceDescription as its

parameter

If the newly loaded class is a direct device or pseudo device driver, the kernel simply
probes the new class, without trying to connect it yet.

Whenever a device of any style invokegisterDevice—which should happen
whenever a driver object is initialized—the following happens:

For each indirect device class
If the newly registered object supports all protocols needed by the indirect
driver
The kernel creates an I0DeviceDescription that has this object as the direct
device
The kernel probes the indirect device class, giving it the
IODeviceDescription

In this way, every indirect driver is probed with the device description for every
possible direct driver object it could feasibly be connected to. When the indirect
driver’'s probe: method examines the direct device description, it instantiates itself
only when the indirect device it supports is physically connected to the direct device,
that is, when the hardware is really present.

Interfacing with the Driver

Drivers export a set of methods that the kernel or programs can use to communicate
with the driver. Thesexportedor interfacemethods communicate requests to the
I/O thread.

You don't need to be concerned about the interface to your driver in most cases. The
kernel will find your driver and use its exported methods automatically—you don’t
have to do anything. Most display, network, SCSI controller, and sound drivers are
integrated into the system this way.

For some drivers, such as SCSI peripherals, you may need to provide an interface
that user-level programs or other drivers can access. This interface program then
invokes the driver's exported methods.

The ideal interface between user-level programs and drivers would be Objective C
messages. Currently, this direct interface isn’'t possible for these reasons:

» User-level drivers aren’t supported.
» The Distributed Objects system (which enables Objective C messages to be sent
between objects in separate tasks) doesn’t work in the kernel.

You can make your driver’'s user level to kernel level APl more object-oriented by
providing user-level classes that cover your driver’s interface. For example, Sound
Kit objects such as NXSoundOut hide the sound driver’s private Mach message
interface.

This section discusses ways you can communicate with the driver if you need to.

Entry Points

If you need to provide an interface, you may want to provide a set of entry points for
common driver requests, such as read, write, and so on. Your driver may have
UNIX-style or Mach message-based entry points.

UNIX-style Entry Points

You can add a set of UNIX-style entry point functions, suabpas(2) andread(2),

to thecdevswtable for character drivers by invoking the 10Device class method
addToCdevswFromDescription:open:close:read:write:ioctl:stop:reset:select:m
map:getc:putc:. A similar method adds entry points to theevswtable for block
drivers. These methods search for free locations in these tables. The entry point
functions added can then communicate with your driver by sending it Objective C
messages or Mach messages. Saapter 2;Using Mach Messagesh

NEXTSTEP Operating System Software.

Note: Machmessages are not the same kind of messageisjastive Cmessages
sent to objects. See the references on the Mach operating system and Objective C
language in the “Suggested Reading” section of the Appendix.

Your driver can retrieve or set the driver’s character major device number with
characterMajor or setCharacterMajor. Similarly, blockMajor or setBlockMajor
retrieves or sets the driver’s block major device number.

UNIX entry points are documented in books about UNIX device drivers. See
“Suggested Reading” in the Appendix for more information about UNIX device
drivers.

Entry Points via Mach Messages

You can develop a message-based driver interface based on Mach messages. You
can create a loadable kernel server and communicate with it using Mach messages.
Use the Mach Interface Generator (MiG) to create this message interface. (MiG
generates remote procedure calls that handle the Mach messaging for you.) The
loadable kernel server can then send Objective C or Mach messages to the driver,

just as UNIX entry point routines can do.

For more information, refer tNEXTSTEP Operating System Softw&kapter 2,
“Using Mach Messages” and Part 2, “Writing Loadable Kernel Servers.”

Other Communication Methods

You can provide other ways to interface with your driver besides entry points.

Using IODeviceMaster

An IODeviceMaster object can get the object number of a device driver using one of
thelookUp... methods such as

lookUpByDeviceName:objectNumber:deviceKind: Then it can get or set

parameters via methods such as

getCharValues:forParameter:objectNumber:count: or
setCharValues:forParameter:objectNumber:count. Manipulating parameters
enables applications to control the driver. It also allows telling preloaded programs
which major device numbers are used.

You can also send driver-specific commands and send and receive small amounts of
data. Since IODeviceMaster’s buffers are small, the performance overhead would be
prohibitive to handle large amounts of data. Although any process can use
IODeviceMaster to get information from a driver, IODeviceMaster allows only the
superuser to send information to a driver. This mechanism replaces theddf(X
interface.

Using IODevice Methods

If the amount of data you need to transfer to and from your driver is relatively small,
you can use thgetintValues/setintValuesor thegetCharValuedsetCharValues
methods in IODevice to communicate with user-level applications. Using those
methods is easier than using Mach messages.

Threads in Kernel-Level Drivers

In a user-level driver, every thread the driver creates executes in the driver’'s own
task, as shown in Figure 2-1. There’s no way for any driver code to execute in any
other task; neither the kernel nor any task besides the driver’'s own task ever
executes the driver’'s code. Kernel-level drivers aren’t so simple, however—and the

Driver Kit currently supports only kernel-level drivers.

All kernel-level device drivers run in the kernel’'s memory address space, but unlike
user-level drivers, their threads aren’t all in the same task. A loaded kernel driver
might run in a thread in the kernel task created especially for the drivieerigal

taskis a task that shares the kernel’'s address spacmtihe kernel’s IPC space.)
Additional threads created by kernel-level drivers execute as part of another kernel

task, thekernel I/O taskFigure 2-1 shows the relationship between kernel-level
driver threads and the kernel I/O task.

Driver Task Driver Task
Main Thread Main Thread
2 s %
9 s 2
= .:&, 'ﬁ/\
s £ 2
2 5 ®
= § >
Thread Thread Thread
User Level
Kernel Level
Driver Task Driver Task
Main Thread Main Thread
< S e
3 5 <
o 2)
£ I [
X s 3
Q@ L [
[T
o e} Z
Kernel 1/0/Task \
Thread Thread Thread

Figure 2-1. Threads in User-Level and Kernel-Level Drivers

A complication for kernel-level drivers is that their code can execute in threads that
don’t belong to the driver. For example, the kernel invokes a network driver’s
outputPacket:address:method whenever the driver should transmit a packet. This
method executes in whatever context the invoker of the methodhistin,the

context of any of the driver’s threads. Another example of executing in a nondriver

thread is that drivers with UNIX entry points operate in the calling user process’s
context.

In general, if a method or function isn’t always called directly by an I/O thread (or by
functions or methods that are called directly by the 1/0 thread) and the documentation
doesn’t say that the method is called in the context of the kernel I/O task, you should
assume that the method or function has been called by an unknown thread in an
unknown task.

Synchronizing Driver Requests with the 1/O

Thread

A device driver receives requests to perform operations from various sources
external to the driver via its exported methods. Both the user’s kernel thread and the
I/O thread may invoke the driver’'s exported methods against the driver. As the
previous section “Threads in Kernel-Level Drivers” noted, a driver can run in three
places: The user’s kernel thread (the thread that synchronously receives user
commands), in another kernel thread (a timeout function, for example), or in the I/O
thread. This section discusses how to coordinate these activities in different threads.

You may not need to be concerned about synchronizing these requests with your
driver. Display drivers don't use an I/O thread. For other devices, the default /O
thread (which is started automatically by the network, SCSI controller, and sound
device classes) handles this coordination for you. The driver's methods are invoked
from the appropriate threads, and so on. Most display, network, SCSI controller, and
sound drivers require no further integration.

For some devices, such as SCSI peripherals, you may need to coordinate these
requests and services between the various threads. If you had to provide your own
driver interface, for instance, you need to pay attention to these issues.

In keeping with the Driver Kit paradigm, exported methods should generally not
perform 1/O requests directly but send requests to the 1/O thread. Only the I/O thread
touches hardware and other critical resources. This way, no exported methods
manipulate hardware or other critical resources—the 1/O thread does all of the work.
This structure eliminates the need to use the UsIX. functions to change priority,

to disable interrupts, or to employ other mechanisms to prevent multiple threads from
accessing the hardware and interfering with each other. The I/O thread can perform
operations in a straightforward sequence as it chooses, without interference from
other threads. The benefit is that your code will be simpler and more reliable, your
design will be more comprehensible, and you'll eliminate deadlocks and race
conditions.

Starting the 1/O Thread

To start the default I/O thread, invoke IODirectDevicgatlOThread method. It

forks the thread and invokestachinterruptPort , which creates amterrupt port

for the thread. The thread receives Mach messages on this port. A Mach message
could be from the user’s kernel thread requesting it to execute an I/O operation, or it
could be from the kernel notifying the 1/O thread that an interrupt occurred. Some of
the device classes, such as those for SCSI controllers, network, and sound devices,
start up the default I/O thread automatically.

Note: Even though it is called an interrupt port, the I/O thread receives all its Mach
messages on this port—not just interrupt messages.

To start a custom 1/O thread, call the functiGforkThread() . Its argument is a
function, which consists of a while loop that waits for and executes commands from
the rest of the driver. This function runs in the kernel’s I/O task. Like the default /0O
thread, only this function should touch the hardware.

Synchronizing with the I/O Thread

A device driver’'s exported methods execute in response to some action initiated by a
user program. A method may have two flavors of communication with the I/O thread.
In some cases, an exported method needs $yrthronousommunication with the

I/O thread—that is, the exported method sends some work to the I/O thread and waits
until that work is done. In other cases, an exported methodadgashronouy/O—it

just sends some work to the 1/O thread and continues executing, without waiting for
the work to be done.

In either case, the 1/0O thread may not be ready to perform the requested hardware
operation when the user thread requests it. Therefore, there must be a way to
synchronize the interface functions with the I/O thread. This synchronization is
essentially automatic if you use the default 1/0 thread, because the thread takes
requests only when it’s ready to handle them.

Coordination between the driver’'s user-level exported methods and the 1/O thread
can occur in two ways:

» Using Mach messages, but it's recommended that they be used only with the
default 1/0 thread. See “Synchronizing Using Mach Messages” later in this
section.

* Using a type of lock known ascandition lock.See “Synchronizing Using
Condition Locks” later in this section. They’re fast and easy to use.
NXConditionLock is documented in the Mach KitNEXTSTEP General
Reference

Sometimes, for performance or other reasons, a driver might have its exported
methods perform some 1/O directly without going through the I/O thread. An Ethernet

driver might be an example of this. The method that’s called when a client wants to
send a packet out to the network might perform no 1/0O—it might just add a DMA
frame to the device’s DMA queue. The exported method could do this directly
without waking up the 1/O thread. The Ethernet I/O thread would basically just
service interrupts and dispatch incoming packets. A lock in the driver would protect
access to the hardware in the case where the output method has to start up an idle
DMA channel.

Synchronizing Using Mach Messages

A user-level process typically doesn’'t communicate directly with the driver. The
user-level process communicates with a set of UNIX entry points or with a loadable
kernel server, as indicated in “Interfacing with the Driver.” These entry points or
loadable kernel server can then communicate with the 1/O thread via Objective C
messages (through the driver’'s exported methods) or Mach messages. Both
synchronous and asynchronous I/O requests can be performed using Mach messages
between the exported methods and the I/O thread.

A way of communicating with the I/O thread is supported by the default I/O thread
provided by IODirectDevice. In this scheme, each request is sent to the
IODirectDevice’s interrupt port, using a message ID. The file
INextDeveloper/Headers/driverkit/interruptMsg.h defines a set of messages. The
only information in a message is its ID. Command buffers or other data, for instance,
are not part of the message. The default I/O thread invokes one of the following
methods, based on the message ID received:

Message ID Method Invoked
IO_TIMEOUT_MSG timeoutOccurred
IO_COMMAND_MSG commandRequestOccurred
IO_DEVICE_INTERRUPT_MSG interruptOccurred
IO_DEVICE_INTERRUPT_MSG_FIRST interruptOccurredAt:

to I0_DEVICE_INTERRUPT_MSG_LAST

(anything else) otherOccurred:
You implement these methods to respond appropriately to the condition.

Interrupt messages are sent automatically by the kernel. If you want to use the other
types of Mach messages, your driver or some other module it works with must
explicitly send them. An advantage of using Mach messages to notify the 1/0O thread
of requests is that the thread can service incoming 1/O requests while waiting for
interrupt messages.

You can also devise your own Mach messages and invoke whatever I/O thread
methods you choose in response to them. You would implemergdbigeMsg

method in I0DirectDevice to dequeue the next Mach message from the interrupt
port.

The I0SCSIController class is an example of this. The SCSI bus is capable of
performing overlapped I/O requests, in which one 1/O request can be started while
another is in progress and is disconnected from the bus. In this case, the
IOSCSIController I/O thread receives /O requests through Mach messages.

IOSCSIController itself doesn’t manage, allocate, or use any Mach ports at all. It
depends ostartiOThread to set up one port, the standard interrupt port. Everything
else is done by subclasses of IOSCSIController. IOSCSIController subclasses
currently use the interrupt port for all Mach interprocess communication, including
command messages and timeout messages. The messages are distinguished by their
message ID, not the port to which they are sent.

The example SCSI driver iNextDeveloper/Examples/DriverKit/Adaptec1542B
is a good illustration of these techniques.

An older technique that created a custom Mach message that included the command
buffer is no longer used. It's been replaced by the mechanism of enqueuing a
command buffer on some well-known location (such as an instance variable) and
sending a command message to the interrupt port. This results in
commandRequestOccurredoeing invoked by the 1/O thread, as noted above.

Synchronizing Using Condition Locks

Condition locks are provided by the Mach Kit's NXConditionLock class, which
works at both user and kernel level. For information about NXConditionLock beyond
what's given here, s&¢EXTSTEP General Reference

Using Mach messages and condition locks for synchronization aren’t necessarily
mutually exclusive. For instance, you could use a condition lock on a buffer as
illustrated in “Using a Command Buffer” below and have the I/O thread wait for
Mach messages on its interrupt port. However, the following two synchronization
techniquesare mutually exclusive:

» 1/0O thread waiting for messages on its interrupt port
» 1/0O thread waiting for work using a condition lock (as shown in the example
below)

A general technique for passing I/O information from a driver’s exported methods to
its I/O thread using condition locks is shown below and illustrated with an example.
Using a Command Buffer

Some known location, perhaps an instance variable in the driver object, can be used
to pass commands from the exported driver methods to the 1/0 thread. This variable

may contain a structure (callechdBuf _t in the following example) that serves as a
command bufferthe fundamental unit of communication between exported methods
and the 1/O thread. You would define the command buffer differently for each
driver—it must contain all the information needed by the I/O thread to perform a
single 1/O request. For example, a command buffer for a disk driver might contain a
disk address, a virtual address, a byte count, and a read/write command flag. The
command buffer might also contain fields by which the I/O thread can indicate
completion status—for example, a device-specific status field and a field indicating
the number of bytes transferred.

The command buffer contains a variable for a token that indicates which hardware
operation the 1/O thread should perform. This variable may be the valueeptiam
for instance.

The command buffer also contains an NXConditionLzkledcmdBufLock in the
example below), which manages access to the command buffer. An exported method
(a write routine, for example) sets the lock unconditionally when it wants the 1/O
thread to execute a command. It sets up the command buffer for the operation it
wants to perform and releases the lock with the condition NOT_COMPLETE. It then
waits on the lock until its state is COMPLETE, which results in the user thread
sleeping until the 1/0 thread sets the lock condition to COMPLETE. Meanwhile, the
I/O thread is waiting on the lock until its state is NOT_COMPLETE and it has a
command to execute. When those conditions are satisfied, the I/O thread then sets
the lock. When it finishes executing the command, it releases the lock and sets its
state to COMPLETE, which is the cue for the user thread to wake up.

Managing Multiple Requests

You can also queue multiple requests with condition locks. This lock works
independently of the lock indicating a command completion.

Declare an instance variable (which may be in the driver object) that's the head of a
gueue of command buffel@ommand buffers are added to the queue by exported
methods and removed from the queue by the 1/O thread.

Declare an instance variable that’'s an NXConditionLock (this variable is called
ioQueueLockin the following example). This lock protects the queue and provides a
way for the I/O thread to sleep until it has work to do. This lock has two states,
QUEUE_EMPTY and QUEUE_NOT_EMPTY. Note that each command buffer has
its own condition lockgmdBufLock in the example below) to control completion of
the 1/0O request specified in that particular buffer.

Example

Here’s an example of an exported method that communicates with the I/O thread
synchronously. This example shows how locks can be used to synchronize with a

custom 1/O thread in lieu of command messages to the interrupt port. It also shows
how to queue multiple requests. Italicized text delineated in angle brackets, that is <<
>> is to be filled in with device-specific code.

- (IOReturn)makelORequest:(int)JanArgument
cmdBuf_t cmdBuf;

/* Initialize lock */
[ecmdBuf.cmdBufLock lock];

<< Fill in cmdBuf fields appropriate for this I/0. >>
/* Unlock and set cmdBufLock to condition NOT_COMPLETE. */
[emdBuf.cmdBufLock unlockWith:NOT_COMPLETE];

/*

* Enqueue this command buffer and let the 1/O thread
* know that it has work to do.

*/

[ioQueueLock lock];

<< Enqueue cmdBuf on ioQueue. >>

[iloQueuelLock unlockWith:QUEUE_NOT_EMPTY];

/*

* Wait for 1/0 thread to process the command buffer and
signal

* completion.

*

* NOTE: The following is necessary only for synchronous I/O.

*/

[emdBuf.cmdBufLock lockWhen:COMPLETE]; //ONLY FOR SYNCHRONOUS
[cmdBuf.cmdBufLock unlock];

/*

* /O is complete.

*/
<< Free necessary data from cmdBuf. >>
<< Return I/O result. >>

}

The 1/O thread invokes the following method while waiting for work from the
exported methods:

- (cmdBuf_t *)waitForWork
cmdBuf_t *cmdBuf;

[iloQueuelLock lockWhen:QUEUE_NOT_EMPTY];
<< Dequeue head of ioQueue, save in cmdBuUf. >>
if(<< ioQueue is empty >>)
[ioQueuelLock unlockWith:QUEUE_EMPTY];
else
[iloQueueLock unlockWith:QUEUE_NOT_EMPTY];
return cmdBuf;

}

The 1/0O thread executes the request and wakes up the user thread as follows:

- (void)performlO:(cmdBuf_t *)cmdBuf

<< Execute I/O request >>
[ecmdBuf->cmdBufLock lock];
[cmdBuf->cmdBufLock unlockWith: COMPLETE];

Sending Messages Outside the I/O Task

When a driver executes outside the 1/O task, it no longer has send rights to ports that
it has in the 1/O task. A workaround for this problem is to use the
msg_send_from_kernel(¥unction instead ofnsg_send(}o send the message to the
port. The port must first be converted to a form that’s valid in the kernel's IPC space,
usinglOConvertPort() . An example of usingnsg_send_from_kernel()s in the
IOSCSIController class specification.

Handling Interrupts

Most kernel-level drivers don’t handle interrupts directly. Instead, the kernel notifies
the driver of an interrupt by sending a Mach message to the interrupt port. An
interrupt port is allocated when a direct driver object is initialized by the
attachinterruptPort method of IODirectDevice. Figure 2-2 shows how interrupts
are handled by the kernel and the 1/O thread of a direct device driver.

Request interrupt enable

Kernel Driver

Receive Send
: ; Support
@ interrupt @ interrupt PP
Direct Driver message Interrupt message
1/0 Thread Port

~

Ve

Q

<3
/f)[@/_

/Z/ 0

Hardware

Figure 2-2 . Driver Kit Interrupt Handling

As Figure 2-2 shows, when an interrupt occurs (1), the kernel masks off further
occurrences of that particular interrupt (2) and sends a message to the appropriate
interrupt port (3). It then returns from the interrupt. The interrupt message contains no
information except for a message ID in its header that identifies this message as an
interrupt message.

When the driver receives an interrupt message (4), it should examine the hardware to
determine the cause of the interrupt and perform whatever action is necessary for
continuing the 1/O transfer in progress (5). It should then request that the kernel
reenable interrupt notification for the device.(6)

No further interrupt messages are sent to the driver until the kernel enables interrupts
(7). If interrupts are shared between devices, the kernel reenables interrupts. If
interrupts are not shared, the kernel resumes sending interrupt messages. See the
section “Shared Interrupts” in this chapter.

When a device interrupts while a message is queued on the corresponding interrupt
port, the kernel returns immediately without sending an interrupt message. After
msg_receive(returns (which dequeues the message), the kernel regains the ability

to send interrupt messages (but not until the device interrupts again). The memory for
messages is fixed since the kernel can’t allocate more memory at the interrupt level.
The message buffers accommodate only one interrupt message, so any interrupts that
arrive while an interrupt message is already queued are lost.

The 1/0O thread automatically callssg_receive(Xo get messages on its interrupt
port. The default I/0O thread also invokes ifierruptOccurred or
interruptOccurredAt: method in response to interrupt messages. Most of the
device-specific classes in the Driver Kit do this for you.

One Device, One Thread

A driver is responsible for maintaining and dealing with three kinds of
resources—hardware, the driver’s private data, and client I/O requests. In a
multiprocessor system, or in a system in which driver code contains interrupt
handlers, a great deal of care must be taken to protect access to all three of these
resources. Almost every function must use locks and disable interrupts. Even in the
most well-thought out design, the presence of locks and interrupt disabling makes
code hard to read and tends to lead to bugs. The problem is most apparent in code
that manipulates the hardware directly.

The Driver Kit’'s solution to this problem is this:

Given any hardware resource, one and only one thread can deal with that
resource at a time. Interrupt handlers have no direct access to the resource.

Consider a SCSI controller chip, for example. If exactly one thread in the system has

access to the chip, there’s no need for locking or for disabling interrupts to protect the
code that manipulates the chip.

Another way of looking at this is that for a given piece of hardware, only one
operation at a time can happen. At point A, a driver might be setting up a chip to start
I/0. At point B, the driver might be waiting for an interrupt from the chip. At point C,
the driver might be responding to an interrupt and interrogating registers to see what
caused the interrupt. A driver is never setting up a chip to start an I/O at the same
time it's interrogating registers to see what caused an interrupt. In UNIX drivers, a
combination of locks, interrupt disabling, and an interrupt-driven state machine
assure that the driver attempts only one hardware operation at a time. In the Driver
Kit, the one-at-a-time sequence of operations is enforced by having a single thread
(the 1/O thread) perform all hardware operations.

Another reason for this model is the desire to have drivers run in user space. There’s
no practical way for user-level drivers to run interrupt handlers with interrupts
disabled; only kernel software can do this.

Some drivers in exceptional cases may choose to have multiple threads with access
to one piece of hardware. The “one device, one thread” model is not an absolute. It's
merely a design goal that has proved to be a viable basis for writing Driver Kit
drivers.

Example: Floppy Disk

Let’s look at a simple piece of hardware, a floppy disk controller chip. Floppy disk

I/O consists of a predictable sequence of operations—starting an 1/O request, waiting
for an interrupt, and manipulating some registers. A feasible template for a floppy
disk 1/O thread looks like this:

floppyThread()

<< Initialize local data structures. >>
<< Initialize hardware. >>
while(1) {
<< Wait for an I/O request from a client. >>
<< Set up the controller chip to start the I/0. >>
<< Wait for interrupt. >>
<< Manipulate controller registers to finish the I/O. >>
<< Notify client of I/O completion. >>
}
}

Not all devices are this simple, but this illustrates how a single thread suffices to
manipulate a hardware resource.

Traditional UNIX Interrupt Handling

Compare the Driver Kit's interrupt handling to the UNIX approach.

The traditional UNIX driver design involves a conceptogkhalf which is code
called from higher layers in the kernel to initiate an /O, abdteom-half which
consists of various interrupt handlers and 1/0 completion logic. A simple example
follows:

1. High-level kernel code calls the drivestsategy() or write() orread()
routine (in the driver’s top-half) to start an 1/O.

2. The driver’s top-half enqueues the 1/0 on a queue that is private to the
driver, perhaps after translating the incoming data into a driver-specific
format.

3. If the bottom half of the driver is idle, the top-half callsat() routine to
initiate a hardware operation.

4. The bottom-half takes over from here. When an interrupt occurs, the driver’s
interrupt handler runs and decides either that the hardware needs some more
attention before completing the I/O (in which case a state machine is
advanced and the driver awaits another interrupt) or that the 1/0 is complete
(in which case higher-level code in the kernel is notified of this fact).

Things can actually get much more complicated than this. For instance, a certain
section of code may sometimes run as the result of an interrupt and run the rest of the
time for some other reason. Because an interrupt might occur while the code is
already running, the code must protect itself during critical sections by disabling
interrupts. One example of code that must be protected is a function that starts 1/O. In
the example given previously in this section, steet() function doesn’t run as the

result of an interrupt. However, if more work remains at I/0O completion time, the
start() function is called from the interrupt handler. The section of code that starts

the 1/0O must be protected from interrupts so that it can complete its work correctly.

Sometimes interrupts are disabled for hundreds of microseconds or more. Such long
periods without interrupts seriously hamper system throughput and cripple the ability
of the system to respond to real-time events such as the arrival of serial data.

Another problem with running some subset of a driver’'s code at interrupt level is that
locking shared data structures (even if they are shared only between the files
constituting one driver) is difficult on a multiprocessor system. To access a critical
data structure on a multiprocessor system—when the data can be accessed at
interrupt level by all processors—noninterrupt code must first disable interrupts on all
processors and then acquire a lock.

Warning:

Warning:

Custom Interrupt Handlers

You may need to write your own interrupt handler in some cases. A driver for a
device with high data rates that depends on programmed 1/0O would be a good
candidate for a custom interrupt handler, for instance. The IODirectDevice
getHandler:level:argument:forinterrupt: method has been provided to support
such handlers. It specifies an interrupt handler function for the driver.

Use interrupt level IPLDEVICE (defined in
INextDeveloper/Headers/kernserv/i386/spl)unless a higher interrupt level is
absolutely necessary and you're fully aware of the possible consequences of using it.

If you want the 1/O thread to take some action, the interrupt handler can call the
IOSendIinterrupt() function, which sends a Mach message to the I/O thread with
the specified message ID.

Your driver must not send Objective C messages in an interrupt handler, since
sending a message can result in memory allocation. Allocating memory can lead to
sleeping, and interrupt handlers must not sleep, as describEXiRSTEP

Operating System Software

Read “Designing a Loadable Kernel ServerNEXTSTEP Operating System
Softwarefor more information on executing as the result of an interrupt.

Shared Interrupts

Devices may share the same interrupt. Since there are only 15 IRQs available on
Intel-based computers, sharing interrupts may be necessary for some configurations.

Each time an interrupt occurs for a shared IRQ number, every driver that shares the
interrupt gets an interrupt message. If the driver has its own interrupt handler, it is
called.

At the end of your interrupt handling method or function, you must reenable the
interrupt—whether or not the interrupt was intended for your device. You accomplish

this by invokingenableAllinterrupts :
[self enableAllinterrupts];

If you are using a special interrupt handler, reenable interrupts by calling
IOEnablelnterrupt() in the handler. You should only reenable the interrupt after
removing the source of the interrupt—by clearing the interrupt status register on the
device, for example, or by using whatever mechanism is necessary for the hardware
your driver controls.

The shared interrupt is masked each time an interrupt occurs. It is only unmasked

after all drivers that are sharing the interrupt reenable their own interrupts.

IODisablelnterrupt() allows handlers of non-shared interrupts to indicate that the
interrupt should be left disabled on return from the interrupt handler.

Note: IOEnablelnterrupt() andlODisablelnterrupt() must be called only inside

a special interrupt handler function, that is, at interrupt level. (The special interrupt
handler is the one you specifiedgatHandler:level:argument:forinterrupt: .)

These functions can’t be called from any other context. You shouldn’t call them from
interruptOccurred , for example.

Enable shared interrupts for your system by setting the “Share IRQ Levels” key in
your driver’sDefault.table:

"Share IRQ Levels" ="Yes";

Note: Currently, shared interrupts imply level-triggered interrupts on EISA and PCI
bus machines. Shared interrupts are not supported on ISA bus machines.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Support for Specific Devices

Earlier chapters considered generic issues for all drivers. This chapter concentrates
on the essentials of writing drivers for the following specific types of devices:

» Display

* Network

» SCSI (both controllers and devices attached to controllers)
» Sound

The section for each device type lists the development hardware needed. It indicates
the basic operations required for such a device driver and provides some
implementation suggestions.

Figure 3-1 shows the IODevice classes that you can use to write specific drivers.

— IOAudio
— IOEthernet
IODisk
— IODisplay
Object — 10Device IODirectDevice —
—IlOSCSIController
EventSrc
— IOFrameBufferDisplay
—|OSVGADisplay

Figure 3-1. Public IODevice Classes

The Driver Kit has special support for these devices although you can also write other
kinds of drivers with the Driver Kit.

In addition to device-specific classes, some kinds of drivers use non-IODevice
classes that work with the I0Devices. For example, network drivers typically use the
IONetwork and IONetbufQueue classes.

Examples of each driver type are locatetNaxtDeveloper/Examples/DriverKit
See also the examples located in
INextLibrary/Documentation/NextDev/Examples/DriverKit.

Development Support

You need support from these sources during driver development:

» Hardware vendors. You may need new hardware or firmware. You also want
advance notice of changes and information about new products. Support for drivers
IS an ongoing process.

» Accurate and complete specifications for the hardware you're working with.
Ancillary documentation such as support notes, technical notes, and sample code
is also very useful.

Warnings

Driver development is hazardous to the health of your system. You will corrupt your
kernel and hang your system during development, so be prepared to recover from
these incidents. Furthermore, you'll most likely corrupt your system disk, so take
these precautions:

» Keep code and other critical resources off your development systems.
» Have a plan for backup and rapid restoration of your disk’s contents.

Display Devices

A driver for a display card is a subclass of one of these two classes:

» |IOFrameBufferDisplay, for cards that can linearly map the entire frame buffer
* |IOSVGADisplay, for other display cards

Figure 3-1 shows display device classes’ position in the Driver Kit class hierarchy.
IOFrameBufferDisplay supports the following modes:

e 2-bit grayscale
» 8-bit grayscale

 8-bit color

» 16-bit color (4 or 5 bits each for red, green, and blue, but only 4096 colors in either
case)

» 24-bit color (8 bits each for red, green, and blue).

IOSVGAD isplay supports only 2-bit grayscale.

Note: All display cards with VGA support work with NEXTSTEP. Without special
drivers, however, they have a small display areax680) and are 2-bit grayscale.

Both classes support EISA and VL-Bus display cards. A limited number of ISA
display cards are supported for performance reasons. PCI display cards are
supported, but not PCMCIA display cards.

Driver Kit display drivers are simpler than their DOS or Windévesinterparts
because they perform no graphics operations—the Window Server handles all
graphics.

See the 10Display, IOFrameBufferDisplay, and IOSVGADisplay class specifications
for additional information about how to implement a driver.

Directories in/NextDeveloper/Examples/DriverKitwith examples of video drivers
includeAT]l, CirrusLogicGD542X, QVision, S3 andTsengLabsET4000

— IOFrameBufferDisplay
Object— IODevice — I0DirectDevice — IODisplay t
IOSVGADisplay

Figure 3-2 . Classes for Display Drivers

Development Requirements

The following hardware is required or recommended for development and support
efforts:

* A workstation with NEXTSTEP User and Developer software

» A second NEXTSTEP workstation for the target system (optional, but
recommended)

* Adapter hardware

e Multisync monitor

» Frequency counter (optional, but recommended)

» Oscilloscope (optional)

Setting the Frame Buffer Address Range

If you implement an IOFrameBufferDisplay driver, you must supply the frame buffer
memory range as the first range in the memory range list. This is normally done by
placing this range as the first range of the “Memory Maps” k&eifault.table.

(You can also set this list with tlsetMemoryRangeList:num: method in
IODeviceDescription.) The value should be the physical address memory byte range
of the frame buffer. This range should be high in memory—above 2 GB, for
example—to avoid conflicting with physical memory.

On PCl-based systems, the BIOS attempts to allocate the frame buffer address range
for you. The BIOS places this address range in the PCI configuration data but not in
the device description, so you need to update the device description with this range.
Furthermore, the BIOS doesn’t always succeed in determining a valid frame buffer
address, so you need to check the address. Follow these steps to check and set the
frame buffer address range for PCl-based systems:

1. Getthe memory ranges from the device description by invoking
IODeviceDescription’snemoryRangeListmethod. The frame buffer
address range is the first one in the list—this is the range value provided in
the Default.table.

2. Get the PCI configuration space’s frame address range, which was
determined by the BIOS. Read the PCI configuration space by using the
getPCIConfigData:atRegister:withDeviceDescription:method. Consult
your device’s hardware specifications to determine which PCI register holds
the frame buffer address.

3. Check that the range’s starting address is greater than or equal to 4 MB and
correctly aligned for your hardware.

4. |If the address is invalid, don’t update the device description with this range.
Instead, update the PCI configuration space with the range from the device
description. Take the device description’s address range you determined in
the first step and write it to the PCI configuration space using the
setPCIConfigData:atRegister:withDeviceDescription:method.

5. If the address is valid, update the device description. Replace the first range
in the list you obtained in step 1 with the range you got from the PCI
configuration. Set the ranges with tetMemoryRangeList:num: method
in IODeviceDescription.

You should go through these steps in ynabe: method, prior to invoking
initFromDeviceDescription:.

Basic Operations

A display driver must perform the following basic operations:

» Instantiating and initializing a driver object

» Selecting the display mode

* Reconfiguring display hardware for the selected display mode
» Reverting to VGA display mode

» Adjusting display brightness

Instantiating and Initializing a Driver Object

Override theprobe: method in I0Device. Youprobe: method should find and
characterize the hardware. It must verify the presence and operation of the graphics
controller (CRTC) and determine its revision. Timebe: method should also

determine the DAC type, the memory size, and the clock chip type, if necessary. For
PCl-based drivergrobe: should check and set the frame buffer range address, as
indicated in “Setting the Frame Buffer Address Range.” It should create a driver
instance of IOFrameBufferDisplay or IOSVGADisplay. If invalid values are found
during verification, the method shouldn’t create a driver instance but should send an
appropriate diagnostic message and return NO.

Note: Instead of usingrobe:, the current display driver examples use
initFromDeviceDescription: to perform all this initialization, because they were
written before the APl was fully developed. Tgr@be: method is preferred.

Selecting a Display Mode

IOFrameBufferDisplay’s methosklectMode:count:valid: selects the display mode
for you. To use it, you need to declare an 10DisplayInfo array with one element per
mode and initialize it, as in this example:

const IODisplaylnfo QVisionModeTable[] = {
/* 0: QVision 1024 x 768 x 8 (Mode 0x38) @ 60Hz. */

1024, 768, 1024, 1024, 60, 0,
I0_8BitsPerPixel, I0_OnelsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38 60Hz,

3

/* 1: QVision 1024 x 768 x 8 (Mode 0x38) @ 66Hz. */

1024, 768, 1024, 1024, 66, 0,
I0_8BitsPerPixel, IO_OnelsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38 66Hz,
}1
}

Declare an array of boolean values with one element per display mode and fill it. In

the following example, italicized text delineated in angle brackets, that is << >>, is to
be filled in with driver-specific code.

BOOL validModes[QVisionModeTableCount];

for (k = 0; k < QVisionModeTableCount; k++) {
if (<< current hardware supports this mode >>)
validModes[k] = YES;
else
validModes[K] = NO;
}

Finally, send a message to select a mode and handle the result, as this code section
illustrates:

mode = [self selectMode:QVisionModeTable
count:QVisionModeTableCount
valid:validModes];

if (mode < 0) {
IOLog("%s: Sorry, cannot use requested display mode.\n",
[self name));

/*
* Pick a reasonable default
*/
mode = DEFAULT_QVISION_MODE;

Reconfiguring Display Hardware for the Selected Display Mode

Using the appropriate commands for your display hardware, reconfigure it for the
selected mode with these operations, the order of which is hardware-dependent:

* Turn off the CRTC

» Configure the CRTC

» Configure the DAC

» Configure the clock chip

» Configure memory, if necessary
* Restartthe CRTC

* Enable linear frame buffer mode

Reverting to VGA Display Mode

Return the adapter to the state it would be in after a hard reset, and, in the typical
case, set VGA mode to 3.

Adjusting Display Brightness

If the hardware supports changing the brightness of the display, implement the

setBrightness:token:and use theetTransferTable:count: method to adjust it as
desired.

If the DAC supports downloading a color palette, oversield ransferTable:count:

to receive a gamma-corrected transfer table from the Window Server, or declare your
own table in a static array. OverridetBrightness:token:and then download the

transfer table to the DAC. Look at an example ofstsi&sammaTablemethod in one

of the display driver examples iNextDeveloper/Examples/DriverKit Finally,

indicate that you’ve implemented a transfer table by setting a flag:

displayInfo->flags |= |O_DISPLAY_HAS_TRANSFER_TABLE;

If the DAC doesn’t support downloading a color palette, don’t override these methods,
and set the flag to indicate there’s no transfer table:

displayInfo->flags |= |0_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION;

Network Devices

Two classes, IONetwork and I0ONetbufQueue, support all drivers that directly control
networking hardware.

The Driver Kit contains special support for Ethernet and Token Ring drivers in two
IODirectDevice subclasses—IOEthernet and I0TokenRing—from which you create a
subclass to build your network driver. IOEthernet and IOTokenRing implement the
hardware-independent code needed to control Ethernet and Token Ring cards.

Figure 3-1 shows the network device classes relative to their superclasses.

See the IOEthernet and IOTokenRing class descriptions for additional information on
writing Ethernet and Token Ring drivers.

/INextDeveloper/Examples/DriverKit/SMC16contains a network driver example.

IONetwork
IOEthernet
Object — 10Device IODirectDevice —
— lI0TokenRing
IONetbufQueue

Figure 3-3. Classes for Network Drivers

Development Requirements

The following hardware is required or recommended for development and support
efforts:

» Two workstations with NEXTSTEP User software (mandatory—these serve as
debug master and slave)

 NEXTSTEP Developer software on one of the workstations

» For Ethernet drivers, two supported Ethernet adapters, one of which supports
NEXTSTEP kernel debugging (contact NeXT to get a list of qualifying adapters)

» Target adapter hardware

* Networking hardware (cables, tees, terminators, transceivers, and hub) to link the
two workstations

» Network analyzer (optional, but highly recommended)

Basic Operations

A network driver needs to support these operations:

» Instantiating and initializing a driver object
* Handling interrupts and timeouts

» Cold initialization

* Warm initialization

* Transmitting

* Receiving

Instantiating and Initializing a Driver Object

Override IODevice'probe: method. Youprobe: method should find the hardware
based upon a user-configured parameter such as an ID sequence or signature. This
method must validate the device description passpbtie:, failing with a

diagnostic message if any values are invalid. fiede: method should allocate an
instance of IOEthernet or IOTokenRing, if necessary, and invoke
initFromDeviceDescription: to initialize the instance. If it finds anything invalid in

the hardware or device description, it shouldn’t create a driver instance and should
return NO.

Handling Interrupts and Timeouts

ImplementinterruptOccurred andtimeoutOccurred. The kernel invokes
interruptOccurred from the I/O thread whenever the hardware interrupts and
invokestimeoutOccurred when a timeout occurs.

Cold Initialization

Warning:

Cold initialization should perform any one-time initialization actions, such as reading
the hardware address from ROM or allocating system memory for DMA buffers.

Warm Initialization

Implement theesetAndEnable: method to prepare the hardware and software for
network activity. This method should do the following:

» Disable interrupts

» Clear pending timeouts

* Initialize hardware settings and software data structures
» Cache physical addresses

» Enable running by invokingetRunning:

* Reenable interrupts if the enable parameter is YES

Transmitting

Depending on what your hardware supports, choose between using a single frame or a
transmit queue.

To transmit a frame, implement thransmit: method to follow these steps:

1.

Queue the frame if it can’'t be processed immediately.
Perform a software loopback if necessary uperformLoopback: .
Transfer the frame to the hardware.

Free the frame’s network buffer; you may need to do this in an interrupt
handler.

Set a timeout.
Handle the transmit interrupt or timeout.

Increment statistics such as number of frames sent, number of timeouts, and
so on by invoking methods suchiasrementOutputPacketsin IONetwork.

Never attempt to retransmit at the driver level.

Receiving

To receive a packet, follow these steps:

1. Handle the receive interrupt, which indicates that a packet has been
received. Incoming frames must be in a network buffer. You can allocate
network buffers witmb_alloc() or usenb_alloc_wrapper() to wrap already
allocated memory as a network buffer. Note that these functions can’t be
called at the interrupt level.

2. Check that the network buffer size is correct. You can shrink it with
nb_shrink_bot() if needed.

3. Filter unwanted packets witkUnwantedMulticastPacket:in IOEthernet if
the hardware doesn’t provide filtering based on individual multicast
addresses.

4. Hand off the packet to the kernel by invoklmndlelnputPacket:extra: in
IONetwork. This automatically invokescrementinputPacketsto
increment that count.

5. Update statistics appropriately using methods such as
incrementinputErrors in IONetwork.

SCSI Controllers and Peripherals

You can write drivers for both SCSI controllers and SCSI peripherals with the Driver
Kit.

Drivers for SCSI controllers should generally be implemented as subclasses of
IOSCSIController. Drivers for SCSI devices are indirect drivers that are typically
implemented as subclasses of IODevice. These indirect drivers use the
IOSCSIControllerExported protocol to communicate with the SCSI controller driver
object, which must conform to the IOSCSIControllerExported protocol. (Required
protocols and the role they play in connecting drivers are discussed in Chapter 2.)

Figure 3-1 illustrates the position of SCSI driver classes in the Driver Kit class
hierarchy.

For more information on writing a SCSI driver, see the IOSCSIController and
IODevice class descriptions.

An example of a SCSI controller driver is located in
INextDeveloper/Examples/DriverKit/Adaptec1542B For an example of a SCSI
tape drive controller, sgdlextDeveloper/Examples/DriverKit/SCSITape

Object —10Device — IODirectDevice — IOSCSIController

Figure 3-4 . Classes for SCSI Controllers

Development Requirements

The following hardware is required or recommended for development and support
efforts:

» A workstation with NEXTSTEP User and Developer software

* A second NEXTSTEP workstation with NEXTSTEP User software. This is
stronglyrecommended: It’'s virtually guaranteed that you'll corrupt your disk. It's
essentially mandatory if you're developing a boot driver. Furthermore, the second
station allows you to debug the loaded driver at source level. Set up a procedure to
quickly recover the contents of your disk.

* SCSI Host adapter

» Peripherals for testing the adapter: hard disk, CD-ROM, tape drive

» SCSIl analyzer

Basic SCSI Controller Driver Operations

The basic operations needed for a SCSI driver are the following:

» Instantiating and initializing a driver object
 Initiating commands

* Handling interrupts and command completion
» Handling timeouts

Instantiating and Initializing a Driver Object
Override IODevice'robe: andinitFromDeviceDescription: methods.

Implementprobe: to test for system resources such as I/O ports and to verify the
presence of hardware. If the hardware is present, create a driver instance and return
YES. If invalid values are found during verificatigorpbe: shouldn’t create an

instance; it should instead send an appropriate diagnostic message and return NO.

Your initFromDeviceDescription: method must invoke super’s implementation:

[super initFromDeviceDescription: deviceDescription 1;

IOSCSIController'snitFromDeviceDescription: method starts up the default I/0
thread provided by I0ODevice and initializes its instance variables. Your
initFromDeviceDescription: method should initialize the hardware state and
software structures such as queues and locks.

Initiating Commands

ImplementresetSCSIBus(in the IOSCSIControllerExported protocol) to reset the
SCSI bus for your hardware.

ImplementexecuteRequest:buffer:client:(also in the IOSCSIControllerExported
protocol). This exported method should convert the command and data (in the
IOSCSIRequesttruct passed to it) into the format for the specific hardware and
place it in a command buffer. Enqueue the buffer in some well-known location—a
gueuing instance variable you define in your subclass, for example. Send a Mach
message with the ID IO_COMMAND_MSG to the I/O thread'’s interrupt port to

notify the I/O thread that it should execute a command that’s been placed in global
data. Wait for the command to complete; you can synchronize this with the 1/0 thread
by using an NXConditionLock object in the command buffer. (For example, you set
the lock to a CMD_READY state and then doekWhen:CMD_COMPLETE. The

I/O thread sets the lock state to CMD_COMPLETE when it's done. See the example
in Chapter 2.) Return SCSI and driver status.

ThecommandRequestOccurredmethod is invoked by the I/O thread when it

receives a Mach message with the ID IO_COMMAND_MSG. Implement this

method to dequeue all commands that have been queued for execution. Send them to
the host adapter, using the private methods and functions that you implement for your
hardware. If the host adapter isn’t able to accept all the enqueued commands, wait
until an interrupt message arrives indicating that the host adapter has completed
commands previously sent to it and may now accept more commands.

Handling Interrupts and Command Completion

When the I/Ghread receives a message with the ID IO_INTERRUPT_MSG, it
invokes thanterruptOccurred method against the driver instance. Your
implementation of this method should find all commands that the host adapter has
completed, mark their respective command buffers complete, and dequeue them. It
should reinvoke theommandRequestOccurrednethod to process any remaining
enqueued commands.

Handling Timeouts

Just before the I/O thread tells the hardware to execute a command, it should call the
I0OScheduleFunc()function to arrange for a specified timeout function to be called

at a certain time in the future. If the timeout function is called, it sends a Mach
message with the ID IO_TIMEOUT_MSG to the I/O thread.

ThetimeoutOccurred method is invoked by the 1/O thread if it receives a message

with the ID IO_TIMEOUT_MSG. Your implementation of this method should abort
pending commands and reset the SCSI bus.

Other Considerations

You need to consider a few other issues in implementing a SCSI driver.

Sending Messages to the 1/0O Thread

During initialization, get the 1/O thread'’s interrupt port:

port = [self interruptPort];

Also get the port’'s name in the kernel's IPC (inter process communication) name
space:

ioTaskPort = IOConvertPort(port, IO_KernellOTask, |0_Kernel);

Use themsg_send_from_kernel(¥unction to actually send a message from the
timeout function or fronexecuteRequest:buffer:client:to the I/O thread. You can’t
usemsg_send(because when a driver executes outside the I/O task, it no longer has
send rights to ports that it had in the 1/O task. The same applies to any method or
function that you specified in a call ©©ScheduleFunc()

Alignment

To specify the buffer allocation alignment restrictions that apply to your driver, all you
need to do is implement the IOSCSIControllerExported protonwthod
getDMAAlignment, which returns the DMA alignment requirements for the current
architecture. This method must fill in all four fields of an IODMAAlignment structure
that indicates buffer starting points and total length for reading and writing.

Client drivers can usgetDMAAlignment to obtain alignment requirements. They

can then use thH®Align() macro to determine how much memory they really need to
allocate. These drivers should do the allocation with
allocateBufferofLength:actualStart:actualLength: that allocates well-aligned
memory, which is required for calls éxecuteRequest:buffer:client:

Mapping Virtual Memory

This is generally not a concern unless the driver itself must touch data, such as in
programmed I/O. In these cases, I8BhysicalFromVirtual() to get the physical
address of the desired data. Of course, there’s no guarantee that you can access every

physical address—you only get a valid physical address if the memory is wired down.

UselOMapPhysicallintolOTask() to create a virtual address in the IOTask’s virtual
address space. Deallocate this virtual memory by calling
IOUnmapPhysicalFromlOTask().

Maximum Data Transfer

If you implement the methaghaxTransfer, it may simplify your design. Upper layers
can use the value returned by this method to determine the maximum data transfer
size your driver can handle. They won'’t try to send commands that attempt to transfer
more data than the driver can handle.

Statistics

A suite of methods such asaxQueuelLengthare available to return statistics used
by iostat and other commands. The example located in
/NextDeveloper/Examples/DriverKit/Adaptec1542Bllustrates gathering these
statistics.

SCSI Peripheral Drivers

To write a SCSI peripheral device driver, create a subclass of IODevice. Use the
methods in the IOSCSIControllerExported protocol to allow the SCSI peripheral
driver object to talk to the SCSI controller object. Some of this protocol’s key methods
include:

» executeRequest:buffer:client; which sends SCSI commands to a peripheral
device.

» getDMAAlignment:, which returns DMA alignment requirements.

» allocateBufferOfLength:actualStart:actualLength:, which allocates and
returns a pointer to well-aligned memory, required for invoking
executeRequest:buffer:client: It's used with other alignment functions such as
IOAlign() andgetDMAAIlignment:.

» reserveTarget:lun:forOwner: andreleaseTarget:lun:forOwner:, which
respectively reserve and release a specified target/lun pair.

* resetSCSIBus which resets the SCSI bus.

Implement theprobe: method to get thel of the SCSI controller object from the
IODeviceDescription object that's handedotobe: as its parameter. In addition,

probe: may send a SCSI INQUIRY command to each target/lun pair on its controller
to see if a peripheral supported by the driver is connected to the SCSI bus. For every

peripheral it findsprobe: should instantiate a SCSI peripheral driver object.

For an example of a SCSI tape drive controller, see
INextDeveloper/Examples/DriverKit/SCSITape

Sound Devices

To write a driver for a sound device, create a subclass of IOAudio. See the IOAudio
Class description for additional information on writing a driver.

Directories in/NextDeveloper/Examples/DriverKit with examples of sound drivers
includeProAudioSpectruml16andSoundBlaster8

Development Requirements

The following hardware is required or recommended for development and support
efforts:

» At least one workstation with NEXTSTEP User and Developer software

» A second NEXTSTEP workstation (optional, but recommended. One can serve as
debug master, the other slave. This allows source debugging of the loaded driver.)

* Sound card

* Microphone, headphones or amplifier, and speakers that are all known to work
with the sound card

* Logic analyzer

Basic Operations

Here are the basic operations needed for an audio driver:

* Instantiating and initializing a driver object

» Starting and stopping data transfers

* Handling interrupts

» Determining supported features

* Changing hardware settings such as volume

Instantiating and Initializing a Driver Object

Overrideprobe: to allocate an instance of the driver and initialize it by invoking

IOAudio’s initFromDeviceDescription: method.

OverrideinitFromDeviceDescription: method and invoke super’s implementation.
IOAudio’s initFromDeviceDescription: method invokes theesetmethod, which

you must implement to check whether hardware is present. If hardware is present, the
method should set it to a known state. It should also configure the host DMA channel
to auto initialize mode if the sound card supports it. (Otherwise, you'll have to restart
the DMA transfer every time you handle an interrupt.) It should retiliihthe

hardware isn’'t present.

If initFromDeviceDescription: returnsnil, probe: shouldn’t allocate a driver
instance and should return NO.

Starting and Stopping Data Transfers

Override IOAudio’sstartDMAForchannel:read:buffer:bufferSizeForinterrupts:
method in your driver. Your method should do the following:

» Configure your audio hardware to use the selected sample rate, data encoding, and
channel count.

» Set audio hardware to auto initialize mode, if possible.

» Start the audio hardware’s data transfer engine.

» Enable interrupts and start the host master DMA.

» Invoke IODirectDevice'startDMAForBuffer:.channel: (part of the kernel),
which you’ve configured to start the DMA on a selected channel.

Note: startDMAForchannel:read:buffer:bufferSizeForinterrupts: must be
called only from the I/O thread.

Override IOAudio’sstopDMAForChannel:read: method in your subclass to perform
these operations:

» Disable interrupts.
* Turn off the DMA channel.
» Stop any data transfer from the audio hardware.

Handling Interrupts

The Driver Kit already implements an interrupt handler for sound. You must
implement the methorhterruptOccurredForinput:forOutput: to take these
actions:

» Determine which, if any, channel interrupted and perform the necessary actions to
acknowledge the interrupt.

* Return BOOL values in each of the method’s two BOOL parameters: YES if there
is data in the corresponding channel and NO otherwise.

Note: TheinterruptOccurredForinput:forOutput: method must be called only
from the 1/O thread.

Write a function that clears audio hardware interrupts and implement
interruptClearFunc to return the address of this function. This function is called by
the interrupt handler when there’s an audio interrupt, so it can’t block.

Determining Supported Features
Implement the following methods to provide the following feature information:

» acceptsContinuousSamplingRatet return whether continuous sampling rates
is supported

» channelCountLimit to return 1 for mono or 2 for stereo

» getDataEncodings:count:to return an array of supported data encodings

» getlnputChannelBuffer:size: to return the input channel’s buffer address and
size

» getOuputChannelBuffer:size:to return the output channel’s buffer address and
size

» getSamplingRates:countto return supported sampling rates in an array and a
count of the number of rates supported

» getSamplingRatesLow:high:to return the lowest and highest sampling rates
supported

Setting Hardware State

The user can set various audio parameters. IOAudio has a set of methods that return
the values set by the user. You implement an accompanying set of methods to convert
these user values to values your hardware understands by scaling the values
appropriately and updating the hardware state to the scaled values. Implement the
methods if the audio hardware supports the corresponding features. IOAudio provides
the following methods to get the user value and update the associated hardware state:

* inputGainLeft andupdatelnputGainLeft

* inputGainRight andupdatelnputGainRight

» isLoudnessEnhancedndupdateLoudnessEnhanced

» isOutputMuted andupdateOutputMute

» outputAttenuationLeft andupdateOutputAttenuationLeft

* outputAttenuationRight andupdateOutputAttenuationRight

Input gain runs from 0 (no sound) to 32767 (maximum); attenuation goes-&bimo
sound) to 0 (maximum).

Note: 10Audio invokes all thaipdate...methods from the 1/O thread.

Caveat

IOAudio’s support for audio drivers has the following limitation you should know
about:

You can’'t override the methoddataEncoding andgetDataEncodings:count;

for example) that interpret NXSoundParameterTags passed from user-level
programs. Consequently, you have to use some other way to provide support for
device-specific features such as on-board compression.

Suggestions for Development

If the audio hardware supports a superset of a well-known interface, consider
developing it first. It's even better if a template is available. Then add features
specific to your audio hardware.

When you start debugging, first try to get an interrupt. When you do, you know data
transfers are occurring.

As a debugging aid, consider writing a user-level program to use IODeviceMaster to
read and write ports.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Building, Configuring, and
Debugging Drivers

This chapter tells you how to integrate your Driver Kit driver with the rest of the
system. It first describes building the driver using Project Builder. It tells how to set
up the initial configuration files and set the configuration parameters with the
Configure application. Finally, it highlights some of the debugging aids available for
finding driver bugs and tracing your driver’s execution. Consult the other sources
mentioned for in-depth information about the tools.

Also see Chapter 9, “Building, Loading, and Debugging Loadable Kernel Servers” in
NEXTSTEP Operating System Softwaredetails on that topic. Look at
INextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver for an
example of building, loading, and debugging a driver.

Driver Bundles

To load your driver into the kernel—even if only for testing—you need to create a
driver bundlefor it with Project Builder. A driver bundle contains all the files needed
to load and configure a driver: Its relocatable code and configuration information. A
bundle may also contain help information and a configuration inspector for Configure
to access configuration data. A driver bundle is also calteshfig bundlebecause it
contains configuration information for the driver and typically has the name
Driver.config, whereDriver is the driver's name.

The driver name should be of the form
<vendor><model><type>Driver

The driver namédaptec1542SCSIDrivdollows this form.

Bundle Locations

Driver bundles for each system device—like the mouse, display, network card, SCSI
devices, and so on—reside in a special directory cAllegtlLibrary/Devices. The
bundles for each type of device are calt/er.config, whereDriver is a type of

device or a device name. In addition, every system has a bundleS®ystedn.config

that configures the whole system.

An average system’s directoffextLibrary/Devices might contain the following
directories, each of which is a bundle for a specific device:

ATl.config PS2Mouse.config
Adaptec1542B.config ParallelPort.config
Beep.config ProAudioSpectrum.config
BusMouse.config QVision.config
CirrusLogicGD542X.config S3.config
CompagAudio.config SCSITape.config
DPT2012.config SMC16.config
EtherExpress16.config SerialMouse.config
EtherLink3.config SerialPorts.config
Floppy.config System.config

IDE.config TokenExpress.config
IntelGXProAudio.config TsengLabsET4000.config
JAWS.config VGA.config

MSWSoundSystem.config Wingine.config
PS2Keyboard.config

/NextLibrary/Devices is a link to thdprivate/Devicesdirectory, which is a link to
the driver directory for the current architecture (for exampléyate/Drivers/i386).
This link is always valid.

What's in a Bundle

Each driver bundle (includin§ystem.config can contain the following files and
directories:

Default.table

Instancen.table (created by Configure)
x.table

Display.modes

x.modes

CustomInspectofoptional binary)

Languagdproj/
CustomInspectonib (optional)
Localizable.strings
Help/ (replacednfo.rtf)
Driver_reloc (omitted for NeXT drivers that are compiled into the kernel)
Pre-Load
Post-Load

Default.table is a commented, read-only file that gives the default configuration
settings for a generic device. Configure usefault.table to buildInstancen.table

files, which contain specific configuration information for each device you have.
There may be othectable files, each expressing a different possible instance of the
driver.

Each.table file is the ASCII representation of an NXStringTable object. Drivers and
nondrivers can get access to these tables by using the I0ConfigTable class. In
addition, Driver Kit classes automatically interpret and use some of the standard keys
in these tables.

Direct drivers have onkstancen.table for each device. For example, if you have
two of the same card, Configure makes two files cdlethnce0.tableand
Instancel.tablein the card’s bundle. Indirect drivers and the system bundle have
only one file, callednstanceO.table

Note: Because Configure’s default device inspector has no way of knowing whether
a device is direct or indirect, it can create more thanmstancen.table for an

indirect driver. The consequence is that the drivemrtde: method gets invoked more
than once for each direct driver it might want to attach to. To get around this, you
should either write your own device inspector or ensure that your drprebe:

method can handle more than one probe per direct driver.

The Display.modeandx.modefiles hold display mode information. Default
information is inDisplay.mode andx.mode holds the information for other instances
of the driver (just ag.table expresses configuration information for other driver
instances).

For each languagépcalizable.stringscontains the text strings that applications

display about the device. For example, it includes the name of the device as it appears
in the list of devices in Configur&he Help/ directory contains files to inform the

user about the driver and help them use it.

TheDriver_relocfile is the relocatable object file of the device driver. The
CustomlInspectobinary is the executable file for the Inspector panel; its name is the
same as the bundle name (without.tenfig suffix). CustomInspectonib is the nib

file for the Inspector panel.

The bundle may contaidre-Loadand/orPost-Loadprograms that are run before

Warning:

and/or after the driver is loaded.

Configuration Tables

Files with a.table suffix contain strings of key/value pairs that describe a
configuration. See “Configuration Keys” in the Appendix for information on what
these tables should contain.

You can use thBefault.table of an existing driver as a starting point for a
configuration. Later, you should let the Configure application (with your custom
inspector, if any) create thiestancen.table files.

Here’s a samplinstancen.table for a parallel port driver:

"Driver Name" = "IOParallelPort";
"Title" = "System Parallel";
"Location" = "System Baseboard";
"Family” = "Parallel";

"Version" ="1.0";

"Server Name" = "ParallelPort";
"Path 0" ="/dev/pp0";
"Post-Load" ="InstallPPDeVv";
"Memory Maps" =""

"Pre-Load" ="RemovePPDeVv";
"DMA Channels" =""

"Minor Device Number" ="0";
"Valid IRQ Levels" ="7",

"I/O Ports" = "0x378-0x37f";
"Instance" ="0"

"Port Count" ="1"

"IRQ Levels" ="7"

C-style comment delimiters (that is, /* */) aren’t recognized in configuration tables,
such adDefault.table or Instance0.table Anything inside the delimiters will be

parsed along with the rest of the file. This means that, for example, if you are testing a
driver under development, you can’t remove a key-value pair by simply commenting it
out.

Other Configuration Tables

A bundle may also contain other configuration tables of the faable, wherex is a
prefix such as “PCI”. Each of these is a table dkéault.table butexpresses a
possible instance of the driver with a slightly different “personality” than
default.table. For examplePCl.table might be identical t@efault.table except
that it contains a line specifying a PCl-compliant driver:

"Bus Type" = "PCI";

By conventionDefault.table specifies an ISA or VL-bus compliant driver—the
simplest case. The prefkin x.table usually designates the bus type.

These configuration table files should contain all information appropriate for the bus
type. PCIl-compliant drivers, for instance, contain a line specifying the auto detect
IDs, such as this:

"Auto Detect IDs" = "0x71789004 0x0e111234",

Custom Device Inspector Files

For initial testing, you probably don’t need a custom inspector. Instead, you can put
the appropriate values directly into your tBsffault.table or Instancen.table files.

If you create a custom inspector, you should put the executable file and nib file in the
places described in “What'’s in a Bundle,” earlier in this chapter. Project Builder does
this for you automatically. See “Writing a Custom Inspector” later in this chapter for
information on creating custom inspectors.

Note: Project Builder creates an Inspector Panel executable file in the bundle and
gives it the same name as the bundle (withoutdbwefig suffix). This executable
loads the default inspector.

Localizable Strings File

This file should contain any strings you add to your Configure inspector’s user
interface, plus the following strings:

" Driver " ="UltimateTech XYZ-12";
"Long Name" = "Ultimate Technologies XYZ-12 Transmogrifier";

whereDriver is the name of the bundle (minus thenfig suffix). Configure uses the
string associated with tHariver key (“UltimateTech XYZ-12") whenever space is

tight. When Configure has more space to display the driver’s name, it uses the string
associated with the “Long Name” key.

Display Mode Tables

If your driver is a display driver that supports multiple display modes, you need to
specify which modes the user can choose. This information is supplied in the
Display.modesfile. Here’s a sample file:

"Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 600 Width: 800 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: BW:8";

"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: BW:8";

"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: RGB:256/8";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: BW:8";
"Height: 400 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";
"Height: 400 Width: 640 Refresh: 70Hz ColorSpace: RGB:888/32";
"Height: 480 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";

If your driver has more than one “personality,” specify alternate display information
in x.modesfiles wherex is the appropriate prefix such as “PCI".

See the specification for the IODisplaylnspector, IOFrameBufferDisplay, and
IOSVGADisplay classes for more information on display modes.

Help Directory

This directory contains the help files supported by the NeXT help facility. You add
this directory to your project with Project Builder’s Add Help Directory command.
For more information on adding help to your driver, see “Attaching Help to Objects
in Chapter 3, “The Interface Builder Application”NEXTSTEP Development Tools
and Techniques

TheHelp directory replaces thafo.rtf file, formerly used to provide information
about the driver.

Driver Relocatable Code

This file contains the driver’s relocatable code. An example of building a driver
relocatable object file is located in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver .

Pre- and Post-Load Programs

Your driver may require some action to be taken before and/or after it is loaded. For
instance, you may want to run a program after the driver is loaded to look up its major
device number and create a device node for the driver. Use the “Pre-Load”
configuration key to specify a program that will run prior to your driver being loaded;
use the “Post-Load” key to specify a program that runs after the driver is loaded.

The System Configuration Bundle

The System.configbundle is special in several ways.Ilistance0.tablehas default

configuration information for the system as a whole. For example, it specifies which
device drivers to load at boot time (“Boot Drivers”) and which to load later (“Active
Drivers”). Here’'s a samplBefault. table from aSystem.configbundle:

"Version" = "2.0";

"Boot Drivers" = "PS2Keyboard PS2Mouse BusMouse Adaptec1542B
DPT2012 IDE Floppy VGA";

"Active Drivers" = "SerialPorts SerialMouse ParallelPort";

"Kernel" = "mach_kernel";

"Kernel Flags" =",

"Boot Graphics" = "No";

For writers of Driver Kit drivers, “Active Drivers” and “Boot Drivers” are the most
important keywords. They specify which drivers are automatically loaded into the
system the next time it's started. When someone uses Configure to add a device that
has a loadable driver, the driver is added to one of these two lists. See the “Boot
Drivers” and “Active Drivers” keys in the “Configuration Keys” section of the
Appendix to see how to specify which list a driver should be in. This section also lists
the other keywords for the system configuration table.

Note: Changes to system configuration information don’t take effect until the system
is restarted. However, you can load a driver without rebooting by usingapion of
driverLoader (documented in “Loading a Driver with driverLoader” later in this
chapter).

Creating a Driver Bundle

Create a project for your driver with Project Builder, and give the project the name
you want your driver to have. Copy your driver files into the project by dragging them
into the appropriate suitcase (header files to the Header suitcase and so on) or by
using the Add command in the Files menu. Switch to the Builder view in the project
window and select “bundle” as the Target. Click the Build button. Project Builder
builds the driver and puts it in a driver bundle caletver.config whereDriver is the
name you chose for the driver. Now you can configure and load the driver.

SeeNEXTSTEP Development Tools and Technidoresiore information about using
Project Builder. The example in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver shows
building a bundle with Project Builder.

Configuring Drivers

After you have built your driver, you need to configure it with the Configure
application.

Configure Application

You can configure devices and add drivers with the Configure application. When you
select a device, Configure loads the device’s inspector, which provides a user
interface for manipulating the device configuration (choosing its DMA channels, for
example). If you don’t supply a device inspector for your driver, Configure uses a
default device inspector. See the I0Devicelnspector class and I0Configuration
protocol specifications for more information on device inspectors.

The Configure application reads the key/value pairs from a driver bundle’s
Default.table and displays them in a Configuration Inspector Panel. The user
interface allows the user to change the displayed parameters and warns of possible
value conflicts. When the user finishes modifying the configuration, Configure writes
the updated configuration to the indicatedtancen.table and configures the driver
based on the information in the configuration and kernel tables.

When the system starts up, the kernel uses an I0ConfigTable object to parse the
configuration information in thinstancen.table. From this information, the kernel
instantiates an I0DeviceDescription object, which encapsulates information about the
driver. The kernel passes the I0DeviceDescription object as the parameter to the
probe: method, which instantiates the driver object based on this information.

There’s a list of standard key/value configuration pairs in the “Configuration Keys”
section in the Appendix.

How Configuring Kernel-Level Driver Kit Drivers Differs from
Configuring Other Loadable Kernel Servers

The configuration of Driver Kit kernel-level drivers differs from that of other Loadable
Kernel Servers (LKSs) in the following ways:

» Each Driver Kit driver has its own configuration directory under
/NextLibrary/Devices . Other LKSs have no standard way of getting configuration
information.

» With the Configure application, users can add Driver Kit drivers to the system, as
well as specify configuration information for each driver. Other LKSs are generally
added to the system by adding a line to /etc/kern_loader.conf .

« Driver Kit drivers are allocated and loaded with the driverLoader command, which
uses the information in the driver’s configuration directory. You can load an LKS
with the kernel-server utility, kl_util , but it doesn’t cause the driver to be probed.

« Driver Kit drivers can’t currently be unloaded, unlike other LKSs. For example, if
you want to change a driver that's already running, you must restart the system to
be able to load the new driver.

Writing a Custom Inspector

The Configure application uses inspectors to configure a driver. With the default
inspector in Configure, you can configure values that belong to the standard set of
keys with no further implementation effort. If you've added custom parameters,
however, you need to implement a custom inspector to view and modify them.

You have two choices in implementing a custom inspector:

Add an accessory view to the inspector, with an 80-pixel height limit.

Replace the standard inspector completely. You're still limited to ada@view.
However, you can use a button to display a panel if you run out of space.

You implement an inspector by creating a subclass of IODevicelnspector. For
example, you can create a subclass of IODisplaylnspector (a subclass of
IODevicelnspector) to implement a display inspector. For an example, study the
inspector in
INextLibrary/Documentation/NextDev/Examples/DriverKit/Driverinspector.

Other classes relevant to creating an inspector include IOAddressRanger,
IODeviceDescription, I0ODeviceMaster, and IOEISADeviceDescription. Some of
these classes adopt the I0Configurationinspector protocol.

Creating an Inspector

Override the following methods in the I0Devicelnspector class and the
IOConfigurationinspector protocol:

init. Find and load the nib file that contains the accessory view using the bundle
for your inspector. Initialize the user interface and find your driver.

inspectionView. Override this if you're replacing the standard inspector.

setTable: Invoke the superclass’s implementation:

[super setTable:]

Invoke setAccessoryViewto specify and initialize the accessory View. Initialize

Loading

the user interface settings from the table being inspected.

» resourcesChanged:Update the user interface in response to resources being
chosen or dropped in the inspector.

Modifying Custom Parameters

Implement a set of target/action methods to change the custom parameters. The user
interface elements of the inspector invokes these methods. Convert the new
parameter state to an appropriate string value for display, and insert it into the
inspected table witmsertKey:value:. The key must be a unique string, and you can
use theNXUniqueString() function to generate a unique key based on the string
argument. The value should be a copy—N¥&opyStringBuffer() to copy it:

[table insertKey: key value:NXCopyStringBuffer(value),

Changing Driver Parameters with
|ODeviceMaster

Besides Configure, another way to change parameters associated with a driver is
through the I0DeviceMaster class, which provides access to a driver instance. First,
find your driver using théookUpByDeviceName:objectNumber:deviceKind:

method. Then manipulate parameters associated with that instance with these
methods:

» getCharValues:forParameter.objectNumber:count:
» setCharValues:forParameter:objectNumber:count:
» getintValues:forParameter:objectNumber:count:
» setIntValues:forParameter:objectNumber:count:

Active driver values should be displayed in the user interface—even if they differ

from the current configuration table values. If you want the values you change to
persist beyond the time the system is powered off or restarted, you must write them to
the configuration table.

a Driver with driverLoader

You can load your driver into an already running system.dfiverLoader
command loads or configures a driver after startup time. You initiate the command as
follows (as superuser):

lusr/etc/driverLoader option[v] [instancé

Specifyingv results in more verbose output fralmverLoader . Theinstance
argument can be used only with theption, as described below.

Theoptionis one of the following:

a Configure all devices. This option is used wihleiverLoader is
run during system boot (bgtc/rc).

[Interactive mode. With this option, you can look at all active and
boot drivers in the system configuration. Note that if you add a
driver to the system, the driver isn’t recognized as “active” until
you reboot.

d=deviceName Configure one device interactively. This is how you load drivers
that aren’t specified in the system configuration. This is usually
used for testing purposes. You can speci§ganceto use a
specificlnstancen.table file. For example, if you specify
instanceas 1, the driver is probed using the information in its
Instancel.tablefile.

Here’s an example of using tdeoption:
lusr/etc/driverLoader d=myDriver

Here’s an example of using thdeoption and specifyingistance
lusr/etc/driverLoader d=fooDriver 1

For another example of usingiverLoader, see
/NextLibrary/Documentation/NextDev/Examples/DriverKit.

Recovering from a Bad Configuration

If you can’t restart your system because of a bad configuration or because of bugs in
your driver, try restarting with a default configuration. To do this, type the following at
theboot: prompt when the system starts:

boot: config=Default

This causes the boot program to Default.table in System.configas the system
configuration, which usually works. Once you've started up, log mesrroot and
use Configure to fix the rest of the configuration.

If you still can’t start the system, try starting in single-user mode and editing the
bundles by hand. This is risky since the configuring process has many “rules of

thumb,” and you might not know all the effects of a change. To restart in single-user
mode, type the following at tHeoot: prompt after you restart:

boot: mach_kernel -s config=Default

You can then use a single-user mode editor (sugha@a®mac$ to edit the
configuration bundles.

Debugging a Driver

You have two choices for creating debugging messagefOtlog() function and the
Driver Debugging Module (DDM). Most drivers just usd_og() until a need arises
for the more powerful and complex DDM functions.

Another debugging toogidb, is described iNEXTSTEP Development Tools and
TechniquesYou can run the driver witgdb from Project Builder—the example
located in

/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver shows
how to do thisNEXTSTEP Development Tools and Technigiss describes Project
Builder.

Using the IOLog Function

UsinglOLog() is similar to usingorintf() to print error or debug messages. You can
output strings and parameters, just agpfortf() . One difference is that output is
placed in théusr/adm/messagefile instead of the console window. Place a call to
IOLog() anywhere in your driver where you want to get information about the driver
state—or to indicate that the driver reached that point during execution.

IOLog() is useful both for status messages and as a basic debugging tool. Although
IOLog() is useful for debugging, it can affect the timing of the driver. When timing is
important, you should use DDM instead.

See “Functions” in Chapter 5, “Driver Kit Reference”, for more information about
IOLog().

Using the Driver Debugging Module (DDM)

The Driver Debugging Module (DDM) provides support for viewing debugging
information without disturbing the timing of the kernel. By using the DDMViewer

application (iyNextDeveloper/Demo} you can specify which information should
be stored in the event buffer and display debugging information from this buffer.

The core of DDM is a circular event buffer that stores the debugging information sent
to it by drivers. Each entry in the buffer is timestamped (to the microsecond) and
consists of grintf -style format string and up to five arguments associated with the
format string. A call to the function that timestamps and stores one entry takes about
10 microseconds.

Gathering DDM Events

The functionlOAddDDMENntry() adds an event to the DDM buffer. An event
consists of a character string and several integer valuesOTHeEBUG() macro is
provided to callOAddDDMEntry() : A driver typically doesn’t call
IOAddDDMENtry() directly. Instead, the driver should define its own macros using
thelODEBUG() macro, as in this example:

#define ddm_exp(x, a, b, c, d, €) \
IODEBUG(A7770_DDM_INDEX, DDM_EXPORTED, X, a, b, c, d, e)
#define ddm_him(x, a, b, ¢, d,) \

IODEBUG(A7770_DDM_INDEX, DDM_HIM, x, a, b, c, d, €)
These macros can then be called like this:
ddm_him("abort_channel chan %d\n", channel, 2,3,4,5);

ddm_him("scb_int_preempt: scb 0x%x index %d haStat %s\n",
scb_ptr, scb_index,
IOFindNameForValue(compstat, scbHaStatValues),
4,5);

A word of mask bits controls the collection of DDM entries. All calllOBDEBUG()

don’t add data to DDM'’s circular buffer—only those events whose mask bits are
enabled are added. The mask bits are enabled and disabled by a user-level tool like
DDMViewer. A driver isn’'t (and shouldn’t be) concerned about which mask bits are
enabled. Typically you turn on one or two bits of the mask word to study the trace
information for a particular module.

See the SCSI example driver in
/INextDeveloper/Examples/DriverKit/Adaptec1542B which illustrates all aspects
of using DDM.

Viewing DDM Events with DDMViewer

You can examine DDM traces at the user-level with the DDMViewer application,
which is located iMNextDeveloper/DemosYou can also specify DDM mask bits

with this application. DDMViewer can be run on any computer running NEXTSTEP,
not just the machine being tested.

The DDMViewer window contains the following controls:

» Device Namefield. Enter the name of the target to which you want to attach. The
name is determined by the driver.

* Host Namefield. Enter the name of the host on which the target is running. Leave
it empty if you are debugging a driver or kernel on the current machine.

» List button. Click this button to start and stop the display of DDM entries. Entries
are displayed starting from the last event in time and scrolling backward.

» Set Mask button Click this button to send the mask defined in the Mask window
(see below) to the target.

» Disable button Click this button to freeze the state of the DDM buffer at the
target. Click again to reenable.

» Clear Window button. Click this button to clear the display area.
» Clear Buffer button. Click this button to clear the target’s circular DDM buffer.

You can specify the value of the DDM mask bits by name if you opedna file that
specifies the names of the mask bits. You crefbm files with an editor such as
Edit. Here’s an example of.ddm file:

#

DDMViewer data file for kernel devices.
#

Index : 0 : "Kernel Devices"
#

Common fields.

#

0x0001 : "Device Object"
0x0002 : "Disk Object"
0x0004 : "Net"

0x0020 : "DMA"

#

SCSI.

#

0x0100 : "SCSI Control"
0x0400 : "SCSI Disk"

Comments start with “#”. The line that starts with “Index” defines which DDM Mask
word is being defined (there are currently four mask words). The Index line also
defines the name of the window associated with this set of mask bits. All other lines
define one bit in the mask word, specifying the value of the bit and an ASCIl name
equivalent. The SCSI example driver in
INextDeveloper/Examples/DriverKit/Adaptec1542Bhas a sampleldm file.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

5

Driver Kit Reference

Warning:

Library: Configure application API has no library
Other user-level API is iibDriver.a
Kernel-level API has no library

Header File Directory: /NextDeveloper/Headers/driverkit

This chapter documents the Driver Kit's APl—public classes, protocols, functions,
and types and constants. The “Other Features” section describes such features as
device auto detection.

You should avoid using an undocumented API, since it's subject to change. For
example, if a method is in a class header file but not in the class documentation, the
method is likely to change or disappear in future releases.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Functions

This section describes three types of functions and macros:
» General-purpose functions—to perform basic tasks

» Driver Debugging Module (DDM) functions—to help all drivers keep debugging
information

* Miscellaneous functions—such as DMA alignment macros, functions that work
only in the kernel, and functions specific to a particular machine architecture.

Unless noted otherwise, all of the functions described in this section work in both
user-level and kernel-level drivers.

Other Functions Available to Drivers

Almost all Mach functions are available to kernel-level device drivers. If you don’t
find the appropriate functionality in a method or function, you can use a Mach
function. For exampleyort_allocate() andmsg_send()are used by many drivers.

Note: Instead of including the header fiteach/mach.h you must include
mach/mach_user_internal.handmach/mach_interface.h

Thehost_priv_self() Mach function doesotwork in the kernel. You should use
IOHostPrivSelf() instead.

General-Purpose Functions

The general-purpose functions, defined in the headeatriilerkit/generalFuncs.h,
provide a consistent interface for device drivers that may have to run in kernel space
at one time (or in one configuration) and in user space at another time. Using these
functions minimizes the work or porting between the two environments. All the
Driver Kit classes, as well all NeXT kernel-level drivers that use the Driver Kit,

were written using these functions so that they have one set of source files with
minimal kernel and user mode differences.

Warning: Before using any of the general-purpose functions, each user-level driver must call

IOInitGeneralFuncs(). (Kernel-level drivers don’t need to call it.)

Thread Functions

These functions provide the functionality of the C-thread functions in a uniform way
in both user and kernel space.

IOForkThread()
IOSuspendThread()
IOResumeThread()
IOEXitThread()

Timer Functions

I0Sleep()

IODelay()
I0ScheduleFunc()
IOUnscheduleFunc()
I0GetTimestamp()

Memory Allocation and Copying Functions

I0OCopyMemory()
IOMalloc()
IOFree()

Miscellaneous General-Purpose Functions

IOInitGeneralFuncs()
IOFindNameForValue()
IOFindValueForName()
IOLog()

IOPanic()

Driver Debugging Module (DDM) Functions

See the “Adding Debugging Code” section in Chapter 2 for information on using the
DDM.

IOAddDDMENRNtry()
IOClearDDM()

I0OCopyString()
IODEBUG()
I0OGetDDMENtry()
I0GetDDMMask()
OInitDDM()
IONsTimeFromDDMMsg()
I0SetDDMMask()

Miscellaneous Functions

Kernel-Only Functions

The functionlOConvertPort() is necessary for some kernel-level drivers—and not
for user-level drivers—because kernel-level drivers can execute in more than one
task. The first thread of a kernel-level driver executes in the loadable kernel server’s
task, any threads that the driver creates execute in the kernel I/O task, and network
drivers and drivers with UNIX entry points (at some stage) can execute in the
context of an unknown task.

IOGetObjectForDeviceName()provides to kernel-level drivers some of the
functionality provided to user-level programs by IODeviceMaster. Similarly,
IOHostPrivSelf() is used by some kernel-level drivers that need the information
normally returned byost_priv_self() (which is one of the few Mach functions that
doesn’t work in the kernel).

The functionlOVmTaskSelf() supplies asm_task_tfor Mach function calls that
expect one for the kernel; this is necessary becauséask_tandtask_t aren’t the
same in the kernel (as they are at user leM@ymTaskCurrent() supplies a
vm_task_tthat's needed by some UNIX-style drivers. Findl@ymTaskForBuf()
supplies arm_task_tfor the unknown task that is requesting UNIX-style 1/O.

IOConvertPort()
I0GetObjectForDeviceName()
IOHostPrivSelf()
IOPhysicalFromVirtual()
I0SetUNIXError()
IOVmTaskCurrent()
IOVmTaskForBuf()
IOVmTaskSelf()

DMA Alignment Macros

I0Align()
I0IsAligned()

Architecture-Specific Functions

The following functions are used by some Intel drivers to read and write I/O ports:

inb()
inw()
inl()
outb()
outw()
outl()

Some Intel drivers use the following function to help handle interrupts:

IODisablelnterrupt()
IOEnablelnterrupt()
I0Sendinterrupt()

Some Intel devices require memory in the low 16 MB:
IOMallocLow()

Intel display drivers often use the following functions to read and write VGA
registers:

IOReadRegister()
IOReadModifyWriteRegister()
IOWriteRegister()

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

inb(), inw(), inl(), outb(), outw(), outl()
SUMMARY

Read or write data to an 1/0O port

DECLARED IN

driverkit/i386/ioPorts.h

SYNOPSIS

unsigned chainb(unsigned inaddres$
unsigned shoiinw(unsigned inaddres$
unsigned longnl(unsigned inaddres$
void outb(unsigned inaddress unsigned chadata)
void outw(unsigned inaddress unsigned shodata)
void outl(unsigned inaddress unsigned longlata)

DESCRIPTION

These inline functions let drivers read and write 1/0O ports on Intel-based computers.
Useinb() to read a byte at the I/O paddress Useinw() to read the two bytes at
addressandaddresst 1, andnl() to read four bytes starting atildress To write a

byte, useoutb(); to write two bytes (t@addressandaddresst 1), useoutw(); to write

four bytes, useutl().

These functions have nothing to do with main memory; they work only for the 64
kilobytes of 1/0 address space on an Intel-based computer. These functions use the
special machine instructions that are necessary for reading and writing data from and
to the I/O space.

Note: These functions work only at kernel level and only on Intel-based computers.

EXAMPLE

temp_cr = inb(base+CR); /* get current CR value */

IOAddDDMENtry()

SUMMARY

Add one entry to the Driver Debugging Module
DECLARED IN
driverkit/debugging.h

SYNOPSIS

void IOAddDDMEnNtry(char ¥format, intargl, intarg2, intarg3, intarg4, int
argb5)

DESCRIPTION

This is the exported function that is used to add events to the DDM’s circular buffer.
However, drivers typically don’t use this directly; instead, they should use macros that
callIOAddDDMENtry() conditionally based on the current state of debugging flags.
See the description ®©DEBUG() for examples.

Note: The last 5 arguments to this function are typed abou alsut they are

really untyped and could be any 32-bit quantity. They are stored in the debugging log
asint but are eventually evaluated as argumensptmtf() , so they could bant,

char, short, or pointers to a string. SE@CopyString(), later in this section, for
information on passing string pointersi@AddDDMEntry() .

SEE ALSO

IODEBUG()

IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVfssw()
SUMMARY

Add UNIX-style entry points to a device switch table
DECLARED IN

driverkit/devsw.h

SYNOPSIS

int IOAddToBdevsw(I0SwitchFuncopenFunglOSwitchFunaloseFung
IOSwitchFuncstrategyFunglOSwitchFunaumpFung IOSwitchFungsizeFung
BOOL isTapg

int IOAddToCdevsw(IOSwitchFuncopenFunglOSwitchFunacloseFung

IOSwitchFunaeadFung IOSwitchFunaowriteFung I0SwitchFundoctiFung,

IOSwitchFuncstopFung IOSwitchFunaesetFung IOSwitchFuncselectFung

IOSwitchFunanmapFunglOSwitchFungetcFung IOSwitchFungutcFung
int IOAddToVfssw(const char $ifsswNamgeconst struct visopsvfsswOp}k

DESCRIPTION
These functions find a free row in a device switch table and add the specified entry

points. Each function returns the major number (equivalent to the row number) for the
device, or -1 if the device couldn’t be added to the table.

Note: You should use I0ODeviceaddToBdevsw...andaddToCdevsw.. methods
instead olOAddToBdevsw() andlIOAddToCdevsw(), whenever possible.

SEE ALSO

IORemoveFromBdevsw() IORemoveFromCdevsw() IORemoveFromVissw()

IOAlign()
SUMMARY

Truncate an address so that it's aligned to a buffer size

DECLARED IN

driverkit/align.h

SYNOPSIS

typelOAlign(type addressbufferSize

DESCRIPTION
This macro truncatesddresgo a multiple obufferSize

SEE ALSO

IOIsAligned()

IOClearDDM()

SUMMARY

Clear the Driver Debugging Module’s entries

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IOClearDDM()

DESCRIPTION

This function empties the DDM’s circular buffer.

IOConvertPort()
SUMMARY

Convert a port name from one IPC space to another

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

port_tlIOConvertPort(port_tport, IOIPCSpacdrom, IOIPCSpacéo)

DESCRIPTION

This function lets a kernel driver convert a port nap@t] so that the port can be
used in a different IPC space. Three types of conversion are supported:

» From the current task’s IPC space to the kernel I/0O task’s space
* From the kernel’s IPC space to the kernel I/O task’s space
* From the kernel 1/O task’s IPC space to kernel’'s IPC space

The argumentdom andto should each be specified as one of the following:

IO_Kernel, 10_KernellOTask, or IO_CurrentTask. For example, the following code
converts a port name from the current task’s name to the name used by the kernel /O
task.

ioTaskPort = IOConvertPort(aPort, IO_CurrentTask, 10_KernellOTask);

Note: This function works only in kernel-level drivers.

RETURN

Returns the port’s name in tteespace. Specifying an invalid conversion results in a
return value of PORT_NULL.

IOCopyMemory()
SUMMARY

Copy memory using the specified transfer width

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void I0OCopyMemory(void *from, void *to, unsigned inhumBytes
unsigned inbytesPerTransfgr

DESCRIPTION

Copies memory 1, 2, or 4 bytes at a time (as specifidryt®sPerTransf@runtil
numBytedytes starting &rom have been copied to. Thefrom andto buffers must
not overlap.

This function is useful when devices have mapped memory that can be accessed in
only 8-bit or 16-bit quantities. In these situationsopy() isn’t appropriate, since it
assumes 32-bit access to all memory involved.

If fromis not aligned on hytesPerTransfelboundary]OCopyMemory() performs
8-bit transfers until it has reachetgesPerTransfeboundary. Similarly, if the end
of thefrom buffer extends pastlaytesPerTransfebboundary, the remaining memory
is copied 8 bits at a time.

IOCopyString()
SUMMARY

Return a copy of the specified string

DECLARED IN

driverkit/debugging.h

SYNOPSIS

const char FOCopyString(const char instring)

DESCRIPTION

This function is required when you want to use a pointer to a string whose existence is
transitory as an argument. The reason for this is that the string won't be read until the
Driver Debugging Module’s buffer is examined, which could be a long time (minutes
or more) after the call tfO AddDDMEntry() . By then, the string pointer passed to
IOAddDDMENtry() no longer might no longer point to a useful string.

Warning: The string returned by this function is created w@Malloc() and is
never freed. Use this function with discretion.

IODEBUG()
SUMMARY

Conditionally add one entry to the Driver Debugging Module

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IODEBUG(int index int mask char format intargl, intarg2, intarg3, int
arg4, int argb)

DESCRIPTION

This macro is used to add entries to the DDM'’s circular buffer. The entry is added
only if both of the following are true:

» The C preprocessor flag DDM_DEBUG is defined.

» A bitwise and operation performed oraskandlODDMMasks[indeX results in
a nonzero result.

IODEBUG() is typically used to define other macros specific to a driver, as shown in
the following example.

EXAMPLE

#define MY_INDEX 0

#define MY_INPUT 0x00000001 //
#define MY_OUTPUT 0x00000002 //
#define MY_OTHER 0x00000004 //

#define loglnput(x, a, b, c, d, e) \
IODEBUG(MY_INDEX, MY_INPUT, x, a, b, ¢, d, e)

#define logOutput(x, a, b, ¢, d, e) \
IODEBUG(MY_INDEX, MY_OUTPUT, %, a, b, c, d, e)

#define logOther(x, a, b, c, d, e) \
IODEBUG(MY_INDEX, MY_OTHER, x, a, b, c, d, €)

IODDMMasks[MY_INDEX] = MY_INPUT | MY_OUTPUT;

idgilnput("lnput error %d: %s\n", error, IOFindNameForValue(error,
&errorList));

IODelay()
SUMMARY

Wait (without blocking) for the indicated number of microseconds
DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IODelay(unsigned inticroseconds
DESCRIPTION

This is a quick, nonblocking version kidSleep().

Note: This function guaranteesmainimum“spin” delay in the user-level version;

due to thread scheduling, the call@Delay() could take much longer than the

indicated time. This should not be a problem with properly designed user-level drivers
as this is a common real-time constraint on all user-level code.

IODisablelnterrupt()

SUMMARY

Prevent interrupt messages from being sent
DECLARED IN
driverkit/IODirectDevice.h

SYNOPSIS

void IODisablelnterrupt(void *identity)

DESCRIPTION

This function allows handlers of non-shared interrupts to indicate that the interrupt
should be left disabled on return from the interrupt handler.

Theidentityargument should be set to the value that the interrupt handler received in
its own arguments.

Note: IODisablelnterrupt() must be called inside a special interrupt handler
function. It can’t be called from any other context.

SEE ALSO

IOEnablelnterrupt(), I0Sendinterrupt()

IOEnablelnterrupt()
SUMMARY

Allow interrupt messages to be sent
DECLARED IN

driverkit/IODirectDevice.h
SYNOPSIS

void IOEnablelnterrupt(void *identity)

DESCRIPTION

This function allows interrupt handlers to indicate that the interrupt should be
reenabled on return from the interrupt handler. You should only re-enable the
interrupt after removing the source of the interrupt—by clearing the interrupt status
register on the device, or by using whatever mechanism is necessary for the hardware

your driver controls.

Theidentity argument should be set to the value that the interrupt handler received in
its own arguments.

Note: IOEnablelnterrupt() must be called inside a special interrupt handler
function. It can’t be called from any other context.

SEE ALSO

IODisablelnterrupt(), IOSendinterrupt()

IOEXitThread()
SUMMARY

Terminate the execution of the current thread
DECLARED IN
driverkit/generalFuncs.h

SYNOPSIS

volatile voidIOExitThread()

DESCRIPTION

This function terminates the execution of the current (calling) thread. Note that
there’s no way for one thread to kill another thread other than by sending some kind of
message to the soon-to-be-terminated thread instructing it to kill itself.

Note: In the user-level implementation, the main C thread (the first thread in the
task) doesn't exit until all other C threads in the task have exited.

IOFindNameForValue(), IOFindValueForName()

SUMMARY

Convert an integer to a string, or vice versa, usingpdfamedValuesarray

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

const char FOFindNameForValue(int valug const IONamedValuestray)
IOReturnlOFindValueForName(const char &tring, const IONamedValueatray,
int *value

DESCRIPTION

These functions are the primary use oflithBlamedValuesdata type, which maps
integer values to stringkDFindNameForValue() maps a given integer value to a
string, given a pointer to an arrayl@NamedValues IOFindValueForName()
maps a given string into an integer, returning the integealire

One typical use folOFindNameForValue() is to map integer return values into

error strings. IODevice’OStringFromReturn: method performs this function. A
subclass that defines additional IOReturn values should override this method and call
[super IOReturnToString:] if the specified value does not match one of the
class-specific IOReturns.

RETURN

IOFindNameForValue() returns the string correspondingviaue or a string
indicating thatvalueis undefined if the integer wasn’t found.
IOFindValueForName() returns IO_R_SUCCESS if it finds the specified string;
otherwise, it returns IO_R_INVALIDARG.

IOForkThread()

SUMMARY
Start a new thread
DECLARED IN
driverkit/generalFuncs.h
SYNOPSIS
IOThreadlOForkThread(I0OThreadFundunction void *arg)
DESCRIPTION

This function causes a new thread to be started up. For kernel-level drivers, the new
thread is in the I0Task’s address space; for user-level drivers, the thread is in the

current task. The thread begins executiciu@attion which is passedrg as its
argument.

IOFree()
SUMMARY
Free memory allocated b Malloc()
DECLARED IN
driverkit/generalFuncs.h
SYNOPSIS
void IOFree(void *var, int numBytep

DESCRIPTION

This function frees memory allocated IyMalloc() .

Note: You must use the same value lmBytess you used for the call to
IOMalloc() that allocated the memory you're now freeing.

IOFreeLow()
SUMMARY

Free memory allocated bpMallocLow()
DECLARED IN

driverkit/i386/kernelDriver.h

SYNOPSIS

void IOFreeLow(void *var, int numBytep

DESCRIPTION

This function frees memory allocated IyMallocLow() .

Note: This function works only in kernel-level drivers.

IOGetDDMENtry()
SUMMARY

Obtain an entry from the Driver Debugging Module
DECLARED IN

driverkit/debugging.h
SYNOPSIS

int IOGetDDMEntry(int entry, int outStringSizechar outString ns_time_t
*timestampint *cpuNumbey

DESCRIPTION

Returns inoutStringan entry from the DDM. Thentry argument should indicate
which entry to return, counting backwards from the most recent entryiniéstamp
argument is set to a value indicating the time at which the entry was logged. The
cpuNumberrgument is set to the number of the CPU that the retrieved entry is
associated with.

RETURN

Returns a nonzero value if the specified entry doesn't exist. Otherwise, returns zero.

IOGetDDMMask()
SUMMARY

Returns the specified bitmask word
DECLARED IN

driverkit/debugging.h
SYNOPSIS

unsignedOGetDDMMask(int indexX

DESCRIPTION

This is typically not used by drivers; it provides a procedural means of obtaining a

specified bitmask value. For performance reasons, the macros that filter and call
IOAddDDMENtry() typically read the index words directly (tt@DDMMasks
array is a global variable).

IOGetObjectForDeviceName()
SUMMARY

Obtain theid of a kernel device, given its name
DECLARED IN

driverkit/kernelDriver.h
SYNOPSIS

IOReturnlOGetObjectForDeviceName(OStringdeviceNamgid *deviceld

DESCRIPTION

This function provides a simple mapping of device names to objects. Since this is
valid only at kernel level, no security mechanism is provided; any kernel code can get
theid of any kernel IODevice.

Note: This function works only in kernel-level drivers.
RETURN

Returns IO_DR_NOT_ATTACHED ifleviceName&sn’t found; otherwise returns
IO_R_SUCCESS.

IOGetTimestamp()
SUMMARY

Obtains a microsecond-accurate current timestamp
DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void I0GetTimestamp(ns_time_t hsp

DESCRIPTION

This function obtains a quick, microsecond-accurate, system-wide timestamp.

IOHostPrivSelf()
SUMMARY
Returns the kernel I/O task’s version of the privileged host port
DECLARED IN
driverkit/kernelDriver.h
SYNOPSIS
port_tIOHostPrivSelf()

DESCRIPTION

This function is necessary because the Mach funbibst _priv_self() doesn’'t work
at kernel level.

Note: This function works only in kernel-level drivers. In user-level drivers, use
host_priv_self()instead.

|OINitDDM()
SUMMARY

Initialize the Driver Debugging Module
DECLARED IN

driverkit/debugging.h

SYNOPSIS

Kernel level: voidOInitDDM(int numBuf}
User level: voidOInitDDM(int numBufs char *serverPortNampe

DESCRIPTION

This function must be called once by your driver before calling any other DDM
functions.

IOInitGeneralFuncs()
SUMMARY

Initialize the general-purpose functions
DECLARED IN

driverkit/generalFuncs.h
SYNOPSIS

void IOInitGeneralFuncs()

DESCRIPTION

Each user-level driver must céInitGeneralFuncs() once before calling any
other functions declared in tldeiverkit/generalFuncs.h header file.

Note: Kernel-level drivers don’t need to call this function, because it's
automatically called by the kernel.

I0IsAligned()
SUMMARY

Determine whether an address is aligned
DECLARED IN

driverkit/align.h
SYNOPSIS

unsigned intOlsAligned(addressbufferSizég

DESCRIPTION

This macro returns a nonzero valuadidresss a multiple obufferSize otherwise, it

returns 0.

IOLog()
SUMMARY

Adds a string to the system log
DECLARED IN
driverkit/generalFuncs.h

SYNOPSIS

void IOLog(const char format, ..)

DESCRIPTION

This is the Driver Kit's substitute faorintf() ; its implementation is similar to

syslog() IOLog() logs the string tdusr/adm/messagedy default; you can specify
another destination in the configuration fiétc/syslog.confThe arguments are
stdargs, just as farintf() . This function doesn’t block on single-processor systems.
It runs at level LOG_ERR and its facility is kern.

SEE ALSO

printf (3) UNIX manual pagesyslog3) UNIX manual page

IOMalloc()
SUMMARY
Standard memory allocator
DECLARED IN
driverkit/generalFuncs.h

SYNOPSIS

void *IOMalloc(int numBytep

DESCRIPTION

This function causesumBytedytes of memory to be allocated; a pointer to the

memory is returned. No guarantees exist as to the alignment or the physical contiguity
of the allocated memory, but wh&dMalloc() is called at kernel-level, the allocated
memory is guaranteed to be wired down. Memory allocatedi®@Nalloc() should

be freed witHOFree().

Warning: If no memory is availabldOMalloc() blocks until it can obtain memory.
For this reason, you shouldn’t céi@Malloc() from a direct interrupt handler.

Drivers that can control (directly or indirectly) disks, network cards, or other devices
used by a file system can run into a deadlock situation if theyOMalloc() during

I/0. This deadlock can occur when the pageout daemon attempts to free memory by
moving pages out to disk. When the pageout daemon requests this 1/0 and the driver
useslOMalloc() to request more memory than is availabBylalloc() blocks. The

result is deadlock: the driver can’t perform the I/O until memory is freed, and the
memory can’t be freed by the pageout daemon until the I/O happens. In general, a
driver can avoid this deadlock by not allocating large amounts of memory during 1/O.
For example, allocating less than 100 bytes is safe, but allocating 8K bytes is very
unsafe.

IOMallocLow()

SUMMARY

Allocates memory in the low 16MB of the computer’'s memory range

DECLARED IN

driverkit/i386/kernelDriver.h

SYNOPSIS

void *IOMallocLow(int numByte}p

DESCRIPTION

This function acts likéOMalloc() , except that the allocated range of memory is
guaranteed to be in the low 16MB of system memory and to be physically contiguous.
This function is provided because some cards for Intel-based computers must be
mapped to low memory. Memory allocated wi@MallocLow() should be freed

with IOFreeLow().

Note: This function works only in kernel-level drivers running on Intel-based
computers.

IOMapPhysicallntolOTask
SUMMARY
Map a physical address range into your I0Task’s address space
DECLARED IN
driverkit/kernelDriver.h
SYNOPSIS
IOReturnlOMapPhysicallntolOTask (unsignedohysicalAddress

unsignedength
vm_address_tvirtualAddres$

DESCRIPTION

This function maps a range of physical memory into your I0Task. It returns the virtual
address at which the range is mapped in the virtualAddress argument.

Note: This function works only in kernel-level drivers.
RETURN

Returns an error if the specified physical range could not be mapped; otherwise,
returns I0_R_SUCCESS.

SEE ALSO

IOUnmapPhysicalFromlOTask()

IONsTimeFromDDMMsg()
SUMMARY

Extracts the time from a Driver Debugging Module message
DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

ns_time_tONsTimeFromDDMMsg(IODDMMsg *msg

DESCRIPTION

This inline function combines thenestampHighint andtimestampLowint fields
from msgand returns the result.

IOPanic()
SUMMARY

Panic or dump memory after logging a string to the console

DECLARED IN
driverkit/generalFuncs.h

SYNOPSIS

void IOPanic(const char feasor)

DESCRIPTION

Thereasonargument is logged to the console, after which either a kernel panic (if in
kernel space) or a memory dump (if in user space) occurs.

Note: Use of this function is an extreme measure. I@§eanic() only when
continued execution may cause system corruption.

IOPhysicalFromVirtual()
SUMMARY

Find the physical address corresponding to a virtual address

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS
IOReturnlOPhysicalFromVirtual(vm_task_task

vm_address VirtualAddress unsigned int physicalAddress

DESCRIPTION

This function gets the physical address (if any) that corresponitsualAddress It
returns IO_R_INVALID_ARG if no physical address correspondsrtoalAddress

On success, it returns IO_R_SUCCESSirtualAddresss in the current task, then
thetaskargument should be setlitoVmTaskSelf(). This function will never block.
Use this function only to find the physical address of wired down memory since the
physical address of unwired down memory might change over time.

Note: This function is available only at kernel level. This function shouldn’t be used
in a custom interrupt handler—it can’t run at the interrupt level.

IOReadRegister(), IOWriteRegister(), IOReadModifyWriteRegister()
SUMMARY

Read or write values of display registers

DECLARED IN

driverkit/i386/displayRegisters.h

SYNOPSIS
unsigned chalOReadRegister(
IOEISAPortAddresgort,

unsigned chaindey

void IOWriteRegister(I0EISAPortAddresgort, unsigned chandex unsigned
charvalue

void IOReadModifyWriteRegister(I0OEISAPortAddresport, unsigned chandex
unsigned chaprotect unsigned charalue

DESCRIPTION

These inline functions perform operations commonly used to read or write display
registerslOReadRegisterreads and returns the value of the register specified by
port andindex IOWriteRegister() writesvalueto the register specified Iport and
index IOReadModifyWriteRegister() reads the specified register, zeroes every bit
that isn’t set in th@rotectmask, sets every bit that's setimlug and sets the register
to the new value. When tipeotectmask is zero, the effect is to set the register to
value

Note: These functions are supported only on Intel-based computers.

IORemoveFromBdevsw(), IORemoveFromCdevsw(),
IORemoveFromVfssw()

SUMMARY

Remove UNIX-style entry points from a device switch table
DECLARED IN

driverkit/devsw.h

SYNOPSIS

void IORemoveFromBdevswint bdevswNumbgr
void IORemoveFromCdevswint cdevswNumbegr
void IORemoveFromVfssw{nt visswNumbgr

DESCRIPTION

These functions remove a device from a device switch table, replacing it with a null
entry.

Note: You should use IODevicet@moveFromBdevswandremoveFromCdevsw
methods instead d©RemoveFromBdevsw()andlORemoveFromCdevsw()
whenever possible.

SEE ALSO

IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVissw()

IOResumeThread()
SUMMARY

Resume the execution of a thread suspended@8lspendThread()
DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOResumeThread{OThreadthread

DESCRIPTION

This function causes the execution of a suspended thread to continue.

I0OScheduleFunc()
SUMMARY

Arrange for the specified function to be called at a certain time in the future
DECLARED IN

driverkit/generalFuncs.h
SYNOPSIS

void I0ScheduleFunc(OThreadFundunction void *arg, int secondp

DESCRIPTION

This function causefsinctionto be called irsecondsecondswith arg asfunctioris
argument. The call thunctionoccurs in the context of the caller’s task, but in a thread
that is unique to the Driver Kit. The callfienctioncan be cancelled with
IOUnscheduleFunc()

Note: The kernel version dOScheduleFunc()performs the callback in the kernel
task’s context, not the 1/0 Task context. One consequence faitictibncan’t send

Mach messages withsg_send() it needs to usmsg_send_from_kernel(Jnstead,
as described in Chapter 2.

I0SendInterrupt()
SUMMARY

Arrange for an interrupt message to be sent
DECLARED IN
driverkit/IODirectDevice.h

SYNOPSIS

void I0SendInterrupt(void *identity, void *state unsigned intnsgid

DESCRIPTION

This function is useful if you need to handle interrupts directly—for example, because
of a timing constraint in the hardware—but don’t wish to give up the advantages of
interrupt notification by messages. To handle interrupts directly, you must implement
thegetHandler:level:argument:forinterrupt: message of IODirectDevice.

Themsgldargument specifies the message ID of the interrupt message that will be
sent. This should be I0_DEVICE_INTERRUPT_MSG unless the driver’s
documentation specifies otherwise. Ttentify andstatearguments should be set to
the values that the interrupt handler received in its own arguments. For example
(italicized text delineated in angle brackets, that is << >>, is to be filled in with
device-specific code):

static void mylInterruptHandler(void *identity, void *state,
unsigned int arg)

<< handle the interrupt >>
IOSendInterrupt(identity, state, IO_DEVICE_INTERRUPT_MSG);

}

SEE ALSO

IODisablelnterrupt(), IOEnablelnterrupt()

I0SetDDMMask()
SUMMARY
Set specified bitmask word to specified value
DECLARED IN
driverkit/debugging.h
SYNOPSIS
void I0SetDDMMask(int index unsigned inbitmasR
DESCRIPTION
This is typically used by individual user-level drivers at initialization time, if then.

Subsequently, it is usually used only by the Driver Debugging Module’s server thread
to change the current bitmask value.

Theindexargument is an index int®@DDMMasks, which is an array ainsigned
int. Each entry of the array contains 32 mask bits.

IOSetUNIXError()

SUMMARY
Explicitly return an error value from a UNIX-style driver
DECLARED IN
driverkit/kernelDriver.h
SYNOPSIS
void IOSetUNIXError(int errno)
DESCRIPTION

Most UNIX-style drivers don’t need to use this function. However, those that
explicitly set the caller’s errno can use this function to do so. This function is used
when the caller executes as a result of a UNIX-style entry point.

Note: This function works only in kernel-level drivers.

I0Sleep()
SUMMARY

Sleep for indicated number of milliseconds
DECLARED IN

driverkit/generalFuncs.h
SYNOPSIS

void IOSleep(unsigned inmillisecond$

DESCRIPTION

This function causes the caller to block for the indicated number of milliseconds.

IOSuspendThread()
SUMMARY

Suspend the execution of a thread started MifforkThread()
DECLARED IN

driverkit/generalFuncs.h
SYNOPSIS

void IOSuspendThread{(OThreadthread

DESCRIPTION

This function causes the execution of a running thread to pause. The thread can be
resumed witHOResumeThread()

IOUnmapPhysicalFromlOTask
SUMMARY

Unmap a physical address range from your IOTask’s address space
DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

IOReturnlOUnmapPhysicalFromlOTask(vm_address _virtualAddress
unsignedength

DESCRIPTION

This function unmaps a range of memory that was mapped with
IOMapPhysicallntolOTask() . You should use this to destroy a mapping when you
no longer need to use it.

Note: This function works only in kernel-level drivers.

RETURN

Returns an error if the specified virtual range was not mapped by
IOMapPhysicallntolOTask() ; otherwise, returns I0_R_SUCCESS.

SEE ALSO

IOMapPhysicallntolOTask()

IOUnscheduleFunc()
SUMMARY
Cancel a request made wltbScheduleFunc()
DECLARED IN
driverkit/generalFuncs.h
SYNOPSIS
void I0UnscheduleFunc(OThreadFundunction void *arg)
DESCRIPTION
This function removes a request made us§cheduleFunc()from the current list

of pending requests. An error will be logged to the console if the specified
functionarg pair is not currently registered.

IOVmTaskCurrent()
SUMMARY

Returns theym_task_tof the current task
DECLARED IN

driverkit/kernelDriver.h
SYNOPSIS

vm_task_tOVmTaskCurrent()

DESCRIPTION

Returns theym_task_tfor the current task. The only reason to use this function is to
perform DMA to user space memory transfers in a UNIX-style driver.

Note: This function works only in kernel-level drivers.

SEE ALSO

IOVmTaskSelf()

IOVmTaskForBuf()
SUMMARY

Returns theym_task_tassociated with buf structure
DECLARED IN

driverkit/kernelDriver.h
SYNOPSIS

vm_task_tOVmTaskForBuf(struct buf buffer)

DESCRIPTION

Block drivers use this function to determine the task for which they’re doing I/O. The
value returned by this function is used in callg&hysicalFromVirtual() , which
returns an address that's used in IODirectDeviceateDMABufferFor:... method.

Note: This function works only in kernel-level drivers.

IOVmTaskSelf()
SUMMARY

Obtain thevm_task_tof the kernel
DECLARED IN
driverkit/kernelDriver.h

SYNOPSIS

vm_task _1OVmTaskSelf()

DESCRIPTION

This function is used to obtain the kernelia_task_t, which is thevm_task tfor
memory allocated withOMalloc() . This function is required because the type

definition ofvm_task_tat kernel level is different from that win_task_tat user
level.

Note: This function works only in kernel-level drivers.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Other Features

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Auto Detection of Devices

EISA- and PCI-compliant systems can support automatic detection of devices,
referred to as thauto detecteature. When auto detect is supported, the system can
determine which devices are connected to the bus and the location of the devices.
Devices are easier to configure because less information is requiredtabtadiles

for the driver. Auto detect is nondestructive: It doesn’t change the state of any device.

Auto detect determines which devices are connected to a bus and their bus location.
Each device identifies itself with auto detect IDand indicates its location with an
anchor.

Auto Detect IDs and Anchors

Each device driver identifies itself by an auto detect ID string, which is a list of
identifiers that can be used to detect the devices that can be controlled by the driver.
The meaning of the identifiers is different for each bus type.

For the EISA, PCI and Plug and Play bus types, this ID is expressed as a 32-bit
hexadecimal number containing the vendor ID and the device ID for the device. For
the EISA bus and for Plug and Play, the device ID is in the lower 16 bits, and the
vendor ID is in the upper 16 bits. For the PCI bus, the vendor ID is in the lower 16 bits,
and the device ID is in the upper 16 bits. The “Auto Detect IDs” key should contain
IDs for all the devices that can be controlled by the device driver. There is currently

no provision for matching “don’t care” bits in the ID, although that may be added in

the future.

When your driver is configured in the system, the configuration software will scan the
bus for devices that match your auto detect IDs. When it finds a device, it will create
a device description for your driver with a value for the “Location” key that allows

you to locate your device on the bus. This key is known as the “anchor” for your
device and is different for each bus type.

For the EISA bus, the anchor is a slot number between 0 and 15. The value of the
“Location” key is “Slot <n>", where <n> is your slot number.

For the PCI bus, the anchor is a three-part identifier containing the bus number, the
device number, and the function number for your device. The bus number can be
between 0 and 255, the device number can be between 0 and 31, and the function
number can be between 0 and 7. The syntax of the “Location” key is “Dev:<d>

Func:<f> Bus:", where is the bus number, <d> is the device number, and <f>
is the function number.

Plug and Play support does not currently define an anchor for the card. Instead, the
resources assigned in your configuration table, such as base 1/0 address, IRQ level,
and DMA channels, are programmed into your device using the Plug and Play control
registers. In the future, an anchor will be assigned so you can use new Driver Kit
methods to control resources in more detail.

Auto Detect Process

The driver bundle’®efault.table has two key/value pairs of interest for auto
detection: “Bus Type” and “Auto Detect IDs”. The first tells which bus the driver
supports. The second lists the auto detect IDs of all the supported devices for this
driver, expressed in the 32-bit hexadecimal number format.

Auto detection is used at two times: During installation and when you use the
Configure application.

During initial installation, the auto detect software scans each bus and obtains from
each device its auto detect ID and its anchor in the form that the bus uses. It adds the
“Location” key to your driver’s device description in memory.

Note: A computer may have more than one bus, and the buses may be different
types.

When you use Configure to add a driver to your system, it looks at every file with a
.table extension (with the exception lifstancen.table files) in each configuration
bundle, trying to match bus types and auto detect IDs. It first examines the “Bus
Type” and then the “Auto Detect IDs” key/value pairs and generates a candidate list
of drivers for each device found. There may be more than one candidate driver for a
device. In that case, the user is presented with a list of drivers for the device and
asked to pick one. After the user chooses,ttide file is copied to an

Instancen.table with this line appended:

"Location" =" anchor "
whereanchoris the anchor in the format appropriate for the bus.

There are cases where “Location” is blank. Each bus-specific category of
IODirectDevice (IOEISADirectDevice, IOPCIDirectDevice, and so on) and
IODeviceDescription subclass (IOPCMCIADeviceDescription and so on) provide
methods for extracting this information, suchgat?ClDevice:function:busand
getEISASIotNumber.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Protocols

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OConfigurationlnspector

Adopted By: IODevicelnspector class
IODisplaylnspector class

Declared In: driverkit/lODevicelnspector.h

Protocol Description

The I0Configurationinspector protocol is adopted by inspectors that are loaded into
the Configure application. Each inspector lets the user inspect and set information
about a device, such as a specific brand of Ethernet card. The inspector stores this
information in an NXStringTable that is specified to the inspector witsehEable:
method.

The default, customizable inspector implemented by the IODevicelnspector class is
sufficient for many devices. However, if IODevicelnspector doesn’t suit your
configuration needs, you should implement your own inspector class that adopts the
IOConfigurationinspector protocol. An example of adopting this protocol is under
/NextLibrary/Documentation/NextDev/Examples/DriverKit in the

Driverinspector directory.

Method Types

Get the inspector’s View — inspectionView
Notify that resources have changed

- resourcesChanged
Set the description table - setTable

Instance Methods

inspectionView
- (View *)inspectionView

Returns the View of the inspector.

resourcesChanged:
- resourcesChangediOResources Tesources

The Configure application sends this message to all inspectors whenever an interrupt,
DMA channel, I/0O port, or memory range is chosen or dropped in any inspector. This
method should check for conflicts and update the Ul.

This message is sent as often as you might need it, including immediately after a
setTable:and after your own changes. You are guaranteed to be deactivated before
your current table is freed, but you will not receiv&etirable:nil, so don’t count on
accessing or modifying the table except in response to a user action.

setTable:
- setTable(NXStringTable *anObject

Sets the NXStringTable describing the inspector’s devieam@bject You should

update the Ul whegetTable: gives you a table to inspect. Your object should keep a
handle to the table. When the user makes changes, immediately update the table; do
not use OK/Revert buttons.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IOEventThread

Adopted By: The event system

Declared In: driverkit/eventProtocols.h

Protocol Description

The IOEventThread protocol provides access to the event system’s 1/O thread. You
can obtain an IOEventThread-compliant object from IOEventSouneeisr method.

Method Types

Sending messages - sendlOThreadAsyncMsg:to:with:
- sendlOThreadMsg:to:with:

Instance Methods

sendlOThreadAsyncMsg:to:with:

- (IOReturnyendlOThreadAsyncMsg(id)instance
to: (SEL)selector
with: (id)data

From the event system’s I/O thread, sends the message speciielédiprto
instance with the argumendata This method doesn’t wait for tlselectormethod to
be called, and doesn’t detect whetbelectoris a valid method ahstance Returns
IO_R_IPC_FAILURE if an error occurred; otherwise, returns IO_R_SUCCESS.

See also: - sendlOThreadMsg:to:with:

sendlOThreadMsg:to:with:

- (IOReturnyendlOThreadMsg:(id)instance
to: (SEL)selector
with: (id)data

From the event system’s I/O thread, sends the message speciielédiprto

instance with the argumendata This method waits until theelectormethod has
returned. Returns I0_R_IPC_FAILURE if the message couldn’t be sent; otherwise,
returns I0_R_SUCCESS.

See also: - sendlOThreadAsyncMsg:to:with:

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IONetworkDeviceMethods

Adopted By: IOEthernet
IOTokenRing
Declared In: driverkit/IONetwork.h

Protocol Description

This protocol must be implemented by network direct device drivers that use
IONetwork to tie into the kernel network system. These methods are invoked by
IONetwork objects in response to events in the network system.

Note: Network drivers must run at kernel level.

Method Types

Creating netbufs — allocateNetbuf
Initializing the hardware — finishinitialization
Sending out a packet — outputPacket:address:

Performing control commands - performCommand:data:

Instance Methods
allocateNetbuf

— (netbuf_tallocateNetbuf

This method creates and returns a netbuf to be used for an impending output.

This method doesn’t always have to return a buffer. For example, you might want to
limit the number of buffers your driver instance can allocate (say, 200 kilobytes
worth) so that it won’t use too much wired-down kernel memory. When this method
fails to return a buffer, it should return NULL.

Here’s an example of implementiafjocateNetbut

#define my HDR_SIZE 14

#define my_MTU 1500
#define my_MAX_PACKET (my_HDR_SIZE + my_MTU)

- netbuf_t allocateNetbuf

if (_numbufs == _maxNumbufs)
return(NULL);

else {
__numbufs++;
return(nb_alloc(my_MAX_PACKET));

}
}

See also: nb_alloc() (NEXTSTEP Operating System Software)

finishinitialization
- (int)finishinitialization
This method should perform any initialization that hasn't already been done. For

example, it should make sure its hardware is ready to run. You can specify what the
integer return value (if any) should be.

If you implement this method, you need to check that [self isSRunning] == YES.

outputPacket:address:
- (int)outputPacket:(netbuf_tpacketaddress(void *)address

This method should deliver the specified packet to the given address. Its return value
should be zero if no error occurred; otherwise, return an error number from the header
file sys/errno.h

If you implement this method, you need to check that [self isSRunning] == YES. If so,
insert the necessary hardware addresses into the packet and check it for minimum
length requirements.

performCommand:data:
- (int)performCommand:(const char *¢ommandiata:(void *)data

This method performs arbitrary control operations; the character soimmands

used to select between these operations. Although you don’t have to implement any
operations, there are five standard operations. You can also define your own
operations.

The standard commands are listed in the following table. The constant strings listed
below are declared in the header fiet/netif.h (under thebsd directory of

INextDeveloper/Headerk

Command
IFCONTROL_SETFLAGS

IFCONTROL_SETADDR
IFCONTROL_GETADDR
IFCONTROL_AUTOADDR
IFCONTROL_UNIXIOCTL

Operation

Request to have interface flags turned on or off.
Thedataargument for this command is of type
union ifr_ifru (which is declared in the header file
net/if.h).

Set the address of the interface.
Get the address of the interface.
Automatically set the address of the interface.

Perform a UNIXoctl() command. This is only for
compatibility;ioctl() isn’t a recommended
interface for network drivers. The argument is of
typeif_ioctl_t *, where thef_ioctl_t structure
contains the UNIX ioctl request (for example,
SIOCSIFADDR) in thaoctl_commandfield and
the ioctl data in theoctl_data field.

An example of implementingerformCommand:data: follows.

- (int)performCommand:(const char *)command data:(void *)data

int error = 0;

if (strcmp(command, IFCONTROL_SETFLAGS) ==0)

/* do nothing */;
else

if (strcmp(command, IFCONTROL_GETADDR) == 0)
bcopy(&my_address, data, sizeof (my_address));

else
error = EINVAL,;

return (error);

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOSCSIControllerExported

Adopted By: IOSCSIController class

Declared In: driverkit/scsiTypes.h

Protocol Description

Indirect device drivers for devices attached to SCSI controllers use the methods in
this protocol to communicate with IOSCSIController.

Method Types

Allocating well-aligned buffers -
allocateBufferOfLength:actualStart:actualLength:

- getDMAAlignment:

Requesting 1/0 — executeRequest:buffer:client:
— maxTransfer
Reserving SCSI targets - reserveTarget:lun:forOwner:

- releaseTarget:lun:forOwner:
Resetting the SCSI bus - resetSCSIBus

Getting the IOReturn equivalent oba_status_tvalue
- returnFromScStatus:

Instance Methods

allocateBufferOfLength:actualStart:actualLength:

- (void *)allocateBufferOfLength: (unsignedength
actualStart: (void **) actualStart
actualLength:(unsigned *actualLength

Allocates and returns a pointer to some well-aligned memory. Well-aligned memory
is necessary for calls executeRequest:buffer:client: You should usactualStart
andactualLengthwhen freeing the memory, as follows (italicized text delineated in

angle brackets, that is << >>, is to be filled in with device-specific code):

dataBuffer = [_controller allocateBufferOfLength:block_size
actualStart:&freePtr, actualLength:&freeLength];

<< Use the buffer... >>

IOFree(freePtr, freeLength);

Here’s a typical use of this method:

IODMAAIlignment dmaAlign;
unsigned int alignment, alignedLength, freeLength;
void *alignedPtr = NULL;
unsigned int maxLength; /* Max length of the current transfer
*
r o
[_controller getDMAAlignment:&dmaAlign];
if(<< we're doing a write >>)
alignment = dmaAlign.writeLength;
else
alignment = dmaAlign.readLength;

if(alignment > 1)

alignedLength = IOAlign(unsigned int, maxLength, alignment);
else

alignedLength = maxLength;

alignedPtr = [_controller allocateBufferOfLength:alignedLength
actualStart:&freePtr
actualLength:&freeLength];

<< Ifwe’re going to do a write, copy the data to alignedPir.
Set up the request and submit it, as described in the
executeRequest:buffer:client: description. >>
<< Do any post-/O processing that’s necessary. >>

IOFree(freePtr, freeLength);

See also: - getDMAAlignment:

executeRequest:buffer:client:

— (sc_status_#xecuteReques{ilOSCSIRequest ¥csiRequest
buffer: (void *)buffer
client:(vm_task_tlient

Executes the specified request. Indirect devices invoke this method whenever they
need the IOSCSIController to perform I/O.

Subclasses of IOSCSIController must implement this method. A typical
implementation of this method consists of the following:

» UsinglOScheduleFunc()to schedule a timeout function to be called after
scsiRequesttimeoutLength time has elapsed without I/O completion

» Sending the command descriptor block (CDB) specifiestgiRequedb the
controller

* When the I/0 has completed, unscheduling the timeout function

This method should retustsiRequestdriverStatus, which should be set by the
part of the driver that detected 1/0 completion or timeout.

Indirect devices use this method as shown below (italicized text delineated in angle
brackets, that is << >>, is to be filled in with device-specific code):

void *alignedPtr = NULL;
unsigned int alignedLength;
IOSCSIRequest request;
cdb_t cdb;

Vi
if (<< we’re going to be doing DMA >>) {
<< Ensure we have a well-aligned buffer that starts at
alignedPtr
and continues for alignedLength bytes. See the
allocateBuffer: description for one way of doing this. >>
}else {
alignedLength = 0;
alignedPtr = 0;
}

bzero(&request, sizeof(request));
request.target = [self target];
request.lun = [self lun];
request.read = << YES if this is a read; NO otherwise >>;
request.maxTransfer = alignedLength;
request.timeoutLength = << some timeout length, in seconds >>:
request.disconnect = << 1 if allowed to disconnect; otherwise 0 >>;
request.cdb = cdb;
<< Set up the cdb (command descriptor block) field. The type of
this
field, cdb_t, is defined and described in the header file
bsd/dev/scsireg.h. >>

rtn = [_controller executeRequest:&request
buffer:alignedPtr
client:IOVmTaskSelf()];

getDMAAlignment:
- (void)getDMAAlignment: (IODMAAlignment *)alignment

Returns the DMA alignment requirements for the current architecture.
IOSCSIController subclasses can override this method to specify any device-specific
alignment requirements. See the description of
allocateBufferOfLength:actualStart:actualLength: for an example of using this
method.

See also: - allocateBufferOfLength:actualStart:actualLength:

maxTransfer
- (unsignednaxTransfer

Returns the maximum number of bytes per DMA transfer. This is the maximum
transfer that can be requested in a catitecuteRequest:buffer:client:

releaseTarget:lun:forOwner:

- (void)releaseTarget(unsigned chatarget
lun: (unsigned chaljyn
forOwner: owner

Releases the specified target/lun paioviinerhasn’t reserved the pair, this method
uses IOLog to print an error message.

See also: -reserveTarget:lun:forOwner:

reserveTarget:lun:forOwner:

— (int)reserveTarget(unsigned chatarget
lun: (unsigned chalyn
forOwner: owner

Reserves the specified target/lun pair, if it isn’t already reserved. This method is
invoked by a client (for example, a SCSIDisk instance) to mark a particular target/lun
as being in use by that client. Usually, this happepsaddite: time; however, the
SCSIGeneric driver uses this method at other times.

This method returns a nonzero value if the target/lun pair is already reserved.
Otherwise, it returns zero.

See also: - releaseTarget:lun:forOwner:

resetSCSIBus
— (sc_status_tesetSCSIBus

Resets the SCSI bus. Subclasses of IOSCSIController must implement this method so
that it resets the SCSI bus. T$e status_tenumerated type is defined and described
in the header fildsd/dev/scsireg.h

returnFromScStatus:
- (IOReturnyeturnFromScStatus:(sc_status_sc_status

Returns the IOReturn value corresponding to the speafiestatus_tvalue. The
sc_status_tenumerated type is defined and described in the header file
bsd/dev/scsireg.h

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OScreenkEvents
Adopted By: IODisplay
Declared In: driverkit/eventProtocols.h

Protocol Description

The methods in this protocol are invoked by the event system, at the request of the
Window Server or of pointer management software.

Method Types

Manipulating the cursor — hideCursor:
— moveCursor:frame:token:
- showCursor:frame:token:

Get the device port — devicePort

Set screen brightness - setBrightness:token:

Instance Methods

devicePort
— (port_tdevicePort

Returns the device port, which should be obtained from this instance’s
IODeviceDescription.

hideCursor:
- hideCursor: (int)token

Removes the cursor from the screen.

moveCursor:frame:token:

— moveCursor:(Point *)cursorLoc
frame: (int)frame
token:(int)token

Removes the cursor from the screen, moves it, and displays the cursor in its new
position.

setBrightness:token:
— setBrightness(int)leveltoken:(int)token

Sets the brightness of the screen. Many devices (and thus many drivers) don’t permit
this operation.

See also: - setBrightness:token:(IOFrameBufferDisplay class)

showCursor:frame:token:

— showCursor:(Point *)cursorLocation
frame:(int)frame
token:(int)token

Displays the cursor aursorLocation

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OScreenRegistration

Adopted By: The event system

Declared In: driverkit/eventProtocols.h

Protocol Description

Display drivers use the messages in the |IOScreenRegistration protocol to register and
unregister themselves with the event system. These methods are called by I0ODisplay
in response to agetintValues:forParameter:count: call that specifies the
“I0_Framebuffer_Register” parameter.

You shouldn’t need to invoke the methods in this protocol, because they’re already
invoked automatically by IOFrameBufferDisplay and IOSVGADisplay.

Instance Methods

registerScreen:bounds:shmem:size:

— (int)registerScreen(id)instance
bounds:(Bounds *bounds
shmemyvoid **) address
size{int *)num

Registersnstanceas a display driver. Returns a token that's used to refer to the
display in other calls to the event system.

unregisterScreen:
- (void)unregisterScreen(int)token

Unregisters the instance associated wokenas a display driver.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Types and Constants

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Defined Types

IOAddressRange
DECLARED IN
driverkit/lODevicelnspector.h

SYNOPSIS
typedef struct IOAddressRange {

unsigned start;
unsigned length;
} IOAddressRange

DESCRIPTION

Used to describe address ranges.

IOCache
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef enum {
IO_CacheOff,

IO_WriteThrough ,
IO_CopyBack
} I0Cache

Used<<where?>> to specify caching. I0_CacheOff inhibits the cache.
IOChannelCommand

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef unsigned inOChannelCommand

DESCRIPTION

IOChannelDequeueOption
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef unsigned inODChannelDequeueOption

DESCRIPTION

IOChannelEnqueueOption
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef unsigned inOChannelEnqueueOption

DESCRIPTION

IOCharParameter

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef chatOCharParameter[|IO_MAX PARAMETER_ARRAY_LENGTH]

DESCRIPTION

Standard type for a character parameter value, used by the get/set parameter
functionality provided by IODevice and I0DeviceMaster.

IODDMMsg
DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS
typedef struct {
msg_header header,
msg_type_trgType;
unsignedndex;
unsignednaskValue
unsignedstatus
unsignedimestampHighint;
unsignedimestampLowiInt;
int cpuNumber;
msg_type_stringType;
charstring[|IO_DDM_STRING_LENGTH];
} IODDMMsg

DESCRIPTION
The message format understood by the Driver Debugging Module. You don’t usually

have to use this message, as long as DDMVieweheck>> is sufficient for your
needs.

IODescriptorCommand

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned ch#®DescriptorCommand

DESCRIPTION

IODeviceNumber
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef unsigned inODeviceNumber

DESCRIPTION

IODeviceStyle
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef enum {
IO_DirectDevice,
IO_IndirectDevice,
IO_PseudoDevice
} IODeviceStyle

DESCRIPTION

Returned by theeviceStylemethod to specify whether the driver is a direct device
driver (one that directly controls hardware), an indirect device driver (one that
controls hardware using a direct device driver), or a pseudodriver (one that controls
no hardware). The driver style determines how it's configured into the system, as
describedk<somewhere>>

IODisplaylInfo

DECLARED IN

bsd/dev/i386/displayDefsf<to be moved to driverkit/>>

SYNOPSIS
typedef struct{

int width;

int height;

int totalWidth ;
int rowBytes;
int refreshRate

void *frameBuffer;

|OBitsPerPixebitsPerPixel,
IOColorSpaceolorSpace

unsigned inflags;
void *parameters

} IODisplayinfo;

DESCRIPTION

This structure describes a video display. Each linear mode supported by an
IOFrameBufferDisplay has a corresponding IODisplaylsfolell when it's
used.>>The structure’s fields are

width
height
totalWidth

rowBytes

refreshRate

frameBuffer

bitsPerPixel

Width, in pixels
Height, in pixels
Width including undisplayed pixels

The number of bytes to get from one scanline to next. To
determine this value, determine how many 8-bit bytes each
pixel occupies (rounding up to an integer) and multiply this
by the value ofotalWidth . For example, a color display
mode that uses 15 bits per pixel and hagaWidth of

1024 has aowBytes value of 2048.

Monitor refresh setting, in how do you decide
this?>>

Pointer to origin of screen; untyped to force actual screen
writes to be dependent on bitsPerPixel. The driver’s
initFromDeviceDescription: method should set this field
to the value returned by
mapFrameBufferAtPhysicalAddress:length:

The memory space occupied by one pixel. 8-bit black and

white display modes use the value 10_8BitsPerPixel, and
“16-bit” color display modes that use 5 bits each for red,

green, and blue use the value 10_15BitsPerPixel. See the
documentation of the 10BitsPerPixel type for other values.

colorSpace Specifies the sample-encoding forwathat does that
mean?>>Typically, this value is either
IO_DISPLAY_ONEISWHITECOLORSPACE (for
monochrome modes) or
IO_DISPLAY_RGBCOLORSPACE (for color modes). See
the documentation of the IOColorSpace type for other
values.

flags Flags used to indicate special requirements or conditions to
DPS. Currently, this should always be zetetrue? Or is
it ignored?>>

parameters Driver-specific parameters.

Here’s an array of IODisplayInfo structures for a driver that supports several
monochrome and color modes:

static const I0Displaylnfo MyModes[MY_NUM_MODES] = {
{1024, 768, 1024, 1024, 66, 0,

|O_8BitsPerPixel, I0_DISPLAY_ONEISWHITECOLORSPACE, 0,0},
{1280, 1024, 2048, 2048, 68, 0,

I0_8BitsPerPixel, I0_DISPLAY_ONEISWHITECOLORSPACE, 0, 0},
{ 800, 600, 800, 1600, 72, 0,

IO_15BitsPerPixel, I0_DISPLAY_RGBCOLORSPACE, 0,0},
{1024, 768, 1024, 2048, 72, 0,

IO_15BitsPerPixel, I0_DISPLAY_RGBCOLORSPACE, 0, 0 }
3

These structures correspond to the display modes specified in the device
configuration bundle’&ocalizable.stringsfile:
"DisplayModes" = "Height: 768 Width:1024 Refresh:66Hz ColorSpace:
BW:8;
Height:1024 Width:1280 Refresh: 68Hz ColorSpace: BW:8;

Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16;
Height: 600 Width: 800 Refresh: 72Hz ColorSpace: RGB:555/16";

IODMAAIlignment
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef struct {

unsignedeadStart;

unsignedwriteStart ;

unsignedeadLength;

unsignedwriteLength;
} IODMAAIlignment

DESCRIPTION

Used<<by whom?>>to specify DMA alignment. A field value of 0 means that
alignment isn't restricted for values corresponding to the field.

IODMABUuUffer
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef void TODMABUuffer

DESCRIPTION
Used as a machine-independent type for a machine-dependent DMA buffer.

SEE ALSO

IOEISADMABUuffer

IODMAD:Irection
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef enum {

IO_DMARead,
|O_DMAWrite
} IODMAD irection

DESCRIPTION

Used<<where?>> to specify the direction of DMA. IO_DMARead indicates a

transfer from the device into system memory; IO_DMAWrite indicates a transfer
from system memory to the device.

IODMAStatus
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef enum {

IO_None,

IO_Complete,

IO_Running,

IO_Underrun,

IO_BuskError,

IO_BufferError ,
} IODMAStatus

DESCRIPTION

Used<<where?>> to specify machine-independent DMA channel status.

IO_None No appropriate status
IO_Complete DMA channel idle
IO_Running DMA channel running
IO_Underrun Underrun or overrun
IO_BusError Bus error
IO_BufferError DMA buffer error
IODMATransferMode
DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS
typedef enum {
I0_Demand,
I0_Single,
I0_Block,
IO_Cascade
} IODMATransferMode

DESCRIPTION

Used only in thesetTransferMode:forChannel: method of the EISA/ISA category
of I0DirectDevice.

IOEISADMABUuffer
DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS
typedef void TOEISADMABUuffer

DESCRIPTION

Used as a machine-dependent type for a DMA buffer.

IOEISADMATIming
DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS
typedef enum {
I0_Compatible,
I0_TypeA,
I0_TypeB,
I0_Burst,
} IOEISADMATIming

DESCRIPTION

Used only in thesetDMATiming:forChannel: method of the EISA/ISA category of
IODirectDevice.

IOEISADMATransferWidth

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS
typedef enum {
I0_8Bit,
I0_16BitWordCount,
I0_16BitByteCount,
I0_32Bit,
} IOEISADMATransferWidth

DESCRIPTION

Used only in thesetDMATransferWidth:forChannel: method of the EISA/ISA
category of IODirectDevice.

IOEISAInterruptHandler
DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS
typedef void (TOEISAInterruptHandler)
(void *identity,

void *state
unsigned intarg)

DESCRIPTION

IOEISAPortAddress
DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS
typedef unsigned sho®EISAPortAddress

DESCRIPTION

IOEISAStopRegisterMode
DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS
typedef enum {

IO_StopRegisterEnable

IO_StopRegisterDisable

} IOEISAStopRegisterMode

DESCRIPTION

Used only in thesetStopRegisterMode:forChannel:method of the EISA/ISA
category of IODirectDevice.

IOIncrementMode
DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS
typedef enum {
10_Increment,
I0_Decrement
} I0IncrementMode

DESCRIPTION

Used only in thesetincrementMode:forChannel: method of the EISA/ISA category
of IODirectDevice.

[OInterruptHandler

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef void (1OInterruptHandler)
(void *identity,

void *state
unsigned intarg)

DESCRIPTION

IOInterruptMsg
DECLARED IN
driverkit/interruptMsg.h
SYNOPSIS
typedef struct {
msg_header_t

header,
} IOInterruptMsg

DESCRIPTION

The format of the message sent by the kernel to a driver’s interrupt handler.

IOIntParameter
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef intlOIntParameter [[O_MAX_PARAMETER_ARRAY_LENGTH]

DESCRIPTION

Standard type for an integer parameter value, used by the get/set parameter
functionality provided by IODevice and I0DeviceMaster.

IOIPCSpace
DECLARED IN
driverkit/kernelDriver.h

SYNOPSIS
typedef enum {

IO_Kernel,
IO_KernellOTask,
IO_CurrentTask

} IOIPCSpace

DESCRIPTION

Used only by théOConvertPort() function to specify which space to convert the
port from and to.

IONamedValue
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS
typedef struct {

int value;
const char hame
} IONamedValue

DESCRIPTION

Map between constants or enumerations and text description.

IOODbjectNumber
DECLARED IN
driverkit/driverTypes.h

SYNOPSIS

typedef unsigned inOObjectNumber

DESCRIPTION

IOParameterName
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef chatOParameterNamglO_MAX_PARAMETER_NAME_LENGTH]

DESCRIPTION

Standard type for a parameter name, used by the get/set parameter functionality
provided by IODevice and IODeviceMaster.

IORange
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef struct range {
unsigned instart;
unsigned insize
} IORange

DESCRIPTION

Indicates a range of values. Used for memory regions, port regions, and so on.

IOReturn
DECLARED IN

driverkit/return.h

SYNOPSIS
typedef inttOReturn

DESCRIPTION

IOReturn values are returned by many Driver Kit classes.

IOSCSIRequest
DECLARED IN

driverkit/scsiTypes.h

SYNOPSIS
typedef struct {
unsigned chatarget;
unsigned chalun;
cdb_tcdb;
BOOL read;
int maxTransfer;
int timeoutLength;
unsignedlisconnectl,;
unsignedoad:31;
sc_status_driverStatus;
unsigned chascsiStatus
int bytesTransferred,
ns_time_totalTime;
ns_time_tatentTime;
esense_reply genseData
} IOSCSIRequest

DESCRIPTION

Used in the IOSCSIController protocokgecuteRequest:buffer:client:method.

IOString
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
typedef chatOString [IO_STRING_LENGTH]

DESCRIPTION

Standard type for an ASCII name, such as a device’s hame or type.

IOSwitchFunc
DECLARED IN
driverkit/devsw.h

SYNOPSIS
typedef int (1OSwitchFunc)()

DESCRIPTION

Used bylOAddToBdevsw() andIOAddToCdevsw() to specify UNIX-style entry
points into a driver.

IOThread
DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS
typedef void 1OThread

DESCRIPTION

An opaque type used by the general-purpose functions to represent a thread.

IOThreadFunc
DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS
typedef void (tOThreadFunc)
(void *arg)

DESCRIPTION

Used by the general-purpose functions to specify the function that a thread should
execute.

Symbolic Constants

Length Constants
DECLARED IN

driverkit/driverTypes.h
SYNOPSIS

IO_STRING_LENGTH

|I0O_MAX_PARAMETER_NAME_LENGTH
I0O_MAX_PARAMETER_ARRAY LENGTH

DESCRIPTION

These constants are used to determine the maximum length of the following types:
IO_STRING_LENGTH IOString
I0_ MAX_PARAMETER_NAME_LENGTH IOParameterName

I0_MAX_PARAMETER_ARRAY_LENGTH [OIntParameter
IOCharParameter

Debugging String Length
DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS
|IO_DDM_STRING_LENGTH

DESCRIPTION

The length of thetring field in an IODebuggingMsg.

Debugging Messages
DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS
Constant Meaning
IO_DDM_MSG_BASE The lowest ID an IODebuggingMsg can have
IO_LOCK_DDM_MSG Lock the Driver Debugging Module (DDM)
IO_UNLOCK_DDM_MSG Unlock the DDM

IO GET_DDM_ENTRY_MSG Get an entry from the DDM
IO_SET_DDM_MASK_MSG Set the debugging mask for the DDM
IO_CLEAR_DDM_MSG Clear all entries from the DDM

DESCRIPTION

Values for theneader.msg_idfield of an IODebuggingMsg. See the discussion of the
DDM in Chapter 2 for more information on these messagesheck>>

Return Values from the DDM

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS
Constant Meaning
IO_DDM_SUCCESS The message was received and understood
IO_NO_DDM_BUFFER The DDM has no entry at the specified offset
IO_BAD_DDM_INDEX The specified index isn’t valid

DESCRIPTION

Values for thestatusfield of an IODebuggingMsg.

DDM Masks

DECLARED IN

driverkit/debugging.h

SYNOPSIS
|I0_NUM_DDM_MASKS

DESCRIPTION

This constant specifies the number of masks used by the Driver Debugging Module.

Interrupt Messages
DECLARED IN

driverkit/interruptMsg.h

SYNOPSIS
Constant Meaning
IO _INTERRUPT_MSG ID_BASE The lowest ID an IOInterruptMsg can have
IO_TIMEOUT_MSG
IO_COMMAND_MSG
IO_DEVICE_INTERRUPT_MSG Sent by the kernel when an interrupt occurs
IO_DMA_INTERRUPT_MSG
IO_FIRST_UNRESERVED_INTERRUPT_MSG

DESCRIPTION

Values for theneader.msg_idfield of an IOInterruptMsg. See the discussion of
interrupts in Chapter 2 for more information on interrupt messageseck. WHO
USES everything except I0O_DEVICE_INTERRUPT_MSG, and how?>>

IOReturn Constants
DECLARED IN

driverkit/return.h

SYNOPSIS
Constant Meaning
I0O_R_SUCCESS No error occurred
IO_R_NO_MEMORY Couldn’t allocate memory
IO0_R_RESOURCE Resource shortage
IO_R_VM_FAILURE Miscellaneous virtual memory failure

IO_R_INTERNAL Internal library error

I0_R_RLD
I0_R_IPC_FAILURE
I0_R_NO_CHANNELS
I0_R_NO_SPACE
I0_R_NO_DEVICE
I0_R_PRIVILEGE
I0_R_INVALID_ARG

|I0_R_BAD_MSG_ID
I0_R_UNSUPPORTED
IO_R_INVALID

I0_R_LOCKED_READ
I0_R_LOCKED_WRITE
I0_R_EXCLUSIVE_ACCESS
I0O_R_CANT_LOCK
I0O_R_NOT_OPEN
I0_R_OPEN
I0_R_NOT_READABLE
I0_R_NOT_WRITABLE

I0_R_IO
I0_R_BUSY
I0_R_NOT_READY
I0_R_OFFLINE
IO_R_ALIGN
I0_R_MEDIA
I0_R_DMA
I0_R_TIMEOUT
I0_R_NOT_ATTACHED

IO_R_PORT_EXISTS
I0_R_CANT_WIRE

Error in loading a relocatable file

Error during IPC

No DMA channels are available

No address space is available for mapping
No such device

Privilege/access violation
Invalid argument

27?7

Unsupported function
Should never be seen

Device is read locked

Device is write locked

Device is exclusive access and is already open
Can’t acquire requested lock

Device not open

Device is still open

Reading not supported
Writing not supported

General 1/O error

Device is busy

Device isn’'t ready

Device is off line

DMA alignment error

Media error

DMA failure

I/O timeout

The device or channel isn't attached

The device port already exists
Can’t wire down physical memoryever used?

can you ever wire down physical memory?>>

I0_R_NO_INTERRUPT
I0_R_NO_FRAMES

DESCRIPTION

Values for IOReturns.

IODevice Parameter Names
DECLARED IN

driverkit/IODevice.h

No interrupt port is attached
No DMA is enqueued

SYNOPSIS
Constant Meaning

IO_CLASS NAME The value returned byname
IO_DEVICE_NAME The value returned byname
IO_DEVICE_KIND The value returned bydeviceKind
IO_UNIT The value returned by unit

DESCRIPTION

Null Constants
DECLARED IN
driverkit/driverTypes.h
SYNOPSIS
#define NULL 0
#define IO_NULL_VM_TASK ((vm_task_t)0)

DESCRIPTION

Standard null values, used in various places.

Unused Constants
DECLARED IN
driverkit/driverTypes.h

|IO_CC_START_READ
I0O_CC_START_WRITE

IO_CC_ABORT
I0_CC_ENABLE_DEVICE_INTERRUPTS
|IO_CC_DISABLE_DEVICE_INTERRUPTS
|IO_CC_ENABLE_INTERRUPTS
|IO_CC_DISABLE_INTERRUPTS

|IO_CC_CONNECT_FRAME_LOOP

I0_CC_DISCONNECT_FRAME_LOOP
|I0_CDO_DONE

I0_CDO_ALL
IO_CDO_ENABLE_INTERRUPTS
I0_CDO_ENABLE_INTERRUPTS_IF_EMPTY
IO_CEO_END_OF RECORD
|IO_CEO_DESCRIPTOR_INTERRUPT
|IO_CEO_ENABLE_INTERRUPTS
|O_CEO_DESCRIPTOR_COMMAND
|IO_CEO_ENABLE_CHANNEL
I0_MAX_BOARD_SIZE
I0_MAX_NRW_SLOT_SIZE
|IO_MAX_SLOT_SIZE
I0_NATIVE_SLOT_ID
I0_NO_CHANNEL
IO_NULL_SLOT_ID
I0_NULL_DEVICE_TYPE
|IO_NULL_DEVICE_INDEX
IO_NULL_DMA_ID
|IO_SLOT_DEVICE_TYPE

DESCRIPTION

These constants aren’t used by drivers for Intel-based computers.

Note:

Global Variables

IODDMMasks
DECLARED IN

driverkit/debugging.h

SYNOPSIS
unsigned intODDMMasks [IO_NUM_DDM_MASKS]

DESCRIPTION

The bitmask used to filter storing of debugging events. See the discussion of the
Driver Debugging Module in Chapter 2 for more information.

IODMAStatusStrings
DECLARED IN

driverkit/driverTypes.h

SYNOPSIS
const IONamedValuBODDMAStatusStrings|]

DECLARED IN

Used as an argumentitoFindNameForValue() to convert an IODMAStatus value
into an error string.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Classes

The Driver Kit has two main groups of classes—those that user-level nondriver
programs can use, and those used by drivers.

— lODeviceMaster

— 10ConfigTable

Object —— IOAddressRanger

— lODevicelnspector

— lODevice (class methods only)

Figure 5-1 . Classes Used by User-level Nondriver Programs

The classes used by drivers are further divided into those that are device-independent
and those that are only used for specific kinds of devices.

I0ODevice IODirectDevice

Object I0ConfigTable

I0DeviceDescription IOEISADeviceDescription

Figure 5-2 . Device-independent Classes Used by Drivers

See Chapter 3 for information on the classes used for specific kinds of devices.

Some of the methods in the Driver Kit classes are stubs: they simply return without
doing anything. Their method description says that they do nothing. They’re typically
hardware dependent, so you can implement them based on how your hardware
operates and what interface you have available to the hardware. However, these
methods provide a framework for you to build your driver on.

Note: The disk driver classes (IODisk, IOLogicalDisk, and IODiskPartition) are

public but haven’'t been documented yet.

Other Classes Available to Drivers

Besides the Object class and the classes documented here, four more classes are
available for drivers’ use. Three of these classes—NXLock, NXConditionLock, and
NXSpinLock—are part of the Mach Kit, and are implemented at both user and kernel
level. NXRecursivelLock, also part of the Mach Kitnat available at kernel level.

See the “Mach Kit” chapter INEXTSTEP General Referenice more information.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOAddressRanger

Inherits From: Object

Declared In: driverkit/IOAddressRanger.h

Class Description

The IOAddressRanger class provides user interface and type checking to be used in
device inspecting modules for the Configure application. IOAddressRangers are used
in IODevicelnspector for choosing values for 1/0O port ranges and ranges of memory.

An IOAddressRanger limits the range to a constant length that you specify with
setRangeLength: The range is also limited to be between the addresses you specify
with setAddressLimits::. Whenever an address limit or range length is changed or
the selected address range is changed, the IOAddressRanger adjusts the address
range as follows:

» If the start address is less than the lower address limit, the start address is changed
to be equal to the lower limit.

 If the range contains addresses above the higher limit, the start address is adjusted
downward so that the range’s last address is equal to the higher limit.

Instance Variables

None declared in this class.

Method Types

Checking address ranges — checkRangesForConflicts:num:
- checkText:

Setting and getting the start address
- setStartAddress:
— startAddress

Action methods — minus:
- plus:

Setting and getting the range length

- rangeLength

- setRangelength:
Limiting the address range - setAddressLimits::
Assigning a delegate - setDelegate:

- delegate
Delegate methods - rangeDidChange:

Instance Methods

checkRangesForConflicts:num:
— (BOOL)checkRangesForConflicts{lOAddressRanger tanges
num:(unsigned inf)umRanges

A configuration inspector invokes this method to check whether this
IOAddressRanger uses any addresses already used by the specified
IOAddressRangers. If so, this method changes the color of the text in the text field to
gray and sets the status button on. If no conflicts exist, this method sets the status
button off and changes the color of the text to black. Returns NO if no conflicts exist
and YES if conflicts exist.

checkText:
- checkText:sender

Checks whethesendels string value is an address and, if so, sets the range’s start
address (adjusted as described in the class description), updates the display, and
sends the delegata@ngeDidChange:message. If the string isn’t an address, the
system beeps and updates the range’s display. Rswlfifghe string is an address;
otherwise, returnail.

delegate
- delegate

Returns the IOAddressRanger’s delegatailoif it doesn’t have one.

minus:

— minus:sender

This method is the target of the minus button in the IOAddressRanger. It moves the
range down by the amount of the range’s length (but no lower than the lower limit),
updates the display, and sends the delegategeDidChange:message. As an

example, if the range is currently from 0x000e00 to 0x000eff, this method changes the
range to be from 0x000d00 to Ox000dff. Retusak

plus:
- plus:sender

This method is the target of the plus button in the IOAddressRanger. It moves the
range higher by the amount of the range’s length (but not above the higher limit),
updates the display, and sends the delegategeDidChange:message. As an

example, if the range is currently from 0x000e00 to 0x000eff, this method changes the
range to be from 0x000f00 to Ox000fff. Retusedf.

rangelLength
- (unsigned longangelLength

Returns the length of the range. This length should be set at initialization using
setRangelength:

setAddressLimits::
- setAddressLimits:(unsigned londdw :(unsigned lond)igh

Limits the address range to values betwlean(inclusive) anchigh (inclusive) and
adjusts the start address, as described in the class description. Reifurns

setDelegate:
- setDelegateanObject

MakesanObjectthe IOAddressRanger’s delegate, and retaefis The delegate is
sent aangeDidChange:message whenever the address range changes.

setRangeLength:
- setRangeLength(unsigned londgngth

Sets the length of the range and retwel§ The new length is displayed and the start
address is adjusted as described in the class description.

setStartAddress:
- setStartAddress(unsigned longddress

Sets the start address of the range (adjusted as described in the class description) and
returnsself.

startAddress
- (unsigned longgtartAddress

Returns the start of the range. This length should be set at initialization using
setStartAddress:

Delegate Methods

rangeDidChange:
- rangeDidChangesender

Informs the delegate that the range changed.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOAudio

Inherits From: IODirectDevice : IODevice : Object

Declared In: driverkit/IOAudio.h

Class Description

IOAudio is an abstract class for controlling sound cards. It works closely with the
Sound Kit, interpreting messages from user-level programs into method invocations in
the driver. IOAudio has three threads—one that listens for messages from user-level
programs, one that waits for sound-related keyboard events such as Insert (which
raises the volume), and one that serves as the I/O thread. Only the I/O thread is used
to invoke subclass methods that might need access to the hardware.

Audio drivers have some restrictions. Because they’re closely tied to the Window
Server, for security reasons, you can’t start up an audio driver at just any time.
Instead, it's easiest to reboot to load a new version of an audio driver. Because the
Sound Kit currently has no way to choose between audio drivers, only one IOAudio
driver instance at a time can run.

To play (output) sound data, IOAudio mixes together the data (obtained from
NXPlayStreams) into a circular DMA buffer. If a DMA transfer isn’t already in
progress, I0Audio invokes

startDMAForChannel:read:buffer:bufferSizeForinterrupts: (a

hardware-specific method). After the number of bytes specified by
bufferSizeForInterrupts has been transferred, the hardware interrupts; IOAudio
zeros out the just-transferred part of the buffer and puts more data into it, if possible.
In this way, DMA proceeds continuously until no more data is left to be transferred.
When no more data is left (all the NXPlayStreams have completed), IOAudio invokes
stopDMAForChannel:read:.

Note: The word “channel” has two meanings in sound-related API. It can refer to a
DMA channel, or to @ound channelA sound channel is a transmission path for
sound. IOAudio currently supports either 1 (mono) or 2 (stereo) sound channels for
each DMA transfer.

The sample rate, data encoding, and number of sound channels used for a DMA
transfer remain the same from the tigt@rtDMA... is invoked until the time
stopDMA... is invoked. Their values are taken from the first NXPlayStream
associated with the DMA transfer.

Recording sound data is similar to playing it. One DMA buffer exists for playing
sound, and one for recording it. The buffers can share a DMA channel, or they can
each have their own. Either way, IOAudio currently schedules transfers on only one
channel at a time; that is, simultaneous playback and recording isn’t allowed. In the
future, support may be added for using both channels simultaneously.

Warning: Currently, the DMA buffer size is 64KB for ISA-based systems and 128K for
EISA-based systems, and the interrupt interval is 8KB. You shmmtldepend on
either the size or number of these buffers—they will change in future releases.

Implementing a Subclass
Your subclass of IOAudio must implement the following methods:

» probe: (I0ODevice class method)

* reset

» startDMAForChannel:read:buffer:bufferSizeForinterrupts:
» stopDMAForChannel:read:

 interruptClearFunc (and its associated function)
 interruptOccurredForinput:forOutput:

* channelCountLimit

» getDataEncodings:count:

» getSamplingRatesLow:high:

» getSamplingRates:count:

Your subclass should implement the following methods if the hardware supports the
associated feature. For example, if your hardware supports loudness enhancement,
you should implemenipdateLoudnessEnhanced

» updateLoudnessEnhanced

» updatelnputGainLeft

» updatelnputGainRight

» updateOutputMute

* updateOutputAttenuationLeft

» updateOutputAttenuationRight

Besides implementing the methods listed above, you might also need to implement the
following:

» acceptsContinuousSamplingRates
» timeoutOccurred

Note: In the future, subclasses may be able to override methods that interpret
NXSoundParameterTags passed from user-level programs. This mechanism will
allow your subclass to interpret device-specific parameters.

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances - initfromDeviceDescription:

- free
- reset
Starting and stopping DMA - startDMAForChannel:read:buffer:
bufferSizeForinterru
pts:

- stopDMAForChannel:read:

Getting DMA buffer address and size
- getinputChannelBuffer:size:
- getOutputChannelBuffer:size:

Handling interrupts — interruptOccurredForinput:forOutput:
- interruptClearFunc

Getting notification of I/O thread difficulties
- timeoutOccurred

Getting and setting information about sound channels
- channelCountLimit
— isInputActive
- isOutputActive

Getting supported sampling rates
— acceptsContinuousSamplingRates
- getSamplingRates:count:
- getSamplingRatesLow:high:

Getting supported data encodings
- getDataEncodings:count:

Getting device settings — channelCount
- dataEncoding
- sampleRate

Determining what hardware settings are or should be
— inputGainLeft
- inputGainRight
— isOutputMuted
— isLoudnessEnhanced
— outputAttenuationLeft

— outputAttenuationRight

Setting hardware state — updatelnputGainLeft
- updatelnputGainRight
— updateOutputMute
— updateLoudnessEnhanced
— updateOutputAttenuationLeft
— updateOutputAttenuationRight

Instance Methods

acceptsContinuousSamplingRates
— (BOOL)acceptsContinuousSamplingRates

Returns NO. Drivers that accept continuous sampling rates, as opposed to accepting a
few, discrete sampling rates, should implement this method so that it returns YES. For
example, if a device has a low rate of 2000 Hz and a high rate of 44100 Hz and
supports every sampling rate in between, its implementation of this method should
return YES.

See also: - getSamplingRates; — getSamplingRatesLow:High:

channelCount
- (unsigned inghannelCount

Returns the number of sound channels to be used for the audio data that’s about to be
played or recorded. This value, which can be either 1 (for mono) or 2 (for stereo), is
determined during mixing and is set befetartDMAForChannel.... is invoked.

Note: The number of sound channels has nothing to do with the number of DMA
channels used by the device.

See also: - dataEncoding — sampleRate

channelCountLimit
— (unsigned inghannelCountLimit

Returns zero. Drivers must implement this method so that it returns either 1 (if only
mono is supported) or 2 (if both mono and stereo are supported).

See also: —channelCount

dataEncoding
— (NXSoundParameterTadgtaEncoding

Returns the data encoding to be used for the audio data that’s about to be played or
recorded. This value is determined during mixing and is set before
startDMAForChannel.... is invoked. Possible values (defined in the header file
soundkit/NXSoundParameterTags.h are currently
NX_SoundStreamDataEncoding_Linearl6, NX_SoundStreamDataEncoding_Linear8,
NX_SoundStreamDataEncoding_Mulaw8, and
NX_SoundStreamDataEncoding_Alaw8.

See also: - channelCount — sampleRate

free
- free

Frees the instance and returils

getDataEncodings:count:

- (void)getDataEncodings(NXSoundParameterTagejcodings
count:(unsigned int *humEncodings

Returns zero imumEncodingsSubclasses must override this method to supply an
array of supported data encodings. Possible values (defined in the header file
soundkit/NXSoundParameterTags.h are currently
NX_SoundStreamDataEncoding_Linearl6, NX_SoundStreamDataEncoding_Linear8,
NX_SoundStreamDataEncoding_Mulaw8, and
NX_SoundStreamDataEncoding_Alaw8. Below is an example of implementing this
method. Note that you don’t have to allocate memorgfmodingsit already has

enough space to hold all possible encodings.

- (void)getDataEncodings: (NXSoundParameterTag *)encodings
count:(unsigned int *)numEncodings

encodings[0] = NX_SoundStreamDataEncoding_Linear16;
encodings[1] = NX_SoundStreamDataEncoding_Linear8;
*numEncodings = 2;

}

getinputChannelBuffer:size:
- (void)getinputChannelBuffer: (void *)addresssize(unsigned int *pyteCount

Gets the starting address and size of the (already allocated) DMA buffer for the input
channel. This method allows the driver to access data in the audio buffer directly.

See also: - getOutputChannelBuffer:size:

getOutputChannelBuffer:size:
- (void)getOutputChannelBuffer:(void *)addresssize{unsigned int *pyteCount

Gets the starting address and size of the (already allocated) DMA buffer for the
output channel. This method allows the driver to access data in the audio buffer
directly.

See also: - getlnputChannelBuffer:size:

getSamplingRates:count:
- (void)getSamplingRates{int *)ratescount:(unsigned int *humRates

Returns zero imumRatesSubclasses must override this method to supply the
supported sampling ratesnatesarray, which has room for up to 256 entries. If the
driver supports continuous sampling rates, this method should return some common
sampling rates, as shown below.

- (void)getSamplingRates:(int *)rates
count:(unsigned int *)numRates
{

/* Return a few common rates */
rates[0] = 2000;

rates[1] = 8000;

rates[2] = 11025;

rates[3] = 16000;

rates[4] = 22050;

rates[5] = 32000;

rates[6] = 44100;

*numRates = 7;

}

See also: - acceptsContinuousSamplingRates- getSamplingRatesLow:High:

getSamplingRatesLow:high:
- (void)getSamplingRatesLow(int *)lowRatehigh:(int *) highRate
Returns zero itowRateandhighRate Subclasses must override this method to supply

their highest and lowest supported sampling rates. Here’s an example of
implementing this method.

- (void)getSamplingRatesLow:(int *)lowRate
high:(int *)highRate

*lowRate = 2000;
*highRate = 44100;

}

See also: - acceptsContinuousSamplingRates- getSamplingRates:

initFromDeviceDescription:
— initFromDeviceDescription:description

Initializes a newly allocated I0Audio instance. Subclasses don't generally override
this method; they merely invoke it in th@irobe: method. Subclasses perform
device-specific initialization in their implementation of tiesetmethod.

IOAudio’s implementation oinitFromDeviceDescription: invokessuper's version

of initFromDeviceDescription:, invokesattachinterruptPort , sets the interrupt

port to have a maximum backlog, and then performsa$et method. Next, it creates
and initializes the private objects that perform much of the driver’s work, creates
private ports, and forks threads to listen to requests on the ports. Finally, it invokes
registerDevice Returnail if initialization was unsuccessful; otherwise, returns the
IOAudio instance.

inputGainLeft
— (unsigned infpputGainLeft

Returns the general scaling factor that’'s applied to the left channel of the incoming
sound. This value can be anywhere from 0 to 32768, where 0 is no gain and 32768 is
maximum gain. User-level programs specify the gain using the Sound Kit. To support
input gain, you must implemenopdatelnputGainLeft andupdatelnputGainRight.

See also: - inputGainRight

inputGainRight
- (unsigned inipputGainRight

Returns the general scaling factor that's applied to the right channel of the incoming
sound. This value can be anywhere from 0 to 32768, where 0 is no gain and 32768 is
maximum gain. User-level programs specify the gain using the Sound Kit. To support
input gain, you must implemenpdatelnputGainLeft andupdatelnputGainRight.

See also: - inputGainLeft

interruptClearFunc
— (IOAudiolnterruptClearFun@)terruptClearFunc

Does nothing and returns zero. Subclasses must implement this method so that it
returns the address of a function that clears interrupts on the card. The function is
called only when the audio system needs to guarantee that your card has no pending
interrupts. If you don’t implement this method and function, your card is likely to
suffer from poor performance with some applications. The function runs at interrupt
level, so it must not block.

Here’s an example of implementing this method.

static void clearInterrupts(void)

/* Driver-specific code that clears the card’s interrupt
* register(s) goes here. */

- (I0AudiolnterruptClearFunc) interruptClearFunc

return clearinterrupts;

}

interruptOccurredForinput:forOutput:

— (void)interruptOccurredForinput: (BOOL *)servicelnput
forOutput: (BOOL *)serviceOutput

Notifies the instance that an interrupt occurred for its hardware. The IOAudio version
of this method generates an error message; each subclass must implement this
method.

The subclass implementation of this method should try to determine whether the
hardware really has interrupted. If so, this method should clear the card’s interrupt
state, seservicelnputo YES if the interrupt was for input, and setviceOutputo

YES if the interrupt was for output. (The valuesefvicelnputandserviceOutputare
initialized to NO.)

After invoking this method, IOAudio checks whether any more data is available for
DMA on the channels that require service. If none is available,
stopDMAForChannel:read: is invoked. IOAudio always invokes this method from
the 1/0O thread.

isInputActive
- (BOOL)isInputActive

Returns YES if data is being read from the hardware using DMA; otherwise, returns
NO.

See also: - isOutputActive

isLoudnessEnhanced
- (BOOL)isLoudnessEnhanced

Returns YES if loudness is enhanced; otherwise, returns NO. Loudness enhancement
refers to the ability of some hardware to help compensate for the decreased
sensitivity of the human ear by boosting the gain at low and high frequencies as the
volume is decreased. User-level programs specify whether to use loudness
enhancement with the NX_SoundDeviceOutputLoudness parameter. To support
loudness enhancement, you must implenupaiateLoudnessEnhanced

isOutputActive
- (BOOL)isOutputActive

Returns YES if data is being sent to the hardware using DMA; otherwise, returns NO.

See also: -—islnputActive

isOutputMuted
- (BOOL)isOutputMuted

Returns YES if output is muted; otherwise, returns NO. The user can mute audio
output by holding down the Command key and pressing the Delete key. User-level
programs can mute output using the Sound Kit.

See also: - updateOutputMute

outputAttenuationLeft

— (int)outputAttenuationLeft
Returns the attenuation setting of the left channel of the device. The user modifies the
left and right attenuation simultaneously using the Volume slider in the Preferences
application or with the Insert and Delete keys on the keyboard. User-level programs

can specify the attenuation using the Sound Kit. The range is -84 decibels (inaudible)
to O decibels (no attenuation).

See also: - updateOutputAttenuationLeft, — outputAttenuationRight

outputAttenuationRight

- (int)outputAttenuationRight

Returns the attenuation setting of the right channel of the device. The user modifies
the left and right attenuation simultaneously using the Volume slider in the
Preferences application or with the Insert and Delete keys on the keyboard.
User-level programs can specify the attenuation using the Sound Kit. The range is -84
decibels (inaudible) to 0 decibels (no attenuation).

See also: - updateOutputAttenuationRight, — outputAttenuationLeft

reset
— (BOOL)reset

Generates an error message and returns NO. Subclasses must implement this method
so that it resets and initializes the hardware. This method is invoked from
initFromDeviceDescription:, as described above.

This method should initialize basic information by invoksggName:and
setDeviceKind: It should then check whether its interrupt (IRQ) and DMA channels
(all obtained from its I0ODeviceDescription) have valid values. After initializing the
hardware, this method should disable its DMA channels and then set any DMA
parameters necessary, such as the transfer width.

This method should return YES on success; otherwise, it should return NO, which will
causeanitFromDeviceDescription: to returnnil .

See also: - initFfromDeviceDescription:, — setName:(I0Device),—-
setDeviceKind: (I0Device)

sampleRate
- (unsigned inampleRate
Returns the sample rate to be used for the audio data that’s about to be played or

recorded. This value is determined during mixing and is set before
startDMAForChannel.... is invoked.

See also: - channelCount — dataEncoding

startDMAForChannel:read:buffer:bufferSizeForinterrupts:

- (BOOL)startDMAForChannel: (unsigned infpcalChannel
read:(BOOL)isRead
buffer: IODMABuffer)buffer
bufferSizeForInterrupts: (unsigned infyufferSize

Generates an error message and returns NO. Subclasses must override this method.

This method should perform DMA after configuring the hardware to reflect the values
returned bysampleRate dataEncoding andchannelCount The DMA should be set

up so that it generates an interrupt after ebeifferSizebyte interval. lfisReadis

YES, then the DMA is from the card to memory; otherwise, DMA is from memory to
the card. See the example IOAudio driver for an implementation of this method.

IOAudio invokes this method from the 1/O thread. You should never invoke this
method in an IOAudio subclass implementation.

This method should return YES if it started DMA successfully; otherwise, it should
return NO.

See also: - startDMAForBuffer.channel (IODirectDevice architecture-specific
category)- enableChannel(IODirectDevice architecture-specific category),
enableAllinterrupts (IODirectDevice architecture-specific category)

stopDMAForChannel:read:
- (void)stopDMAForChannel:(unsigned infpcalChannefread:(BOOL)isRead

Generates an error message. Subclasses must override this method.

This method should disable the specified DMA channel, disable interrupts, and do
anything else necessary to stop the DMA in progredsaaiChannel See the
example I0Audio driver for an implementation of this method.

IOAudio invokes this method from the 1/O thread. You should never invoke this
method in an IOAudio subclass implementation.

This method is invoked when an interrupt occurs and no more data is available to be
transferred. It's also invoked any time tstartDMAForChannel:... returns NO.

See also: - startDMAForChannel:read:buffer:bufferSizeForinterrupts: , —
disableChannel(IODirectDevice architecture-specific category),
disableAllinterrupts (IODirectDevice architecture-specific category)

timeoutOccurred
- (void)timeoutOccurred

Notifies the instance that although a DMA transaction is in progress, no interrupts
have been detected for a long time (currently one second). The IOAudio version of
this method does nothing; each subclass can implement it or not.

The subclass implementation of this method might reset the hardware. IOAudio
invokes this method from the 1/O thread.

updatelnputGainLeft

— (void)updatelnputGainLeft
Does nothing. Subclasses should implement this method so that it updates the
hardware to the value returnedibputGainLeft. You generally have to convert the

device-independent value returneditpyutGainLeft to the appropriate value for
your device.

- (void) updatelnputGainLeft

/* Convert gain (0 - 32768) into attenuation (0 - 31). */
unsigned int gain = [self inputGainLeft] / 1057,

setinputAttenuation(MICROPHONE, LEFT_CHANNEL,
(unsigned char) gain);
setinputAttenuation(EXTERNAL_LINE_IN, LEFT_CHANNEL,
(unsigned char) gain);
}

IOAudio invokes this method from the 1/O thread.

See also: - updatelnputGainRight

updatelnputGainRight

— (void)updatelnputGainRight
Does nothing. Subclasses should implement this method so that it updates the
hardware to match the value returnedriputGainRight. You generally have to

convert the device-independent value returnetshpytGainRight to the appropriate
value for your device. IOAudio invokes this method from the 1/O thread.

See also: - updatelnputGainLeft

updateLoudnessEnhanced
- (void)updateLoudnessEnhanced

Does nothing. Subclasses that support loudness enhancement should implement this
method so that it updates the hardware to match the value returned by
isLoudnessEnhancedlOAudio invokes this method from the 1/O thread.

updateOutputAttenuationLeft
- (void)updateOutputAttenuationLeft

Does nothing. Subclasses should implement this method so that it updates the

hardware to match the value returnedbyputAttenuationLeft. You generally have
to convert the device-independent value returnedupyutAttenuationLeft to the
appropriate value for your device. Here's an example of implementing this method.

- (void) updateOutputAttenuationLeft

/* Get the software value and convert it from the software
range

* (0 - -84) to the device range (0 - 31, for this card). */

unsigned int attenuation = [self outputAttenuationLeft] + 84;

attenuation = ((attenuation * 10)/27);

/* Device-specific code sets the output attention of the left
* sound channel to the value of the attenuation variable. */

}
IOAudio invokes this method from the 1/O thread.

See also: - updateOutputAttenuationRight

updateOutputAttenuationRight

- (void)updateOutputAttenuationRight
Does nothing. Subclasses should implement this method so that it updates the
hardware to match the value returnedbyputAttenuationRight. You generally
have to convert the device-independent value returnediipytAttenuationRight to

the appropriate value for your device. IOAudio invokes this method from the 1/0O
thread.

See also: - updateOutputAttenuationLeft

updateOutputMute
- (void)updateOutputMute
Does nothing. Subclasses should implement this method so that it mutes the output if

isOutputMuted returns YES and unmutes the outpus@utputMuted returns NO.
IOAudio invokes this method from the I/O thread.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OConfigTable

Inherits From: Object

Declared In: driverkit/IOConfigTable.h

Class Description

IOConfigTable is used at both kernel and user level to get configuration information
about particular devices and the system as a whole. Which IOConfigTables a
software module can obtain, as well as the way it obtains them, depends on whether
the module is a driver and whether it's at user or kernel level.

IODevices inside and outside the kernel can get their own I0ConfigTables using
IODeviceDescription’sonfigTable method. User-level programs can use the
methodsewForDriver:unit: , newDefaultTableForDriver:,

tablesForBootDrivers, andtablesForinstalledDrivers to get IOConfigTables for
specific drivers. Both user-level and kernel-level modules can use
newFromSystemConfigto get an IOConfigTable that describes the system-wide
configuration.

Each 10ConfigTable describes one hardware device. Thus, each I0ConfigTable
(except the system-wide one) corresponds to one IODevice object, which may or may
not exist at the time the IOConfigTable is created. At least one I0ConfigTable can be
created for each driver that’s listed in the system-wide IOConfigTable as an active or
boot driver. Specifically, each IOConfigTable corresponds tmstancen.table file

in the driver’s bundle. See Chapter 4, “Configuring Drivers,” for more information on
driver bundles.

Note: From an IODevice’s viewpoint, its IOConfigTable doesn’t change. The
IOConfigTable keeps the values that were in the correspoitBtancen.table

when the driver was loaded. To see changéssiiancen.table, the driver must be
reloaded. However, the user-level version of driver IOConfigTables can be
synchronized with the correspondilmgtancen.table at any time. This means that a
user-level program might see different values in a driver’'s IOConfigTable than the
driver sees.

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances + newForDriver:unit:
+ newDefaultTableForDriver:
+ newFromSystemConfig
+ tablesForBootDrivers
+ tablesForlInstalledDrivers

- free
Getting information — valueForStringKey:
Getting the driver bundle — driverBundle

Class Methods

newDefaultTableForDriver:unit:
+ newDefaultTableForDriver: (const char ®riverName

Creates, if necessary, and returns the default IOConfigTable for the specified driver.

ThedriverNamecorresponds to the value returned by IODevioae class
method.

Note: This method can be used only by user-level programs.

newForDriver:unit:
+ newForDriver: (const char *riverNameunit: (int)unit

Creates, if necessary, and returns the I0ConfigTable for the specified driver and unit.
ThedriverNameandunit values correspond to the values returned by IODevice’s
name class method anghit instance method, respectively.

Note: This method can be used only by user-level programs.

newFromSystemConfig
+ newFromSystemConfig
Creates, if necessary, and returns the I0ConfigTable describing the system-wide

configuration. This IOConfigTable’s values are initialized at boot time, and don’t
change until the system is rebooted.

tablesForBootDrivers
+ (List *)tablesForBootDrivers

Creates, if necessary, and returns I0ConfigTables, one for each device that was
loaded into the system at boot time. This method might return some 10ConfigTables
that aren’t returned bigblesForinstalledDrivers, since this method detects drivers
that were loaded due to user action at boot time.

Note: This method can be used only by user-level programs.

tablesForinstalledDrivers
+ (List *)tablesForInstalledDrivers

Creates, if necessary, and returns I0ConfigTables, one for each device that has been
loaded into the system. This method knows only about those devices that are specified
with the system configuration table’s “Active Drivers” and “Boot Drivers” keys. It
doesnot detect drivers that were loaded due to user action at boot time. To get the
IOConfigTables for those drivers, you can tedd@esForBootDrivers.

Note: This method can be used only by user-level programs.

Instance Methods

driverBundle
— (NXBundle *)driverBundle

Creates, if necessary, and returns the NXBundle corresponding to the driver this
IOConfigTable describes. The bundle corresponds to the driceri§ig directory
under/usr/Devices

Note: This method can be used only by user-level programs.

free
- free

Frees the object and retunm.

valueForStringKey:
— (const char ®alueForStringKey:(const char ey

Returns the string value associated with the specified key. Kernel-level drivers should
free this string when it’s no longer needed, udieg@String:. User-level programs

shouldnot free this string.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODevice
Inherits From: Object
Declared In: driverkit/IODevice.h

Class Description

IODevice is an abstract class that is the superclass of all device driver classes.
Functionality provided by I0Device includes:

» Standard driver startup and connection to driver objects

» Standard ways of getting and setting driver parameters

» Getting and setting standard information such as the instance’s unit number
* Mapping IOReturn values to strings and to UNIX error numbers

* Adding and removing drivers from UNIX device switch tables

» Getting the Driver Kit version that the IODevice was compiled under

Getting and Setting Parameters

The 10Device methodgetCharValues:forParameter:count;,
getintValues:forParameter:count:, setintValues:forParameter:.count:, and
setCharValues:forParameter:count: provide a general, extensible means for
user-level programs to get and set device-specific parameters for drivers that reside
in the kernel. The general scheme is as follows:

* A parameter’s value is either an arrayiras or an array ofhars. The maximum
number of elements in a parameter array is
IO0_MAX_PARAMETER_ARRAY_LENGTH, a system constant (currently 512
though you shouldn’t count on this value).

» Parameters are specified with human-readable strings. For example, the
parameter for getting an I0Device’s unit number is named “IOUnit” and defined
as the constant IO_UNIT.

* Any subclass of IODevice can define any parameters it wishes. Any class that
does so must implement the appropriate methods by which the parameters can be
accessedgetintValues:..., for example). If such a method is invoked with a
parameter name that the class does not recognize, the method invocation should be
passed up teuper. If no classes recognize the parameter name, I0Device returns
IO_R_UNSUPPORTED.

* By sending messages to an IODeviceMaster object, a user program can find the
desired instance of a device driver and get or set device-specific parameters.

Implementing a Subclass

Subclasses of IODevice that are indirect or direct device drivers must implement the
following methods:

+ deviceStyle
+ probe:
- initFromDeviceDescription:

Indirect device drivers also need to implementrégiredProtocols class method.

Note: If your class’s direct superclass isn’t IODevice, check the documentation for
the superclass—it may implement some or all of these methods for you.

During initialization, indirect and direct drivers must invoke the following methods:

- registerDevice
- setDeviceKind:
— setLocation:

- setName:

TheregisterDevicemethod should be invoked at the end of initialization. Generally,
indirect and direct drivers also invoketUnit:.

Instance Variables

None declared in this class.

Method Types

Creating, initializing, and freeing instances
+ probe:
—init
— initFromDeviceDescription:
- free

Registering the class + deviceStyle
+ registerClass:
+ unregisterClass:
+ requiredProtocols

Registering the instance - registerDevice
— unregisterDevice

Getting and setting standard information
- setDeviceKind:
- deviceKind
— setLocation:
— location
— setName:
- name
- setUnit:
- unit
Converting an IOReturn value + stringFromReturn:
- stringFromReturn:
— errnoFromReturn:
Adding and removing the driver from UNIX device switch tables
+

addToBdevswFromDescription:open:close:stra
tegy: dump:psize:isTape:

addToCdevswFromDescription:open:close:rea
d:write:
ioctl:stop:reset:select:mmap:getc:putc:

+ blockMajor

+ characterMajor

+ removeFromBdevsw

+ removeFromCdevsw

+ setBlockMajor:

+ setCharacterMajor:

Getting the Driver Kit version of the IODevice
+ driverKitVersion
+ driverKitVersionForDriverNamed:
Getting and setting parameter values
- setCharValues:forParameter:count:
- getCharValues:forParameter:count:
- setIntValues:forParameter:count:
- getintValues:forParameter:count:

Class Methods

addToBdevswFromDescription:open:close:strategy:dump:psize:isTape:

+ (BOOL)addToBdevswFromDescription{id)deviceDescription
open:(I0SwitchFuncyppenFunc
close(lIOSwitchFuncgloseFunc
strategy:(IOSwitchFuncstrategyFunc
dump: (IO0SwitchFunciilumpFunc
psize(IOSwitchFuncpsizeFunc
isTape:(BOOL)isTape

Adds the specified values to thdevswtable. Drivers that have UNIX block entry
points should use this method during initialization.

The major number to use is taken from the value of the “Block Major” key in the
class’s configuration table. If “Block Major” isn’t specified, the first available major
number is used. If the entry is successfully added, this method invokes
setBlockMajor:.

If the entry was successfully added, this method returns YES; otherwise, it logs an
error message and returns NO.

See also: + blockMajor , +
addToCdevswFromDescription:open:close:read:write:
ioctl:stop:reset:select:mmap:getc:putc:

addToCdevswFromDescription:open:close:read:write:ioctl:stop:reset:s
elect:mmap:getc:putc:

+ (BOOL)addToCdevswFromDescription(id)deviceDescription
open:(I0SwitchFuncdpenFunc
close(IOSwitchFuncgloseFunc
read:(IOSwitchFuncjeadFunc
write: (IOSwitchFuncivriteFunc
ioctl: (I0SwitchFuncioctlFunc
stop:(I0SwitchFunctopFunc
reset(IOSwitchFunchesetFunc
select(IOSwitchFunc3electFunc
mmap:(I0SwitchFuncinmapFunc
getc:(I0SwitchFuncyetcFunc
putc: (IOSwitchFuncputcFunc

Adds the specified values to the cdevsw table. Drivers that have UNIX character
entry points should use this method during initialization.

The major number to use is taken from the value of the “Character Major” key in the
class’s configuration table. If “Character Major” isn’t specified, the first available
major number is used. If the entry is successfully added, this method invokes
setCharacterMajor:.

If the entry was successfully added, this method returns YES; otherwise, it logs an
error message and returns NO.

See also: + characterMajor, +
addToBdevswFromDescription:open:close:strategy:
dump:psize:isTape:

blockMajor
+ (int)blockMajor
Returns the block major number associated with this driverl drthis driver has no

block major number. The block major number is set us@iBlockMajor:, which is
invoked byaddToBdevswFromDescription...

characterMajor
+ (int)characterMajor
Returns the character major number associated with this drivet,ibthis driver

has no character major number. The character major number is set using
setCharacterMajor:, which is invoked byaddToCdevswFromDescription...

deviceStyle
+ (IODeviceStyledleviceStyle

Implemented by subclasses to return the basic style of driver (I0_DirectDevice,
IO_IndirectDevice, or I0_PseudoDevice). The meaning of direct, indirect, and pseudo
device drivers is discussed in Chapters 1 and 2.

See also: + deviceStyle(IODirectDevice)

driverKitVersion
+ (int)driverKitVersion
Returns the version of the currently running DriverKit objects. The Driver Kit

compares this value to the value returneditiyerKitVersionForDriverNamed: to
determine whether the driver is compatible with the driver environment.

driverKitVersionForDriverNamed:
+ (int)driverKitVersionForDriverNamed: (char *)driverName

Returns the version of the Driver Kit that the specified driver was compiled for. The
Driver Kit compares this value to the value returnedifiyerKitVersion to
determine whether the driver is compatible with the driver environment.

probe:
+ (BOOL)probe:(id)deviceDescription

Does nothing and returns NO. This method is invoked by the kernel (in the context of
the kernel 1/0 task) to conditionally instantiate an instance of an IODevice subclass.

This method should be implemented by every direct and indirect driver. It should
determine whether it needs to instantiate itself, examining the hardware if
appropriate. It should then allocate and initialize all the necessary instances for the
specifieddeviceDescriptionShould return YES if any IODevice objects were
created; otherwise, this method should return NO.

See Chapter 1 for information on wherobe: is invoked.

See also: - initFromDeviceDescription:

registerClass:
+ (void)registerClassaClass

Adds the specified class to the kernel list of device driver classes.

See also: +unregisterClass:

removeFromBdevsw
+ (BOOL)emoveFromBdevsw

Removes the driver’'s entry from the bdevsw table. This method finds the driver’s
entry in the table by invokiniglockMajor . If blockMajor is -1, this method does
nothing and returns NO. Otherwise, this method sets the block major numiier to
(usingsetBlockMajor:) and returns YES.

removeFromCdevsw
+ (BOOL)emoveFromCdevsw

Removes the driver’'s entry from the cdevsw table. This method finds the driver’s

entry in the table by invokingharacterMajor . If characterMajor is -1, this method

does nothing and returns NO. Otherwise, this method sets the character major number
to —1 (usingsetCharacterMajor:) and returns YES.

requiredProtocols
+ (Protocol **yequiredProtocols

Returns NULL. Indirect device drivers should implement this method to return a
NULL-terminated list of the protocols to which associated drivers must conform.
Kernel-level indirect devices must implement this.

setBlockMajor:
+ (void)setBlockMajor: (int)bmajor

Sets the driver’s block major number. You usually don’t have to invoke this, since it's
invoked byaddToBdevswFromDescription:...

setCharacterMajor:
+ (void)setCharacterMajor: (int)cmajor

Sets the driver’s character major number. You usually don’t have to invoke this, since
it's invoked byaddToCdevswFromDescription:...

stringFromReturn:
+ (const char ®tringFromReturn: (IOReturnyeturnValue

Returns a text string that describes the specified IOReturn value.

See also: - stringFromReturn:

unregisterClass:
+ (void)unregisterClassclassld

Removes the specified class from the kernel list of device driver classes. This method
is invoked when a class is being removed from the address space of a program such
as the kernel.

See also: + registerClass:

Instance Methods

deviceKind

— (const char *JeviceKind

Returns a string that identifies the object in general terms. For example, IOSCSIDisk
objects return “SCSIDisk”. See the descriptiosetDeviceKind: for more
information

See also: - setDeviceKind:

errnoFromReturn:
— (int)errnoFromReturn: (IOReturnyeturnValue

Returns a UNIX error number that corresponds to the specified IOReturn value.
Subclasses that add additional IOReturn values should override this method and send
anerrnoFromReturn: to superfor IOReturn values that the subclass doesn’'t handle.

free
- free

Frees resources used by the IODevice and retilrns

getCharValues:forParameter:count:

- (IOReturnpetCharValues{unsigned char yrray
forParameter: (IOParameterNamparameter
count:(unsigned int *gount

Gets the array of character values associatedpaithmeter IODevice accepts the
following character parameters: I0_CLASS_NAME (which returns [[self class]
name]), IO_DEVICE_NAME (which returns [self name]), and IO_DEVICE_KIND
(which returns [self deviceKind]).

Subclasses should override this method if they support parameters not understood by
the superclass. Here’'s an example of overriding this method:

- (IOReturn)getCharValues : (unsigned char *)parameterArray
forParameter : (IOParameterName)parameterName
count : (unsigned int *)count

const char *param;
unsigned int length;
unsigned int maxCount = *count;

if(strcmp(parameterName, my_PARAMETER_NAME) == 0){
param = _myParameter; /* _myParameter is an instance var
*/
length = strlen(param);
if(length >= maxCount) {

length = maxCount - 1;

*count = length + 1,
strncpy(parameterArray, param, length);
parameterArray[length] = "\0’;

return IO_R_SUCCESS;

else {
[* Pass parameters we don'’t recognize to our superclass. */
return [super getCharValues:parameterArray
forParameter:parameterName count:count];
}

}
Returns IO_R_SUCCESSparameteris a valid parameter with character values that
can be read; otherwise, returns IO_R_UNSUPPORTED.

See also: - getintValues:forParameter:count:, —
setCharValues:forParameter:count:

getintValues:forParameter:count:

— (IOReturnpetintValues:(unsigned int *array
forParameter: (IOParameterNamparameter
count:(unsigned int *gount

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to return (array) the array of integer values associated wahameter
SeegetCharValues:forParameter:count: for an example of implementing this kind
of method. This method should return IO_R_SUCCE$far&meteris a valid
parameter with integer values that can be read; otherwise, it should return
IO_R_UNSUPPORTED.

See also: - getCharValues:forParameter:count:, —
setintValues:forParameter:count:

init

—init
Initializes and returns a newly allocated IODevice. Retaetisf successful;
otherwise, returnail .

Note: Direct and indirect drivers should uséFromDeviceDescription: instead
of this method.

initFromDeviceDescription:
- initFromDeviceDescription:deviceDescription

Does nothing and returself. Subclasses that implement this method should have it
initialize and return a newly allocated instance of the subclass, using the information
from deviceDescriptionThis method should retuml on error.

See also: - initFromDeviceDescription: (IODirectDevice)

location

— (const char #pcation

Returns the device-specific location of the IODevice—for example, “0xf7f04000".
See the description gktLocation: for information on how this location is used.

See also: - setlLocation:

name
— (const char lame

Returns the device-specific name of the IODevice—for example, “sd0a”. See the
description osetName:for information on how the name is used.

See also: - setName:

registerDevice
- registerDevice

Registers the IODevice in the current name space and adds a string to the system log
that announces the device’s registration. The IODevice must be ready to perform I/O,
its name must have been set already usatiyame; and its location (set with
setLocation:) must be either valid or NULL.

This method also probes all indirect IODevices that require this object’s protocols,
giving them a chance to connect to this object.

Each IODevice should invoke this method at the end of its initialization. Reseifns
Note: 1/O can begin before this method returns.

See also: - unregisterDevice

setCharValues:forParameter:count:

- (IOReturnyetCharValues(unsigned char grray
forParameter: (IOParameterNamparameter

count:(unsigned inyount

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to set (froarray) the array of character values associated with
parameter SeegetCharValues:forParameter:.count: for an example of

implementing this kind of method. This method should return IO_R_SUCCESS if
parameteris a valid parameter with character values that can be written; otherwise,
it should return I0_R_UNSUPPORTED.

See also: - setIntValues:forParameter:count:, —
getCharValues:forParameter:count:

setDeviceKind:
- (void)setDeviceKind{const char ®ype

Sets a string that identifies the object in general terms. For example,
IOFrameBufferDisplay objects have a device kind of “Linear Framebuffer”. The

string should be no longer than IO_STRING_LENGTH characters. The standard
parameter name 10_DEVICE_KIND refers to this string.

See also: - deviceKind

setintValues:forParameter:count:

— (IOReturn¥etintValues:(unsigned int *array
forParameter: (IOParameterNamparameter
count:(unsigned inyount

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to set (froarray) the array of character values associated with
parameter SeegetCharValues:forParameter:count: for an example of
implementing this kind of method. This method should return I0_R_SUCCESS if
parameteris a valid parameter with integer values that can be written; otherwise, it
should return IO_R_UNSUPPORTED.

See also: - setCharValues:forParameter:count; —
getintValues:forParameter:count:

setLocation:
— (void)setLocation:(const char ¥pcation
Sets the device-specific location of the IODevice—for example, “0xf7f04000". If the

location is irrelevant, its value should be set to NULL. The location is used in the
system log when this object is registered and unregistered.

See also: -location

setName:
- (void)setName(const char *hame

Sets the device-specific name of the IODevice—for example, “sd0a”. The name
should be no longer than I0_STRING_LENG¥FH. characters.

The specified name is used to identify this instance. For example, it's used in the
system log when this object is registered and unregistered, and it's used by the UNIX
commandostat. The name is also used by user-level programs to find this object,
using the IODeviceMaster method

lookUpByDeviceName:objectNumber:deviceKind: The standard parameter name
IO_DEVICE_NAME refers to this string.

See also: —name

setUnit:
- (void)setUnit:(unsigned intynit

Sets the I0ODevice’s unit number, a device-specific number that can be used like a
UNIX minor number.

See also: - unit

stringFromReturn:
— (const char ®tringFromReturn: (IOReturnyeturnValue

Returns the text string that corresponds to the specified IOReturn value. Subclasses
that add additional IOReturn values should override this method and invoke
stringFromReturn: against the superclass for IOReturn values that the subclass
doesn’t handle.

See also: + stringFromReturn:

unit
- (unsigned int)nit

Returns the IODevice’s unit number, a device-specific number that can be used like a
UNIX minor number.

See also: - setUnit:

unregisterDevice
- (void)unregisterDevice

Removes the I0Device from the current name space.

See also: -registerDevice

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODeviceDescription

Inherits From: Object

Declared In: driverkit/lIODeviceDescription.h

Class Description

IODeviceDescription objects are used to encapsulate information about an I0Device
object. Usually, you need only to pass around IODeviceDescription objects, without
creating them, subclassing them, or sending messages to them. The main purpose of
an I0DeviceDescription object is to describe an I0DirectDevice. However,
IODeviceDescriptions are also usegatibe: time to describe indirect drivers
(specifically, to specify the IODirectDevice that the indirect driver might want to

work with).

Each architecture has its own subclass of I0ODeviceDescription that contains
architecture-specific information:

Architecture IODeviceDescription Subclass
ISA and EISA Intel-based IOEISADeviceDescription
PCI IOPCIDeviceDescription
PCMCIA IOPCMCIADeviceDescription

Instance Variables

None declared in this class.

Method Types

Getting and setting the list of interrupts
— interrupt
— interruptList
— numinterrupts
- setinterruptList:num:

Getting and setting the list of memory ranges

— memoryRangeList
- numMemoryRanges
- setMemoryRangeList:num:

Getting and setting the port — devicePort
- setDevicePort:

Getting and setting the direct device
- directDevice
- setDirectDevice:

Getting and setting the configuration table
- configTable
- setConfigTable:

Instance Methods

configTable
- (IOConfigTable *ronfigTable

Returns the table of configuration information for this driver instance.

See also: - setConfigTable:

devicePort
— (port_tdevicePort
Returns the device port associated with the device. This port is used by the Driver Kit.

You shouldn’t need to invoke this method if your driver uses only supported Driver Kit
API.

Holding send rights to the device port gives a task rights to access a device’s
registers, to program its DMA channel, and receive interrupt notification. The kernel
responds to requests sent on this port to provide these services to the requesting task.
Device ports are created early in system initialization and passed out to the
appropriate device drivers at configuration time.

See also: - setDevicePort:

directDevice
— directDevice

If the driver instance described by IODeviceDescription is an indirect device driver,

this method returns the 10Device object to which this driver instance is connected.
Usually, the returned object is an I0DirectDevice; however, this isn’t required. If this
IODeviceDescription’s object is a direct or pseudo device driver, this method returns
nil.

See also: - setDirectDevice:

interrupt
- (unsigned ininterrupt

Returns the first interrupt (IRQ) associated with this device. The return value is
undefined if this device has no interrupts associated with it.

See also: - interruptList , — numinterrupts , — setinterruptList:num:

interruptList
— (unsigned int *nterruptList

Returns all the interrupts (IRQs) associated with this device. You can get the number
of items in the returned array by invokingminterrupts . You should never free the
data returned by this method.

See also: —interrupt , — numinterrupts , — setinterruptList:num:

memoryRangeList
- (IORange *nemoryRangeList

Returns all the memory ranges associated with this device. You can get the number of
items in the returned array by invokingmMemoryRanges You should never free
the data returned by this method.

See also: - numMemoryRanges — setMemoryRangeList:num:

numinterrupts
— (unsigned injuminterrupts

Returns the total number of interrupts (IRQs) associated with this device.

See also: —interrupt, —interruptList , — setinterruptList:num:

numMemoryRanges
- (unsigned infjumMemoryRanges

Returns the total number of memory ranges associated with this device.

See also: — memoryRangeList — setMemoryRangeList:num:

setConfigTable:
- (void)setConfigTable(IOConfigTable *fonfigTable

Sets the table of configuration information for this driver instance. In normal use of
the Driver Kit, you should never invoke this method.

See also: - configTable

setDevicePort:
— (void)setDevicePort(port_tdevicePort

Sets the device port for this driver instance. In normal use of the Driver Kit, you
should never invoke this method.

See also: - devicePort

setDirectDevice:
- (void)setDirectDevicedirectDevice

RecorddirectDeviceas the IODevice object that is connected to the driver instance
that this IODeviceDescription describ&s normal use of the Driver Kit, you should
never invoke this method.

See also: —directDevice

setinterruptList:num:

- (IOReturnyetinterruptList: (unsigned int *aList num: (unsigned
int)numinterrupts

Sets the array and number of interrupts (IRQs) associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: —interrupt, —interruptList , — numinterrupts

setMemoryRangeList:num:

- (IOReturnyetMemoryRangeList{IORange *aList num:(unsigned
intjnumMemoryRanges

Sets the array and number of memory ranges associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: - memoryRangeList — numMemoryRanges

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODevicelnspector

Inherits From: Object

Conforms To: IOConfigurationinspector
Declared In: driverkit/lODevicelnspector.h

Class Description

This class provides the default Configure inspector used for devices.
IODevicelnspector lets the user select which resources—DMA channels, interrupts,
I/O ports, and memory ranges—a device should use. |IODevicelnspector also provides
an accessory View, in which you can put additional controls.

You shouldn’t need to use this class unless you're providing an accessory View. To
provide an accessory View, you should first create the View in Interface Builder and
then subclass IODevicelnspector so that it displays the View.

Note: When creating an accessory View, try to keep it no more than 80 pixels high.
Configure’s window is already about 400 pixels high; adding more than 80 pixels to it
means that the window won't fit on the smallest supported screens (which are 640
pixels wide by 480 high).

Implementing a Subclass

To provide an accessory View, you should create an IODevicelnspector subclass that
does the following:

* Overrides Object'sit method so that it loads the nib file that contains the
accessory View by invokinigadMainNibFile and initializing (but not displaying)
the interrupt and DMA matrices.

* Implement thesetTable: method so that it invokdsuper setTable:] invokes
setAccessoryViewto specify its accessory View, and initializes the accessory
View

* Modifies the configuration table as necessary, in response to the user’s actions in

the accessory View. For example, you might need to insert a key in the
configuration table.

Here’s an example of changing the configuration table when the user operates a

control. In this case, the control sendsbanectorChanged:message to its target
(which is the 10Devicelnspector subclass). Tdge instance variable is the
NXStringTable corresponding to the configuration table.

- connectorChanged:sender

[table insertkey:CONNECTOR
value:connectorType[sender selectedTag]];
return self;

}

If you have localizable strings displayed in your accessory View, be careful to use the
strings from the driver’s configuration bundle, not from the Configure application’s
bundle. Here’s an example taken from an IODevicelnspector subdtassisethod.

#define LOCAL_CONNECTOR_STRING(bundle)
NXLocalStringFromTableInBundle(NULL, bundle, "Connector", NULL,
"The interface connector on the EtherExpress16 adaptor which will
be used to access the network.")

char buffe[MAXPATHLEN];
NXBundle *myBundle = [NXBundle bundleForClass:[self class]];

[super init];
if ({ImyBundle getPath:buffer forResource:MYNAME of Type:NIB_TYPE])

[self free];
return nil;

}

if (\[NXApp loadNibFile:buffer owner:self withNames:NQO]) {
[self free];
return nil;

}
[connectorBox setTitle:LOCAL_CONNECTOR_STRING(myBundle)];

Instance Variables

id accessoryHoldey
id statusTitle;

id origWindow;

id dmaBox;

id dmaMatrix ;

id irgBox;

id irgMatrix ;

id memoryBox

id memoryController;
id portsBox;

id portsController;

id inspectionView,

id infoButton;

id infoPanel;

id infoText;

NXStringTable table;

int numinterrupts ;

int numChannels

int portRangelLength;

int memoryRangelLength

BOOL infoTextLoaded;

BOOL knowsDetails
IOConfigurationConflicportConflict ;
IOConfigurationConflictmemoryConflict;
IOConfigurationConflictotalConflict;

accessoryHolder View where the accessory View is placed

statusTitle
origWindow
dmaMatrix
dmaBox
irgMatrix
irgBox
memoryController
memoryBox
portsController
portsBox
inspectionView
infoButton
infoPanel
infoText

table
numinterrupts
numChannels

portRangelLength

At top of window

For getting contentView

Buttons for DMA channels

In case no DMA channels

Buttons for IRQ levels

In case no IRQ levels

Handles ranges

In case no mapped memory
Handles ranges

In case no port addresses

The inspection View

Brings up device info panel
Contains text about the device

Text object for info file

The NXStringTable we'’re editing
How many IRQs to configure
How many DMA channels to configure

Number of 1/O ports in the range

memoryRangeLength Length of the memory map

infoTextLoaded YES if the info panel has been loaded
knowsDetails YES if we already know the device’s requirements
portConflict I/O port conflict state

memoryConflict Memory range conflict state

totalConflict Overall conflict state

Adopted Protocols

IOConfigurationinspector — inspectionView
- resourcesChanged:
- setTable:

Method Types

Displaying the IODevicelnspector
- loadMainNibFile
- showilnfo:

Setting initial resource values -

setNuminterrupts:numChannels:portRangeLength:

memoryRangelengt
h:

Notification of resource changes — channelOrinterruptPicked:
- rangeDidChange:

Customizing the IODevicelnspector
— setAccessoryView:

Instance Methods

channelOrinterruptPicked:
- channelOrlinterruptPicked: sender
Notifies the receiver that a DMA channel or interrupt has been picked.

IODevicelnspector changes the appearance the associated button and updates the
configuration table, if appropriate. Retusef.

loadMainNibFile
- loadMainNibFile

Loads the nib file for the I0Devicelnspector. This method should be invokiedt by
Returnsnil on failure; otherwise, returrself.

rangeDidChange:
- rangeDidChangesender

Notifies the receiver that a range of I/O ports or memory has been changed. This
method updates the configuration table. Retggil

setAccessoryView:
- setAccessoryViewaView

AddsaViewto the IODevicelnspector’s View hierarchy. The inspector is
automatically resized to accommodatiéew Returnsself.

setNuminterrupts:numChannels:portRangelLength:
memoryRangeLength:

— setNuminterrupts: (int)numinterrupts
numChannels{int)jnumChannels
portRangelLength:(intjnumPorts
memoryRangeLength{int)numMaps

Invoked once bgetTable:to initialize the number of each kind of resource that the
device uses.

showlnfo:
- showlnfo:sender

Brings up a panel containing information about the device.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODeviceMaster
Inherits From: Object
Declared In: driverkit/IODeviceMaster.h

Class Description

IODeviceMaster is a class used by user-level programs to gain access to device

driver instances. To use IODeviceMaster, the program usedlabendinit

methods to obtain and initialize an I0DeviceMaster instance. It then attempts to get
the object number of the device driver instance using one tddkEp... methods. If
successful, it can use this object number to get and set parameters associated with the
driver instance.

Programs don’t need superuser privileges to get information from IODeviceMaster.
However, they do need superuser privileges to be able to set device information (with
thesetCharValues:....andsetIntValues: methods).

Here’s an example of using IODeviceMaster. It's taken fronDifieerinspector
directory located iMNextLibrary/Documentation/NextDev/Examples/DriverKit.

IOReturn ret;

I00bjectNumber objectNumber;

IOString kind,;

IOCharParameter value;

unsigned int count = I0_MAX_PARAMETER_ARRAY_LENGTH, unit = 0;
char name[80];

IODeviceMaster *devMaster;

I* Look up the test driver, using IODeviceMaster. */
devMaster = [IODeviceMaster newl];
sprintf(name, "%s%d", my_DEVICE_NAME, unit);
ret = [devMaster lookUpByDeviceName:name objectNumber:&objectNumber
deviceKind:&kind];
if (ret '=10_R_SUCCESS) { /* handle the error */
fprintf(stderr, "Lookup failed: %s\n",
[IODevice stringFromReturn:ret));
exit(-1);
} else { I* Successfully got the object number */

[* Get the value of the test driver’s parameter. */
ret = [devMaster getCharValues:value
forParameter:my_PARAMETER_NAME objectNumber:objectNumber
count:&count];
if (ret '=10_R_SUCCESS) { /* handle the error */
fprintf(stderr, "Failed to get parameter value: %s\n",
[IODevice stringFromReturn:ret]);

exit(-1);
} else /* Successfully got the parameter value */
printf("Parameter value: %s; count = %d\n", value, count);

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances + new
- free

Finding I0Device objects
lookUpByDeviceName:objectNumber:deviceKind:

lookUpByObjectNumber:deviceKind:deviceN
ame:

Getting and setting parameter values

getCharValues:forParameter:objectNumber:co
unt:

— getIintValues:forParameter:objectNumber:count:

setCharValues:forParameter:objectNumber:co
unt:

- setIntValues:forParameter:objectNumber:count:

Class Methods

new
+ new

Returns an IODeviceMaster object. An application has no more than one

IODeviceManager object, so this method either returns the previously created object
(if it exists) or creates a new one.

Instead ohew, usealloc andinit to create and initialize an instance:

[[lODeviceMaster alloc] init];

Instance Methods

free
- free

Does nothing; an IODeviceMaster should never be freed.

getCharValues:forParameter:objectNumber:count:

— (IOReturnpetCharValuesiunsigned char yrray
forParameter: (IOParameterNamparameter
objectNumber:(I0ObjectNumbembjectNumber
count:(unsigned int *ount

Gets the array of values associated \wahameterfor the IODevice object specified
by objectNumberreturns IO_R_SUCCESS. Unlessuntis specified to be 0, the
returned array contains no more tlzaointcharacters. On returopuntis set to the
number of characters in the array. You can obtain valuesbfectNumbeusing the
methodlookUpByDeviceName:objectNumber:deviceKind:

If objectNumbers larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. IfobjectNumberefers to an object number for a device driver
that’s no longer registered, this method returns 1I0_R_OFFLINEardEmeteris

invalid (it isn’t recognized by the 10Device instance to have character values that can
be read), this method returns IO_R_UNSUPPORTED.

See also: - getIntValues:forParameter:objectNumber:count:, -
setCharValues:forParameter:objectNumber:count:

getintValues:forParameter:objectNumber:count:

— (IOReturnpetintValues:(unsigned int *array
forParameter: (IOParameterNamparameter
objectNumber:(I00bjectNumberbjectNumber
count:(unsigned int *gount

Gets the array of values associated wahameterfor the I0Device object specified
by objectNumberreturns I0_R_SUCCESS. Unlessuntis specified to be 0, the
returned array contains no more tltamuntcharacters. On returopuntis set to the
number of characters in the array. You can obtain valuesjectNumbeusing the
methodlookUpByDeviceName:objectNumber:deviceKind:

If objectNumbers larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. IfobjectNumberefers to an object number for a device driver
that’'s no longer registered, this method returns I0_R_OFFLINtardmeters

invalid (it isn’t recognized by the 10Device instance to have integer values that can

be read), this method returns IO_R_UNSUPPORTED.

See also: - getCharValues:forParameter:objectNumber:count;, —
setIntValues:forParameter:objectNumber:count:

lookUpByDeviceName:objectNumber:deviceKind:

- (IOReturnjookUpByDeviceName(lOString)deviceName
objectNumber:(I0ObjectNumber *pbjectNumber
deviceKind:(IOString *)deviceKind

Gets the object number and descriptive string associated with the specified device
name. The name is device-specific; it's the same as the value the driver sets using
setName: Returns IO_R_SUCCESS if the lookup was successful. Otherwise, returns
IO_R_NO_DEVICE.

See also: - lookUpByObjectNumber:deviceKind:deviceName:

lookUpByObjectNumber:deviceKind:deviceName:

— (IOReturnjookUpByObjectNumber: (I00ObjectNumbembjectNumber
deviceKind:(IOString *)deviceKind
deviceName(lOString *)deviceName

Gets the descriptive strings associated with the I0Device specifiejdgtNumber
Returns I0O_R_SUCCESS if the lookup was successfabjdctNumbers larger than
the highest existing object number, returns I0_R_NO_DEVICéabjéctNumber
refers to an object number for a device driver that's no longer registered, returns
IO_R_OFFLINE.

See also: -lookUpByDeviceName:objectNumber:deviceKind:

setCharValues:forParameter:.objectNumber:count:

- (IOReturnyetCharValues(unsigned char grray
forParameter: (IOParameterNamparameter
objectNumber:(I00bjectNumbembjectNumber
count:(unsigned ingount

Sets the array of values associated wahameterfor the I0Device object specified
by objectNumberreturns I0_R_SUCCESS. Theuntargument specifies the
number of elements in the array. You can obtain valuesbfjectNumbeusing the
methodlookUpByDeviceName:objectNumber:deviceKind:

If objectNumbers larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. IfobjectNumberefers to an object number for a device driver

that’s no longer registered, this method returns 1I0_R_OFFLINRarameteris
invalid (it isn’t recognized by the 10Device instance to have character values that can
be written), this method returns IO_R_UNSUPPORTED.

See also: - setIntValues:forParameter:objectNumber:count:, —
getCharValues:forParameter:objectNumber:count:

setIntValues:forParameter:objectNumber:count:

— (IOReturnketintValues:(unsigned int *array
forParameter: (IOParameterNamparameter
objectNumber:(I0ObjectNumbembjectNumber
count:(unsigned ingount

Sets the array of values associated wahameterfor the I0Device object specified
by objectNumberreturns IO_R_SUCCESS. Theuntargument specifies the
number of elements in the array. You can obtain valuesbjectNumbeusing the
methodlookUpByDeviceName:objectNumber:deviceKind:

If objectNumbers larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. lfobjectNumberefers to an object number for a device driver
that's no longer registered, this method returns I0_R_OFFLINRarameteris

invalid (it isn’t recognized by the 10Device instance to have integer values that can
be written), this method returns I0_R_UNSUPPORTED.

See also: - setCharValues:forParameter:objectNumber:count; —
getintValues:forParameter:objectNumber:count:

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODirectDevice

Inherits From: IODevice : Object

Declared In: driverkit/IODirectDevice.h
driverkit/architectureédirectDevice.h
driverkit/architecturélOPCIDirectDevice.h
driverkit/architecturédlOPCMCIADiIrectDevice.h

Class Description

IODirectDevice is a device-independent abstract class that is the superclass of all
direct device driver classes. Most of the functionality of IODirectDevice is provided
by device-dependent categories, which are described in detail below. IODirectDevice
provides:

* Animplementation of theeviceStylelODevice class method, so IODirectDevice
subclasses don’t have to override it

» Methods for getting and setting I0DirectDevice information, such as the interrupt
port and the IODeviceDescription

* A default I/O thread that listens for messages to the interrupt port

» An efficient way to receive messages, to be used by drivers that provide their own
I/O thread (see theaitForinterrupt: method description)

To use the default I/O thread, subclasses invoke one efahit&OThread... methods
and implement one or more of the following methods:

* interruptOccurred orinterruptOccurredAt:
» timeoutOccurred

» commandRequestOccurred

» otherOccurred:

* receiveMsg

Each of these methods is invoked when the 1/O thread receives a corresponding Mach
message on its interrupt port. For example, when the kernel sends an
IO_DEVICE_INTERRUPT_MSG Mach message to the interrupt port, the 1/O thread
receives it and invokaaterruptOccurred . The documentation fatartlOThread

describes in detail how the 1/O thread listens for Mach messages and which methods
it invokes in response to which Mach messages.

Interrupt messages are the only Mach messages that the kernel automatically sends.

If you want to receive other types of Mach messages, your driver or some other
module it works with must explicitly send them. For example, if you want your
driver’stimeoutOccurred method to be invoked by the I/O thread, you must ensure
that your driver sends an 10_TIMEOUT_MSG at some point. Some classes, such as
IOEthernet, have this functionality built in. Others, such as IOSCSIController, don't.
See the IOSCSIController class description for an example of how to send a message.

ISA and EISA I0DirectDevices

The IOEISADirectDevice category of IODirectDevice defined in the header file
driverkit/i386/directDevice.h provides the following additional functionality for
IODirectDevices that control hardware on ISA or EISA Intel-based computers:

» Reserving and releasing ranges of 1/O ports

* Reserving, releasing, enabling, and disabling interrupts (also knoNR@Qags

* A way of providing an interrupt handler, if interrupt messages aren’t sufficient
* Mapping device memory into virtual memory

* Reserving and releasing DMA channels

» Starting DMA and dealing with DMA buffers

» Determining whether the computer has EISA slots

Note: The ISA/EISA category works for all hardware attached to ISA and EISA
computers—ISA slots, EISA slots, VL-Bus, and so on. Remember that EISA
computers can have ISA slots, but ISA computers don’t have EISA slots.

I/O ports, interrupts, device memory ranges, and DMA channels are collectively
known asresources

PCI IODirectDevices

The IOPCIDirectDevice category of IODirectDevice defined in the header file
driverkit/i386/IOPCIDirectDevice.h provides the following additional functionality
for IODirectDevices that control hardware on PCI Intel-based computers:

* Indicating whether the PCI bus is enabled or not
» Reading and writing the device’s configuration space

The PCI configuration space is memory available for configuation information for
each device. A 256-byte portion is available for each device, addressed by the PCI
anchor, which consists of three fields:

* Device number between 0 and 31
e Function number between 0 and 7
e Bus number between 0 and 255

Methods can either read or write the entire configuraion space or access individual
32-bit pieces, accessing it byegister address-a byte address into the 256-byte
portion.

PCMCIA I0DirectDevices

The IOPCMCIADiIrectDevice category of IODirectDevice defined in the header file
driverkit/i386/IOPCMCIADirectDevice.h provides the following additional
functionality for IODirectDevices that control hardware on PCMCIA Intel-based
computers:

* Mapping and unmapping attribute memory

Attribute memory resides on the PCMCIA card and contains tuples, i.e., configuration
information that's stored on the card. To access attribute memory, you must map the
memory using the mapping method; when you’ve completed your access, you must
unmap it with the method provided. If you attempt to map the memory and it's already
mapped, the mapping method returns failure status.

Local Equivalents of Resources

The ISA/EISA category refers to resources not by their actual numbers or addresses,
but by theidocal equivalentThe local equivalent of a resource is the position
(starting at 0) of that resource in the configuration list of all resources of that type.

For example, if a device is configured to have one DMA channel (DMA channel 6,
for example), the local equivalent of that channel is O. If a device is configured to
have two DMA channels (specified in order as 4 and 6, for example), then channel 4
has the local equivalent of 0, and channel 6 has the local equivalent of 1.

Similarly, the first range of 1/0 ports in a device’s configuration has the local
equivalent of 0, the second range is 1, and so on.

The local equivalent is used in all ISA/EISA methods that refer to DMA channels,
specific interrupts, 1/0O ports, and memory ranges. For example, to enable the first
DMA channel in a device’s configuration, a driver sendsraableChannel:

message teelf, specifying 0 as the channel.

See Chapter 4 and Chapter 5, “Configuation Keys” in “Other Features” for
information on configuration files.

Implementing a Subclass

The I0DirectDevice methods you must implement in a subclass depend on your
driver’'s capabilities. To start with, you must implement all the methods that I0ODevice

requires, except fateviceStyle which is implemented by IODirectDevice. You
must also implemennitFromDeviceDescription: to perform any driver- or
device-specific initialization.

If your device performs DMA, you must implemestartDMAForBuffer:channel: .

If your device can interrupt, you generally need to implement either
interruptOccurred (if your device uses only one interrupt) or

interruptOccurredAt: . If your driver needs to handle some interrupts directly,
instead of receiving interrupt notification by Mach messages, you must implement
getHandler:level:argument:forinterrupt: .

If your driver uses other Mach messages, you might also need to implement
timeoutOccurred, commandRequestOccurregdotherOccurred:, or receiveMsg

Most drivers need an I/O thread, as discussed in Chapter 1. All Driver Kit subclasses
of I0DirectDevice (such as IOEthernet) provide an 1/O thread for you, if necessary.
However, if your class is a direct subclass of IODirectDevice, you need to provide
your own /O thread. You can do so by invoking one ofsthetlOThread... methods.

Instance Variables

None declared in this class.

Method Types (Architecture-Independent)

Freeing instances
- free

Registering the class + deviceStyle

Getting and setting the interrupt port
— attachinterruptPort
— interruptPort

Handling messages to the interrupt port
- commandRequestOccurred
— interruptOccurred
— interruptOccurredAt:
- receiveMsg
- timeoutOccurred
— waitForinterrupt:

Running an 1/O thread — startlOThread
- startlOThreadWithPriority:

— startlOThreadWithFixedPriority:

Getting and setting the IODeviceDescription
— deviceDescription
- setDeviceDescription:

Method Types (ISA/EISA Architecture)

Initializing instances — initFromDeviceDescription:

Reserving 1/0O ports - reservePortRange:
- releasePortRange:

Dealing with interrupts — enableAlllnterrupts
— disableAllinterrupts
- reservelnterrupt:
- releaselnterrupt:
— enablelnterrupt:
— disablelnterrupt:
- getHandler:level:argument:forinterrupt:

Mapping memory - mapMemoryRange:to:findSpace:cache:
— unmapMemoryRange:from:

Dealing with DMA channels — enableChannel:
- disableChannel:
- reserveChannel:
- releaseChannel:

Dealing with DMA buffers - startDMAForBuffer.channel:

createDMABufferFor:length:read:needsLowM
emory:
limitSize:

- freeDMABUuffer:

— abortDMABUuffer:

Setting the DMA mode - setTransferMode:forChannel:
- setAutoinitialize:forChannel:
- setincrementMode:forChannel:

Using the EISA extended mode register
- setDMATransferWidth:forChannel:
— setDMATiming:forChannel:

- setEOPAsOutput:forChannel:
- setStopRegisterMode:forChannel:

Getting a DMA channel’s status — currentAddressForChannel:
- currentCountForChannel:
— getDMATransferWidth:forChannel:
— isDMADone:

Optional DMA locking - reserveDMALock
- releaseDMALock

Getting information about EISA slots
- iSEISAPresent
- getEISAId:forSlot:

Method Types (PCI Architecture)

Determining if PCI bus support is enabled
+ isPCIPresent

— isPCIlPresent

Reading and writing the entire configuration space

+ getPCIConfigSpace:withDeviceDescription:
+ setPCIConfigSpace:withDeviceDescription:

- getPCIConfigSpace:withDeviceDescription:
- setPClConfigSpace:withDeviceDescription:

Reading and writing the configuration space
+

getPCIConfigData:atRegister:withDeviceDesc

ription:

setPCIConfigData:atRegister:withDeviceDesc

ription:

getPClConfigData:atRegister:withDeviceDesc

ription:

setPCIConfigData:atRegister:withDeviceDesc

ription:

Method Types (PCMCIA Architecture)

Managing attribute memory — mapAttributeMemoryTo:findSpace:

— unmapAttributeMemory:

Class Methods (Architecture-Independent)

deviceStyle
+ (I0ODeviceStylejleviceStyle

Reports the basic style of driver as I0_DirectDevice. Because 10DirectDevice
implements this method, its subclasses don’t have to.

See also: + deviceStyle(I0ODevice)

Instance Methods (Architecture-Independent)

attachinterruptPort
— (IOReturngttachinterruptPort

Creates the interrupt port, if none exists already, and requests that the interrupt port
receive all interrupt messages for the device’s reserved interrupts. This method is
invoked whenever an interrupt is enabled. Returns IO_R_SUCCESS if successful;
otherwise, returns IO_R_NOT_ATTACHED.

See also: - interruptPort , — enableAllinterrupts (“Instance Methods (ISA/EISA
Architecture)”)

commandRequestOccurred
- (void)commandRequestOccurred

Does nothing; subclasses can implement this method if desired. This method is
invoked by the default I/O thread (implementedsbyrtiOThread...) whenever it

receives a bodyless message with ID I0_COMMAND_MSG. The part of a driver

that handles user requests can use this message to notify the 1/0 thread that it should
execute a command that’s been placed in global data.

See also: - startlOThread

deviceDescription
— deviceDescription

Returns the IODeviceDescription associated with this instance.

See also: - setDeviceDescription:

free
- free

Deallocates the IODirectDevice’s memory and its interrupt port, if one exists. Returns
nil .

interruptOccurred

- (void)interruptOccurred
InvokesinterruptOccurredAt: with an argument of zero. This method is invoked by
the default 1/0 thread (implemented &tartiOThread...) whenever it receives a
bodyless Mach message with the ID I0_DEVICE_INTERRUPT_MSG. Subclasses

that support only one interrupt should implement this method so that it processes the
hardware interrupt, as described in Chapter 1 and 2.

See also: - interruptOccurredAt:, - startlOThread

interruptOccurredAt:
— (void)interruptOccurredAt: (int)locallnterrupt

Does nothing; subclasses that need to handle interrupts should implement this method
so that it processes the hardware interrupt, as described in Chapter 1. This method is
invoked by the default 1/0 thread (implementedstartiOThread...) whenever it

receives a bodyless Mach message with an ID between
IO_DEVICE_INTERRUPT_MSG_FIRST and

|IO_DEVICE_INTERRUPT_MSG_LAST (excluding

IO_DEVICE_INTERRUPT_MSG).

See also: - interruptOccurred, - startiOThread

interruptPort
— (port_tjnterruptPort

Returns the Mach port on which the 10DirectDevice should receive interrupt
messages. The returnpdrt_t is in the context of the kernel I/O task.

See also: - attachinterruptPort:

otherOccurred:

— (void)otherOccurred: (intymsgID

Does nothing; subclasses can implement this method if desired. This method is
invoked by the default 1/0 thread (implementedstartiOThread...) whenever it
receives a bodyless message with an unrecognized ID. The ID is givesgliD

See also: -receiveMsg - startlOThread

receiveMsg
- (void)receiveMsg

Dequeues the next Mach message from the interrupt port and throws it away;
subclasses can implement this method if desired to handle custom messages. This
method is invoked by the default I/O thread (implementesténtlOThread...)

whenever it tries to receive a message that has a body. To implement this message,
you need to calinsg_receive()on the interrupt port. In this sample implementation,

fill in the italicized text between angle brackets, that is << >>, with device-specific
code:

- (void)receiveMsg

IOReturn result;
port_t inPort;
MyMsg myMsg;

kern_return_t result;

inPort = [self interruptPort];
if (inPort == PORT_NULL) {
<< React to having no interrupt port. >>
return;

}

myMsg.header.msg_size = sizeof (myMsg);
myMsg.header.msg_local_port = inPort;

result = msg_receive(&myMsg.header, (msg_option_t)RCV_TIMEOUT,
0);

if (result '= RCV_SUCCESS) {
IOLog("%s receiveMsg: msg_receive returns %d\n", result);
return;
}
else {
switch (myMsg.header.msg_id) {
case MyMsg1:
[self handleMsg1];
break;

case MyMsg2:
[self handleMsg2];
break;

.
}

}

See also: - otherOccurred:, — startlOThread

setDeviceDescription:

— (void)setDeviceDescriptiondeviceDescription

RecordgdeviceDescriptioras the I0DeviceDescription associated with this instance.
ISA/EISA-architecture devices don’t need to invoke this method because
initFromDeviceDescription: already does so.

See also: - deviceDescription

startlOThread

- (IOReturn¥tartiOThread

InvokesattachinterruptPort and, if attaching the interrupt port was successful, forks
a thread to serve as the instance’s I/O thread. This thread, which is appropriate for
most drivers, sits in an endless loop that does the following:

Waits for a Mach message on the interrupt port by invokiaigF-orinterrupt:

If the message couldn’t be dequeued because it was too large, invokes
receiveMsgso that the subclass can dequeue and handle the message itself

If the message is dequeued successfully, invokes one of five methods, depending
on the message ID:

Message ID Method Invoked
IO_TIMEOUT_MSG timeoutOccurred
IO_COMMAND_MSG commandRequestOccurred
IO _DEVICE_INTERRUPT_MSG interruptOccurred
IO_DEVICE_INTERRUPT_MSG_FIRST interruptOccurredAt:

to I0_DEVICE_INTERRUPT_MSG_LAST

(anything else) otherOccurred:

Returns the value returned aftachinterruptPort .

See also: - startlOThreadWithFixedPriority: , — startiOThreadWithPriority:

startlOThreadWithFixedPriority:
- (IOReturn¥tartlOThreadWithFixedPriority: (int)priority
The same astartlOThreadWithPriority: , except that the I/O thread’s priority

never lessens due to aging. This method lets you do performance tuning by disabling
priority aging.

For more information about scheduling policies and priorities, see Chapter 1 of the
NEXTSTEP Operating System Softwaianual.

See also: - startlOThread, — startlOThreadWithPriority:

startlOThreadWithPriority:

— (IOReturn¥tartlOThreadWithPriority: (int)priority
The same astartlOThread , except that the I/O thread runs at the specified priority.
This method lets you do performance tuning by raising or lowering the thread’s

scheduling priority. By default, kernel 1/O threads start with a priority equal to the
maximum user priority (currently 18).

For more information about priorities, see Chapter 1 oNBXTSTEP Operating
System Softwanmanual.

See also: - startlOThread, — startlOThreadWithFixedPriority:

timeoutOccurred
- (void)timeoutOccurred

Does nothing; subclasses that support timeouts can implement this method. See the
IOEthernet class for an example of implementing this method as part of timeout
support. This method is invoked by the default I/O thread (implemented by
startlOThread...) whenever it receives a bodyless Mach message with an ID of
IO_TIMEOUT_MSG. See the IOSCSIController class for an example of sending
Mach messages.

See also: - startiOThread

waitForinterrupt:
— (IOReturnyvaitForinterrupt: (int *)ymsglD
Listens to the interrupt port until it detects a Mach message; dequeues the message if

possible. This method should be invoked by the I/O thread whenever the thread needs
to listen to the interrupt port. The default I/O thread provided by I0ODirectDevice

invokes this message as described usti@tiOThread .

If the interrupt port hasn’t been set, this message returns IO_R_NO_INTERRUPT. If
the message has a body, this method leaves the message on the queue and returns
IO_R_MSG_TOO_LARGE. If the message couldn’t be dequeued due to another
reason, this method returns IO_R_IPC_FAILURE and logs an error message.

If a message is already on the queue when this method is invoked, this method
dequeues the message and then attempts to give up the processor before returning.
Without this precaution, a thread with many messages queued could prevent other
kernel threads from being executed.

If this method successfully detects and dequeues a messagemisgkto the
message’s ID and returns I0_R_SUCCESS.

See also: - startlOThread

Instance Methods (ISA/EISA Architecture)

abortDMABUuffer:
- (void)abortDMABuffer: (IOEISADMABUuffer)buffer

Frees the memory allocatedloffer. If a read transfer is in progress, the data read is
lost.

See also: - freeDMABUuffer:

createDMABufferFor:length:read:needsLowMemory:limitSize:

— (IOEISADMABUffer)createDMABufferFor: (unsigned int *physicalAddress
length:(unsigned infhumBytes
read:(BOOL)isRead
needsLowMemory(BOOL)lowerMem
limitSize:(BOOL)limitSize

Returns a DMA buffer for the contents of physical memory starting at
physicalAddresand continuing fonumBytedytes. You should specify YES for
isReadif the data will be read from the device; if the data will be written to the
device, specify NOowerMemshould be YES if the transfer must be from or to the
first 16MB of physical memory (as required by some ISA devices); otherwise, it
should be NO. To limit the size of the transfer to 64KB, spditifigSizeas YES;
otherwise]imitSizeshould be NO.

This method changes the physical address if necessary to accommodate the ISA bus.
When the physical address is changed, the data is copied to the new physical address
(if the transfer is a write), and the new physical address is returned in

physicalAddress

Returns NULL if kernel memory for the buffer couldn’t be allocated.

See also: - freeDMABuffer:

currentAddressForChannel:
- (unsigned ingurrentAddressForChannel:(unsigned infpcalChannel

Returns the physical address currently in the address register of the specified DMA
channel. This method can be invoked at any time—even when DMA is in progress.
This method is often used along with autoinitialize mode. It's also used to help
diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - currentCountForChannel:, — setAutoinitialize:forChannel:

currentCountForChannel:
- (unsigned ingurrentCountForChannel: (unsigned infpcalChannel

Returns the number of bytes remaining to be transferred on the specified channel. The
maximum number returned is equal to the length of the DMA buffer currently being
handled by the channel. This method is often used along with autoinitialize mode. It's
also used to help diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - currentAddressForChannel:, — setAutoinitialize:forChannel:

disableAllinterrupts
- (void)disableAllinterrupts
Disables all interrupts associated with this IODirectDevice, so that no interrupts can

be generated by the hardware. Returns I0_R_NO_INTERRUPT if no interrupt port is
attached; otherwise, returns I0_R_SUCCESS.

Note: Even after invokinglisableAllinterrupts: successfully, your driver may still
receive interrupt messages for interrupts that occurred before they were disabled.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - enableAllinterrupts, — disablelnterrupt:

disableChannel:
- (void)disableChannel{unsigned infpcalChannel

If the DMA channel corresponding localChannelis reserved by this device, this
method disables the channel. You typically disable the channel just before changing
its setting. You need to involaableChannel:once the channel is set up so that
transfers can occur.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - enableChannel:

disablelnterrupt:
- (void)disablelnterrupt: (unsigned intpcallnterrupt

Disables the interrupt correspondinddoalinterrupt

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationiaftFromDeviceDescription: is invoked.

See also: - disableAllinterrupts , — enableinterrupt:

enableAlllnterrupts
— (IOReturngnableAllinterrupts

Creates and attaches an interrupt port, if one isn’t already attached, and enables all
interrupts associated with this IODirectDevice. Returns I0_R_NO_INTERRUPT if
the interrupt port couldn’t be attached; otherwise, returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationiaftFromDeviceDescription: is invoked.

See also: - attachinterruptPort , — disableAllinterrupts , — enableinterrupt:

enableChannel:
- (IOReturngnableChannel(unsigned infpcalChannel

Enables transfers on the DMA channel corresponditgcadChannel Returns
IO_R_NOT_ATTACHED iflocalChanneldoesn’t correspond to a DMA channel or if

the DMA channel isn’t reserved by this device. Otherwise, returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - disableChannel; — startDMAForBuffer:channel:

enablelnterrupt:
— (IOReturngnablelnterrupt: (unsigned infpcallnterrupt

InvokesattachinterruptPort and, ifattachinterruptPort succeeds, enables the
interrupt corresponding tocallnterruptand returns IO_R_SUCCESS. If
attachinterruptPort doesn’t succeed, returns IO_R_NOT_ATTACHED.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - disablelnterrupt: , — enableAllinterrupts

freeDMABUuffer:
- (void)freeDMABuffer: (IOEISADMABuffer)buffer

Completes the transfer associated \eiffer and frees the buffebuffer should be a

value returned bgreateDMABufferFor:.... If createDMABufferFor:... changed

the physical address and the transfer is a read, this method moves the data from the
new physical address to the old one. In other words, any data that’s read appears at
the address passeda®ateDMABufferFor:... in thephysicalAddresargument, not

at the address returnedphysicalAddress

See also: - abortDMABuffer: , -
createDMABufferFor:length:read:needsLowMemory:limitSize:

getDMATransferWidth:forChannel:

- (IOReturnpetDMATransferWidth: (IOEISADMATransferWidth *width
forChannel:(unsigned intpcalChannel

Returns inwvidth the width currently used for DMA transfers on the specified channel.
The width can be 8-bit (I0_8Bit), 16-bit (I0_16BitByteCount), or 32-bit (I0_32Bit).
On EISA systems, you can set the width using

setDMATransferWidth:forChannel: .

If localChanneldoesn’t correspond to a DMA channel, this method does nothing and
returns |IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method

returns IO_R _SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - setDMATransferWidth:forChannel:

getEISAId:forSlot:
— (BOOL)getEISAId: (unsigned int *)d forSlot: (int)slotNumber

Returns ind the EISA id for the specified slot. Returns YES if the slot is a valid EISA
slot; otherwise, returns NO. You can use this method to loop through the computer’s
slots, testing each slot for whether it contains a particular card. For example, the
following code is executed in the QVision display driver’s
initFromDeviceDescription: method to determine whether QVision hardware is
present in the system.

adapter = UnknownAdapter;
for (slot = 1; slot <= OxF; slot++) {
if ([self getEISAld:&product_id forSlot:slot] == YES) {
switch (product_id) {
case QVISION_EISA_ID:
adapter = QVisionAdapter;
break;
case ORION_EISA_ID:
adapter = OrionAdapter;
break;
case ORION12_EISA_ID:
adapter = Orion12Adapter;
break;
case QVISION_ISA_ID:
case ORION_ISA_ID:
case ORION12_|SA_ID:
IOLog("%s: Sorry, ISA cards are not supported.\n”,
[self name));
break;
}
break;
}
}

See also: - isEISAPresent

getHandler:level:argument:forinterrupt:

— (BOOL)getHandler:(IOInterruptHandler *handler
level:(unsigned int *jpl
argument:(unsigned int *arg
forinterrupt: (unsigned intpcallnterrupt

Does nothing and returns NO. Subclasses can implement this method to specify a

function to directly handle the interrupt specifiedidgalinterrupt This method is
invoked every time an interrupt is enabled.

If this method returns YES, interrupts from the device result directly in a call to
handler, with the driver-dependent argumemg, at interrupt levelpl. Otherwise,
interrupts result in a Mach message to the instance’s interrupt port.

If you implement this method, you should use interrupt level 3 (IPLDEVICE, as
defined inkernserv/i386/spl.h unless a higher interrupt level is absolutely

necessary. Using interrupt levels greater than 3 requires great care and a good grasp
of NeXT kernel internals.

Note: The interrupt level is different from the interrupt number (which is also known
as the IRQ). The kernel handles interrupts on each of the 15 IRQs at an interrupt level
between 0 and 7; the default is 3. The interrupt level determines which devices can
interrupt; specifically, only devices with an interrupt level higher than the current
interrupt level can interrupt. For example, a device that interrupts using IRQ 9 might
have a direct interrupt handler that runs at interrupt level 3. While this interrupt
handler is running, other devices with handlers that run at interrupt level 3 can’t
interrupt the CPU.

Here’s a typical implementation of this method:

- (BOOL) getHandler:(IOEISAInterruptHandler *)handler
level:(unsigned int *) ipl
argument:(unsigned int *) arg
forinterrupt:(unsigned int) locallnterrupt

*handler = myIntHandler;
*ipl = IPLDEVICE;
*arg = 0;
return YES;
}

In the example abovepyintHandler is the function that handles the interrupt. It
might be implemented as follows (fill in the italicized text between angle brackets,
that is << >>, with device-specific code):

static void mylIntHandler(void *identity, void *state,
unsigned int arg)
{

<< ... Do what we must at interrupt level . . . >>
if (<< I/O thread doesn’t need to know about this interrupt >>)
return;

/* Forward this to the 1/O thread for further handling. */
I0OSendinterrupt(identity, state, I0_DEVICE_INTERRUPT_MSG);

}
See also: 10Sendinterrupt()

initFromDeviceDescription:
- initFfromDeviceDescription:deviceDescription

Initializes and returns the IODirectDevice instance. RectedgceDescriptioras the
IODeviceDescription corresponding to this IODirectDevice. Reserves all the
interrupts, DMA channels, and 1/O ports specified@viceDescriptionlf any
resources can’t be reserved, releases all resources and ndturns

This method must be invoked before any methods that require local equivalents of
resources can be used. For exampi@pMemoryRange:...requires that you specify

the local equivalent of a memory range. However, IODirectDevices don’'t know what
memory ranges they can use umtitFromDeviceDescription: has been invoked.

This means, for example, that subclass implementations of
initFromDeviceDescription: must invoke the superclass’s implementation of
initFromDeviceDescription: before they can map any memory ranges or do
anything else that requires access to resources.

iISDMADone:
— (BOOL)isDMADone:(unsigned intpcalChannel

Returns YES if DMA has completed on the specified channel; otherwise, returns NO.
If localChanneldoesn’t correspond to a DMA channel, this method does nothing and
returns I0_R_INVALID ARG.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

iISEISAPresent
- (BOOL)isEISAPresent

Returns YES if the computer conforms to the EISA specification; otherwise, returns
NO.

See also: - getEISAId:forSlot:

mapMemoryRange:to:findSpace:cache:

- (IOReturnmapMemoryRangeunsigned infpcalMemoryRange
to:(vm_address_t tjestinationAddress
findSpace(BOOL)findSpace
cache(lOCachegaching

Maps the device memory correspondindpmalMemoryRang@to the calling task’s
address spackcalMemoryRangés the local range number in the device
description.

If findSpacas TRUE, this method ignores thestinationAddresand determines
where the mapped memory should go, returning the valdesitinationAddresdf
findSpacdas FALSE, this method truncatdsstinationAddrest the nearest page
boundary, maps the memory to the truncated address, and returns the truncated
address.

The cachingargument determines how the memory is cached. Usually, it should be
IO_WriteThrough. However, if caching seems to be causing problems, try using
IO_CacheOff instead.

If localMemoryRangeoesn’t correspond to one of this device’s memory ranges,
IO_R_INVALID_ARG is returned. There must also be more than one 1/O port range
associated with the device (i.e. [deviceDescription numPortRanges] > 1); otherwise
IO_R_INVALID_ARG is returned. If the mapping couldn’t be performed for another
reason, I0O_R_NO_SPACE is returned. If the mapping was successful, returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

See also: - unmapMemoryRange:from:

releaseChannel:
- (void)releaseChannelunsigned infpcalChannel

Releases the DMA channel correspondinptalChannelso that another device can
use the channel.

See also: -reserveChannel:

releaseDMALock
- (void)releaseDMALock

Releases the lock associated with DMA. This method panics if this IODirectDevice
doesn’t hold the DMA lock.

Most drivers don’'t need to use DMA locking. However, the floppy drive (and possibly
other devices) tends to have DMA underruns when the bus is saturated. As a result,
the floppy driver and drivers for devices that tend to saturate the bus use DMA
locking to avoid performing 1/O at the same time. DMA locking is ignored by all other
device drivers.

You don’t have to use DMA locking unless your device is having DMA underruns or

is causing another device to have underruns. Sometimes these underruns occur on
ISA computers, but not EISA ones. If your device is causing the floppy drive to have
underruns, you'll see the following error on the console while your device is
performing I/O:

fd0: DMA Over/underrun

See also: -reserveDMALock

releaselnterrupt:
- (void)releaselnterrupt: (unsigned infpcallnterrupt

Releases the interrupt correspondintpt@linterruptso that another device can use
the interrupt.

See also: - reservelnterrupt:

releasePortRange:
- (void)releasePortRangeiunsigned intpcalPortRange

Releases the range of I/0O ports correspondingcPortRange

See also: -reservePortRange:

reserveChannel:

- (IOReturnyeserveChannel(unsigned intfpcalChannel

Reserves the DMA channel correspondingpt@lChannelso that no other device can
use the channel. Returns IO_R_NOT_ATTACHEDdalChanneldoesn’t

correspond to a DMA channel or if the DMA channel is reserved by another device.
Otherwise, returns I0_R_SUCCESS.

You don’'t normally have to invoke this method, simad~romDeviceDescription:
reserves all the device’s DMA channels.

See also: -releaseChannel:

reserveDMALock
- (void)reserveDMALock

Reserves the lock associated with DMA. 8seaseDMALock for information on
DMA locking.

reservelnterrupt:
— (IOReturnjeservelnterrupt: (unsigned intpcallnterrupt

Reserves the interrupt correspondindptmalinterruptso that no other device can use
it. Returns I0_R_NOT_ATTACHED ifocallnterruptdoesn’t correspond to an
interrupt or if another device has already reserved the interrupt. Otherwise, returns
IO_R_SUCCESS.

You don’'t normally have to invoke this method, simad~romDeviceDescription:
reserves all the device’s interrupts.

See also: -releaselnterrupt:

reservePortRange:
- (IOReturnyeservePortRangef(unsigned infpcalPortRange

Releases the range of 1/0 ports corresponditgcalPortRangeand returns
IO_R_SUCCESS.

You don’t normally have to invoke this method, singé~romDeviceDescription:
reserves all the device’s 1/O ports.

See also: -releasePortRange:

setAutoinitialize:forChannel:

— (IOReturnyetAutoinitialize: (BOOL)flag forChannel: (unsigned
int)localChannel

Sets the specified channel’s autoinitialize DMA mode to dlagfis YES; otherwise,
sets it off. The new autoinitialize mode stays in effect until this method is invoked
again or the computer is rebooted. By default, autoinitialize mode is disabled.

If localChanneldoesn’t correspond to a DMA channel, this method does nothing and
returns |IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns I0_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationiaftFromDeviceDescription: is invoked.

See also: - setincrementMode:forChannel;, — setTransferMode:forChannel:

setDMATiming:forChannel:

- (IOReturnyetDMATImIing: (IOEISADMATIming)timing
forChannel:(unsigned intpcalChannel

Makes the specified channel use the specified DMA bus cycle—ISA-compatible
(I0_Compatible), Type A (I0_TypeA), Type B (I0_TypeB), or burst (I0_Burst),
which is also known as Type C. This method is valid only on EISA systems

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. llocalChanneldoesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns

IO _R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

setDMATransferWidth:forChannel:

- (IOReturnyetDMATransferWidth: (IOEISADMATransferWidthyvidth
forChannel:(unsigned intpcalChannel

Makes the specified channel use the specified width for DMA transfers. The width
can be 8-bit (10_8Bit), 16-bit (I0_16BitByteCount), or 32-bit (I0_32Bit). The 16-bit
mode requires byte counting, not word counting (which is unsupported). This method
is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. llocalChanneldoesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns
IO_R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

setEOPAsOutput:forChannel:

— (IOReturnyetEOPAsOutput(BOOL)flag forChannel: (unsigned
int)localChannel

Selects whether the specified channel's EOP pin is an output signal (the default) or an
input signal. This method is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. liocalChanneldoesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns

IO _R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

setincrementMode:forChannel:

- (IOReturn¥yetincrementMode(IOIncrementModanode
forChannel:(unsigned intpcalChannel

This method lets the driver specify how the start address and length of its DMA
buffers should be interpreted. By default, the increment mode is IO_Increment, so
each DMA buffer is interpreted so that if the start addressigl the length im, the

data in addressesthroughn + m— 1 are transferred. By setting the increment mode

to IO_Decrement, however, the driver specifies that the affected addresses should be
n throughn — m+ 1. The new increment mode is in effect until this method is invoked
again or until the computer is rebooted.

If localChanneldoesn’t correspond to a DMA channel, this method does nothing and
returns I0_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns I0O_R_SUCCESS.

Note: 10_Decrement mode is not currently supported.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationiaftFromDeviceDescription: is invoked.

See also: - setAutoinitialize:forChannel:, — setTransferMode:forChannel:

setStopRegisterMode:forChannel:

- (IOReturnyetStopRegisterModel OEISAStopRegisterMode)ode
forChannel:(unsigned intpcalChannel

Enables or disables the specified channel's Stop register. By default, the Stop register
is disabled. You can enable it by specifymgdeto be I0_StopRegisterEnable. This
method is valid only on EISA systems.

Note: Enabling the Stop register isn’t currently supported.

If the system is ISA-based orodeis |O_StopRegisterEnable, this method does
nothing and returns 10_R_UNSUPPORTEDIokkalChanneldoesn’t correspond to a
DMA channel, this method does nothing and returns IO_R_INVALID _ARG. If the
DMA channel isn’t reserved by this device, this method does nothing and returns
IO_R_NOT_ATTACHED. Otherwise, this method returns I0_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until

after this category’s implementationiaftFromDeviceDescription: is invoked.

setTransferMode:forChannel:

- (IOReturnyetTransferMode:(IODMATransferModejnode
forChannel:(unsigned infpcalChannel

Sets the specified channel’s transfer modadde The new transfer mode stays in
effect until this method is invoked again or the computer is rebooted.

If localChanneldoesn’t correspond to a DMA channel, this method does nothing and
returns |IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns I0_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationiaftFromDeviceDescription: is invoked.

See also: - setAutoinitialize:forChannel:, — setincrementMode:forChannel:

startDMAForBuffer:channel:

- (IOReturnytartDMAForBuffer: (IOEISADMABUuffer)buffer
channel;(unsigned intpcalChannel

Begins DMA withbufferon the DMA channel specified hgcalChannel and returns
IO_R_SUCCESS. DMA isn't startedldcalChanneldoesn’t correspond to a DMA
channel (in which case I0_R_INVALID_ARG is returned), if the DMA channel isn’t
assigned, or if no DMA frames could be allocated (I0_R_NO_FRAMES is returned).

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementationioftFromDeviceDescription: is invoked.

unmapMemoryRange:from:

- (voidjunmapMemoryRange{unsigned infpcalMemoryRange
from: (vm_address_#)ddress

Unmaps the device memory correspondinpt@lMemoryRangé&om the calling
task’s address space. The valuaddressmust be the same as the value returned by
thedestinationAddresargument ofnapMemoryRange:to:findSpace:cachefor the
sameocalMemoryRange

See also: — mapMemoryRange:to:findSpace:cache:

Class Methods (PCI Architecture)

getPCIConfigData:atRegister:withDeviceDescription:

+ (IOReturnpetPClConfigData:(unsigned long *Jata
atRegister:(unsigned chagddress
withDeviceDescription:description

Reads from the device’s configuration space at the byte adafésssausing the
IOPCIDeviceDescriptiomlescription All accesses are 32 bits wide adbtressmust
be aligned as such.

getPClConfigSpace:withDeviceDescription:
+ (IOReturnyetPCIConfigSpace(lOPCIConfigSpace HonfigurationSpace
withDeviceDescription:description

Reads the device’s entire configuration space using the IOPCIDeviceDescription
description Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the data returned in the
IOPCIConfigSpacstruct.

isPCIPresent
+ (BOOL)isPCIPresent

Returns YES if PCI Bus support is enabled. Returns NO otherwise.

setPClConfigData:atRegister:withDeviceDescription:

+ (IOReturnyetPClConfigData:(unsigned longjata
atRegister:(unsigned chagddress
withDeviceDescription:description

Writes to the device’s configuration space at the byte adddesessusing the
IOPCIDeviceDescriptiomlescription All accesses are 32 bits wide adbtressmust
be aligned as such.

setPCIConfigSpace:withDeviceDescription:

+ (IOReturnyetPClConfigSpace(l OPCIConfigSpace BonfigurationSpace
withDeviceDescription:description

Writes the device’s entire configuration space using the IOPCIDeviceDescription
description Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the device’s configuration space.

Instance Methods (PCI Architecture)

getPClConfigData:atRegister:
— (IOReturnpetPClConfigData:(unsigned long *Jata
atRegister:(unsigned chagaddress

Reads from the device’s configuration space at the byte adutéssss All
accesses are 32 bits wide aufiressmust be aligned as such.

getPClConfigSpace:
- (IOReturnpetPClConfigSpace(lOPCIConfigSpace onfigurationSpace

Reads the device’s entire configuration space. Returns IO_R_SUCCESS if
successful. If this method fails, the driver should make no assumptions about the state
of the data returned in the IOPCIConfigSpatrect.

isPCIPresent
- (BOOL)isPCIPresent

Returns YES if PCI Bus support is enabled. Returns NO otherwise.

setPClConfigData:atRegister:
— (IOReturnyetPCIConfigData(unsigned longjata
atRegister:(unsigned chagddress

Writes to the device’s configuration space at the byte adddesess All accesses
are 32 bits wide andddresanust be aligned as such.

setPCIConfigSpace:
— (IOReturnyetPCIConfigSpace(lOPCIConfigSpace fonfigurationSpace

Writes the device’s entire configuration space. Returns I0_R_SUCCESS if
successful. If this method fails, the driver should make no assumptions about the state
of the device’s configuration space.

Instance Methods (PCMCIA Architecture)

mapAttributeMemoryTo:findSpace:

— (IOReturnmapAttributeMemoryTo: (vm_address_t HestinationAddress
findSpace(BOOL)findSpace

Maps attribute memory testinationAddresm findSpace

See also: - unmapAttributeMemory:

unmapAttributeMemory:
- (void)unmapAttributeMemory

Unmaps attribute memory.

See also: — mapAttributeMemoryTo:findSpace:

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODisplay

Inherits From: IODirectDevice : IODevice : Object
Conforms To: IOScreenEvents
Declared In: driverkit/lIODisplay.h

Class Description

IODisplay is an abstract class for controlling video displays. To write a display driver,
you need to create a subclass of one of NeXT’s IODisplay
subclasses—IOFrameBufferDisplay and IOSVGADisplay. IOFrameBufferDisplay is
the preferred basis for display drivers, but it can only be used for video cards that
linearly map the entire frame buffer into memory. Other video cards require
IOSVGAD isplay subclasses.

Note: All VGA cards work even without special drivers. However, they have a
small display area (64@80) and are 2-bit grayscale.

Most of what you need to create a display driver is described in the
IOFrameBufferDisplay and IOSVGADisplay class specifications. In addition, both
kinds of display drivers need to specify certain display-specific configuration keys
and provide IODisplayInfo structures.

Display Configuration Keys

Your driver’'s configuration table must have values for the “VGA Memory Maps” and
“Display Mode” keys. “VGA Memory Maps” must be equal to “0xa0000-0xbffff
0xc0000-0xcffff”; those addresses must also be specified for the “Memory Maps”
key.

An |IOFrameBufferDisplay might specify the following in its default configuration
table.

"Memory Maps" = "0x7e00000-0x7ffffff 0xa0000-0xbffff
0xc0000-0xcffff";
"VGA Memory Maps" = "0xa0000-0xbffff 0xcO000-0xcffff";

An IOSVGADisplay would have the following:

"Memory Maps" = "0xa0000-0xbffff 0xcO000-0xcffff";
"VGA Memory Maps" = "0xa0000-0xbffff 0xcO000-0xcffff";

Note: The first range for the “Memory Maps” key must be the range that the

window server will use for access to the screen. For example, for
IOFrameBufferDisplays, the first range must be that of the linear frame buffer.

A default display mode is usually specified with the “Display Mode” key in the
default configuration table. The mode can also be set by the user, with Configure’s
display inspector. You specify the modes your driver supports with the “Display
Modes” key in thd_ocalizable.stringsfile in theLanguagdproj directories of your
driver’'s bundle. (Driver bundles are discussed in Chapter 4.) An example of
specifying display modes is below.
"Display Modes" ="

Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:555/16;

Height: 768 Width:1024 Refresh: 60Hz ColorSpace: BW:8;

Height: 768 Width:1024 Refresh: 70Hz ColorSpace: BW:8;

Height: 768 Width:1024 Refresh: 72Hz ColorSpace: BW:8;

Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:555/16;

Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16;

Height:1024 Width:1280 Refresh: 60Hz ColorSpace: BW:8;

Height:1024 Width:1280 Refresh: 60Hz ColorSpace: RGB:555/16;

Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:888/32;

Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:888/32;
Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:888/32";

See the “Configuration Keys” section of this chapter for more information on
configuration keys.

IODisplaylInfo

Display drivers need to have an 10DisplayInfo structure for each mode the driver
supports. Drivers that support multiple modes use one cileetMode:...methods
(provided by IOFrameBufferDisplay and IOSVGADisplay) to find the 10Displayinfo
that corresponds to the value of the “Display Mode” key. Once the driver has
determined which mode it will be in, it needs to set the value returnéidigyinfo

so that it points to the appropriate IODisplaylInfo structure. The display subsystem, as
well as the driver, uses the IODisplaylnfo to get information about the driver's mode.

The 10DisplaylInfo type is defined in thigiverkit/displayDefs.h header file as the
following:

typedef struct {
intwidth;
intheight;
inttotalWidth ;
introwBytes;
intrefreshRate
void *frameBuffer;
IOBitsPerPixebitsPerPixel,
IOColorSpaceolorSpace
IOPixelEncodingixelEncoding;
unsigned inflags,

void *parameters
} 1ODisplayinfo;

Thewidth andheight fields hold the width and height in pixels of the display area.
Generally, the width should be at least 640, and the height at least 480. The
totalWidth is the width including any undisplayed pixels that might be included for
efficiency reasons; often, it's equalwadth. The value ofowBytes is equal to

totalWidth multiplied by the number of bytes used to address each pixel, as shown in
the following table.

Color Mode Value of rowBytes
SVGA 2-bit grayscale totalWidth /4
8-bit grayscale totalWidth

8-bit color totalWidth

16-bit RGB (either 12 or 15 bits per pixel) totalWidth x 2
24-bit RGB (24 bits per pixel) totalWidth x 4

TherefreshRatefield holds the monitor refresh rate, in Hz.

TheframeBuffer field should contain the first virtual address that screen memory is
mapped to. You get this address during initialization by invoking
mapFrameBufferAtPhysicalAddress:length; as documented in the
IOFrameBufferDisplay and IOSVGADisplay specifications.

The next three fields specify how the display subsystem should interpret the screen
memory. The value ditsPerPixel should be 10_2BitsPerPixel, I0_8BitsPerPixel,
I0_12BitsPerPixel, I0_15BitsPerPixel, or I0_24BitsPerPixel. You shouldn’t specify
IO_VGA, since it's used only by NeXT-supplied VGA support. For
IOFrameBufferDisplays, the value oblorSpaceis 10_OnelsWhiteColorSpace for
black-and-white modes and 10_RGBColorSpace for RGB modes. For
IOSVGADisplays,colorSpaceis always 10_OnelsBlackColorSpace. The value of
pixelEncoding is a string that specifies how each bit of a pixel should be interpreted.
Some common values pixelEncoding are shown below.

Value of pixelEncoding Description

oo RRRRRRRRGGGGGGGGBBBBBBBB” 24-bit RGB, 8 bits per
component; ignore the most
significant byte

““RRRRRGGGGGBBBBB” 16-bit RGB, 5 bits per
component; ignore the most
significant bit

“RRRRGGGGBBBB----" 16-bit RGB, 4 bits per
component; ignore the 4
least significant bits

“WWWWWWWW” 8-bit grayscale

“WW” 2-bit grayscale; used by
IOSVGADisplays

Theflags field contains caching instructions and optionally some flags, combined
using the bitwise OR operator. The value you specify for caching depends on whether
your hardware supports burst reads. If your hardware supports burst reads (as most
'486 hardware does), you should specify I0_DISPLAY_CACHE_WRITETHROUGH
to specify that screen memory be cachveitle-through Write-through caching

means that each write—even to memory that is in the cache—is immediately written
to the device. If your hardware doesn’t support burst reads, you should use
IO_DISPLAY_CACHE_OFF to turn the cache off for screen memory. The third
caching option, I0_DISPLAY_CACHE_COPYBACK, isn’'t currently supported; it
specifies that writes have to be explicitly flushed, instead of being passed through the
cache immediately. flags contains no caching instructions, write-through caching is
used.

IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION and
IO_DISPLAY_HAS_TRANSFER_TABLE are the two optional flags.
IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION should be specified

if the display is in a 16-bit RGB mode with 5 bits per compoaeadthe hardware

does not support gamma correction in this mode. It tells the display subsystem to use a
default gamma correction table when converting the 4 bits used internally into the 5
bits required by the hardware.

IO_DISPLAY_HAS_TRANSFER_TABLE should be specified if the hardware
supports gamma correction in this mode. Generally, drivers that support gamma
correction should implement tisetTransferTable:...method, which is described in
IOFrameBufferDisplay.

The following example shows how a driver speciflags when its hardware
supports gamma correction only for 8-bit modes.

* displayMode points to the 10Displaylnfo for this mode */
displayMode->flags = I0_DISPLAY_CACHE_WRITETHROUGH;
if (displayMode->bitsPerPixel == |0_15BitsPerPixel)
displayMode->flags |=
I0_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION;
else if (displayMode->bitsPerPixel == 10_8BitsPerPixel)
displayMode->flags |= I0_DISPLAY_HAS_TRANSFER_TABLE;

Theparametersfield is ignored by the display system. You can use it for whatever
you want.

The following code example shows some typical I0ODisplaylnfo structures, taken from
a driver based on IOFrameBufferDisplay. See the descriptidispifaylnfo for an
example for an IOSVGADisplay.

[* The frameBuffer field is initialized to 0, since it's determined

* at runtime. The flags field is also determined at runtime. The

* parameters field in this driver points to a mode-specific
* structure that specifies values for the hardware registers.*/

const IODisplaylnfo S3_928 ModeTable[] = {

/* 800 x 600, 15bpp, 60Hz. */

800, 600, 1024, 2048, 60, 0, I0_15BitsPerPixel,
I0_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
(void *)&S3_928 800x600x15,

/* 800 x 600, 24bpp, 60Hz. */

800, 600, 1024, 4096, 60, 0, IO_24BitsPerPixel,
I0_RGBColorSpace, "-------- RRRRRRRRGGGGGGGGBBBBBBBB',
0, (void *)&S3_928_800x600x24,

[* 1024 x 768, 8bpp, 60Hz. */

1024, 768, 1024, 1024, 60, 0, IO_8BitsPerPixel,
I0_OnelsWhiteColorSpace, "WWWWWWWW", 0,
(void *)&S3 928 1024x768x8,

* 1024 x 768, 8bpp, 70Hz. */

1024, 768, 1024, 1024, 70, 0, I0_8BitsPerPixel,
I0_OnelsWhiteColorSpace, "WWWWWWWW", 0,
(void *)&S3_928 1024x768x8,

[* 1024 x 768, 8bpp, 72Hz. */

1024, 768, 1024, 1024, 72, 0, I0_8BitsPerPixel,
I0_OnelsWhiteColorSpace, "WWWWWWWW", 0,
(void *)&S3_928 1024x768x8,

/* 1024 x 768 x 15bpp, 60Hz. */

1024, 768, 1024, 2048, 60, 0, I0_15BitsPerPixel,
IO_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
(void *)&S3_928 1024x768x15,

/*1024 x 768 x 15bpp, 72Hz. */

1024, 768, 1024, 2048, 72, 0, I0_15BitsPerPixel,
I0_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
(void *)&S3_928_1024x768x15,

[* 1024 x 768 x 24bpp, 60Hz. */

1024, 768, 1024, 4096, 60, 0, I0_24BitsPerPixel,
IO_RGBColorSpace, "-------- RRRRRRRRGGGGGGGGBBBBBBBB",
0, (void *)&S3_928 1024x768x24,

I* 1024 x 768 x 24bpp, 72Hz. */

1024, 768, 1024, 4096, 72, 0, I0_24BitsPerPixel,
I0_RGBColorSpace, "-------- RRRRRRRRGGGGGGGGBBBBBBBB',
0, (void *)&S3_928_1024x768x24,

/* 1280 x 1024, 8bpp, 60Hz. */

1280, 1024, 1280, 1280, 60, 0, I0_8BitsPerPixel,
I0_OnelsWhiteColorSpace, "WWWWWWWW", 0,
(void *)&S3_928 1280x1024x8,

/* 1280 x 1024, 15bpp, 60Hz. */

1280, 1024, 2048, 4096, 60, 0, I0_15BitsPerPixel,
I0_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
(void *)&S3_928_1280x1024x15,

Instance Variables

None declared in this class.

Adopted Protocols

IOScreenEvents — devicePort
- hideCursor:
— moveCursor:frame:token:
- setBrightness:token:
- showCursor:frame:token:

Method Types

Getting information about this display

— displaylInfo
Getting and setting the registration token for this display

- setToken:

- token
Getting parameters - getintValues:forParameter:count:
Getting the device port — devicePort

Note: The IOScreenEvents protoaokthoddevicePortis reimplemented in this
class.

Instance Methods
devicePort
— (port_tdevicePort

Returns the device port, which should be obtained from this instance’s
IODeviceDescription. This method in the I0ScreenEvents protocol is reimplemented
in this class.

displayInfo
- (IODisplayInfo *)displaylnfo

Returns the IODisplaylnfo that describes this display. Each display driver instance

must use this method to obtain its IODisplayInfo structure. The driver must then set
the fields in the structure so that they describe the display’s configuration. For
example, the following code initializes the 10Displayinfo associated with this
instance. See the class description for information on 10DisplayInfo structures.

static const IODisplaylnfo modeTable[] = {
{1024, 768, 1024, 256, 60, 0, IO_2BitsPerPixel,
I0_OnelsBlackColorSpace, "WW", 0, 0,

/’,* Add more modes here. */
b
#define modeTableCount (sizeof(modeTable) / sizeof(IODisplaylnfo))
#define defaultMode 0

- initFromDeviceDescription:deviceDescription

IODisplayInfo *displayInfo;
const IORange *range;

if ([super initFromDeviceDescription:deviceDescription] == nil)
return [super free];

/* selectedMode is a driver-defined instance variable */
selectedMode = [self selectMode:modeTable count:modeTableCount
valid:NULL];
if (selectedMode < 0) {
IOLog("%s: Sorry, cannot use requested display mode.\n",
[self name]);
selectedMode = defaultMode;

}

displaylnfo = [self displayInfo];
*displaylnfo = modeTable[selectedMode];

displaylInfo->frameBuffer = (void *)
[self mapFrameBufferAtPhysicalAddress:0 length:0];
if (displaylnfo->frameBuffer == 0)
return [super free];

IOLog("%s: Initialized @ %d Hz.\n", [self name],
displayInfo->refreshRate);
return self;

getintValues:forParameter:count:

- (IOReturnpetintValues:(unsigned int *array
forParameter: (IOParameterNamparameter
count:(unsigned int *ount

Handles NeXT-internal parameters specific to IODisplays; forwards the handling of
all other parameters super.

setToken:

- (void)setToken{int)token
Sets the registration token for this display.

See also: —token

token
- (int)token
Gets the registration token for this display.

See also: - setToken

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|ODisplaylnspector

Inherits From: IODevicelnspector : Object
Conforms To: IOConfigurationinspector
Declared In: driverkit/IODisplaylnspector.h

Class Description

This class provides inspectors used by the Configure application for all displays. It
provides an accessory View to IODevicelnspector that displays the current display
mode and has a button. When the button is clicked, the IODisplaylnspector puts up a
panel that lets the user select the display mode for the device.

The panel shows all display modes specified for the “DisplayModes” key in the driver
bundle’sLanguagdproj/Localizable.strings file. The mode that’s selected is placed
in the device’dnstancen.table file as the value of the “Display Mode” key.

Instance Variables

id displayAccessoryHolder
id displayMode;

id panel,

id modes

id okButton;

id selectButton

id modeText
IODisplayMode 'modeRecs
unsigned intmodeCount

displayAccessoryHolder The View where the display inspector’'s own
accessory View (as opposed to the
IODevicelnspector’s accessory View) is placed

displayMode The accessory View provided to the
IODevicelnspector

panel The Select Display Mode panel

modes The DBTableView where valid display modes are
listed and can be selected

okButton The OK button ipanel

selectButton The Select buttondisplayMode

modeText The text idisplayMode that shows the current
display mode

modeRecs An array of IODisplayModes, initialized during

setTable: with the modes specified in the device’s
Default.table

modeCount The number of IODisplayModesnndeRecs

Method Types

Initializing the 10Displaylnspector
—init

Setting attributes — setAccessoryView:
- setTable:

Displaying the Select Display Mode panel
- runPanel:
— panelDone:

Target and Action methods - cancel:
— doubleClicked:

Instance Methods

cancel:
- cancelsender

Exits the Select Display Modes panel without changing the current display mode.
Returnsself.

See also: -runPanel:

doubleClicked:
— doubleClicked:sender

Clicks the OK button in the Select Display Modes panel. This method is invoked when
the user double-clicks an item in the display modes DBTableView. Restelins

See also: - panelDone:

init

—init
Initializes and returns a newly allocated IODisplaylnspector. Retir@sd frees
itself if an error occurs.

panelDone:
- panelDonesender

Dismisses the Select Display Modes panel. This method is invoked when the user
clicks the panel’s OK button. Returssilf.

See also: -runPanel:

runPanel;
- runPanel:sender

Runs the Select Display Modes panel in a modal loop. Before displaying the panel,
this method reads the supported display modes from the driver bundle’s
Localizable.stringsfile, puts the modes in the panel’'s DBTableView, and selects the
current mode. When the user clicks the Cancel or OK button the loop is broken, the
panel is hidden, and, if the button was OK, the new display mode is written to the
driver’s configuration table. Retursslf.

See also: - cancel, — panelDone:

setAccessoryView:

- setAccessoryViewaView
Sets the IODisplaylnspector’s accessory View\feew Because
IODisplaylnspector’s inspector View is implemented as I0Devicelnspector’s

accessory ViewaViewis an accessory View within an accessory View. Use this
method to add a device-specific View to the inspector. Resaihs

setTable:

- setTable(NXStringTable *)nstanceTable

SpecifiesnstanceTablas the configuration table associated with this device and
uses the value afistanceTabls “Display Mode” key to initialize the display modes
for this device. The data instanceTablés written out to its corresponding file
(Instancen.table) when the user saves the configuration.

The Configure application invokes this method whenever the user selects this device
for inspection. Returnself.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IOEISADeviceDescription

Inherits From: IODeviceDescription : Object

Declared In: driverkit/i386/IOEISADeviceDescription.h

Class Description

IOEISADeviceDescriptions encapsulate information about IODirectDevices that run
on ISA- and EISA-compliant computers. Usually, you need only to pass around
IOEISADeviceDescription objects, without creating them, subclassing them, or
sending messages to them. IOEISADeviceDescriptions are created by the system and
initialized from 10ConfigTables. They are then passed tptbbe: method to

instantiate the driver, using the device description.

Instance Variables

None declared in this class.

Method Types

Getting and setting the list of DMA channels
— channel
- channelList
- numChannels
- setChannelList:num:

Getting and setting the list of I/O port ranges
- portRangeList
— numPortRanges
- setPortRangelList:num:

Getting the EISA slot number and ID
— getEISASIotNumber
— getEISASIotID

Instance Methods

channel

- (unsigned inghannel

Returns the first DMA channel associated with this device. The return value is
undefined if this device has no DMA channels associated with it.

See also: - channelList, - numChannels — setChannelList:num:

channelList
- (unsigned int *¢hannelList

Returns all the DMA channels associated with this device. You can get the number of
items in the returned array by invokingmChannels You should never free the data
returned by this method.

See also: - channel — numChannels — setChannelList:num:

getEISASIotID
- (IOReturnpetEISASIotID:(unsigned long §lotiD

Returns the EISA slot identifier for the device. In this identifier, the device ID is in
the lower 16 bits, and the vendor ID is in the upper 16 bits.

getEISASIotNumber
— (IOReturnpetEISASIotNumber.(unsigned int *$lotNumber

Returns the EISA slot number for the device.

numChannels

- (unsigned infjumChannels

Returns the total number of DMA channels associated with this device. This number
is determined from the 10ConfigTable from which this IOEISADeviceDescription is
initialized.

See also: - channel — channelList, — setChannelList:num:

numPortRanges

- (unsigned inflJumPortRanges

Returns the total number of I/O port ranges associated with this device.

portRangeList
- (IORange *portRangeList
Returns all the I/O port ranges associated with this device. You can get the number of

items in the returned array by invokingmPortRanges You should never free the
data returned by this method.

See also: - numPortRanges — setPortRangeList:num:

setChannelList:num:
- (IOReturnyetChannelList:(unsigned int *aList num: (unsigned
int)numChannels

Sets the array and number of DMA channels associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: - channel — channelList, — numChannels

setPortRangeList:num:
- (IOReturnyetPortRangeList{IORange *aListnum:(unsigned
intjnumPortRanges

Sets the array and number of 1/0O port ranges associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: - numPortRanges — portRangeList

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOEthernet

Inherits From: IODirectDevice : IODevice : Object
Conforms To: IONetworkDeviceMethods
Declared In: driverkit/IOEthernet.h

Class Description

IOEthernet is an abstract class for controlling Ethernet devices. It provides a
framework for sending and receiving packets, handling interrupts, and setting and
detecting transmission timeouts. It also provides an IONetwork instance that connects
the driver with the kernel networking subsystem, as well as an I/O thread from which
most of the IOEthernet instance methods are invoked.

IOEthernet includes support for multicast mode and promiscuous mode. It doesn’t
currently providegdb support for non-NeXT driversg@b support enables the kernel
running the I0Ethernet driver to be debugged over the network.)

IOEthernet’'s multicast support consists mainly of keeping a list of the multicast
addresses at which multicast packets should be received and providing methods for
configuring multicast addresses. Depending on the hardware’s capability, you can
either implemenénableMulticastMode anddisableMulticastMode to allow and
disallow receptions of all multicast packets or implenaetlitMulticastAddress: and
removeMulticastAddress:to configure the hardware for individual addresses.

Most hardware implementations don’t guarantee filtering based on individual
addresses. For this reason, igignwantedMulticastPacket: method exists to

indicate packets that aren’t bound for an address in the list of valid multicast
addresses. A subclass of IOEthernet written for hardware that implements partial or
no filtering based upon individual addresses should invoke this method each time it
receives a multicast packet to determine whether it should be discarded or not.

To write an Ethernet driver, you create a subclass of IOEthernet.

Implementing a Subclass
Your subclass of IOEthernet must do the following:

* Implementprobe: andinitFromDeviceDescription:. The implementation of
probe: should allocate an instance and invokd=romDeviceDescription:. See

the IODevice specification for more information on implemenfirape:.

* Implementtransmit: , resetAndEnable; interruptOccurred , and
timeoutOccurred. These methods perform the real work of the driver.
interruptOccurred is invoked from the 1/O thread whenever the Ethernet
hardware interrupts. See the EISA/ISA method descriptions in the I0ODirectDevice
specification for more information anterruptOccurred andtimeoutOccurred.

If your subclass supports multicast mode, you must implement either
enableMulticastMode anddisableMulticastMode or addMulticastAddress: and
removeMulticastAddress:

If your subclass supports promiscuous mode, you must implement
enablePromiscuousModenddisablePromiscuousMode

IONetworkDeviceMethods Protocol Implementation

In IOEthernet’s implementatiofipishinitialization invokesresetAndEnable:YES
if [self isRunning] == YES.

Instance Variables

None declared in this class.

Adopted Protocols

IONetworkDeviceMethods — allocateNetbuf
- finishlnitialization
— outputPacket:address:
- performCommand:data:

Method Types

Creating and destroying IOEthernet instances
- free
— initFromDeviceDescription:
- attachToNetworkWithAddress:

Handling interrupts — interruptOccurred (IODirectDevice)

Transmitting packets — transmit:
— performLoopback:

Setting and handling hardware timeouts
- setRelativeTimeout:
- relativeTimeout
- clearTimeout
— timeoutOccurred (IODirectDevice)

Setting and getting the state of the hardware
— isRunning
- resetAndEnable

Supporting multicast - enableMulticastMode
- disableMulticastMode
— addMulticastAddress:
- removeMulticastAddress:
- isUnwantedMulticastPacket:

Supporting promiscuity — disablePromiscuousMode
— enablePromiscuousMode

Instance Methods

addMulticastAddress:
- (void)addMulticastAddress:(enet_addr_t "gddress

Does nothing. Subclasses that support multicast mode can implement this method so
that it notifies the hardware that it should receive packets sadttess Some

subclasses that support multicast don’t implement this method because their hardware
doesn’t provide filtering based upon individual multicast addresses. Instead, they
inspect all multicast packets, usiisgynwantedMulticastPacket:to weed out

packets to unwanted multicast addresses. This method, followed by
enableMulticastMode, is invoked in the 1/O thread every time a new multicast

address is added to the list that IOEthernet maintains.

See also: - enableMulticastMode, — isUnwantedMulticastPacket;, —
removeMulticastAddress:

attachToNetworkWithAddress:
— (IONetwork *)attachToNetworkWithAddress:(enet_addr_gddress

Creates an IONetwork instance and attaches to the network subsystem by sending the
IONetwork aninitForNetworkDevice:... message. Before returning, this method

logs a message including the ethernet address. Returns the IONetwork instance just
created.

You invoke this method at the end of your implementation of
initFromDeviceDescription:. You must invokeesetAndEnable:NO before
invoking this method, as described unoromDeviceDescription:.

clearTimeout
— (void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is
normally invoked from a subclass’s implementatiomtérruptOccurred .

See also: setRelativeTimeout; relativeTimeout, timeoutOccurred

disableMulticastMode

- (void)disableMulticastMode
Does nothing. Subclasses that support multicast mode and implement
enableMulticastMode should implement this method so that it disables the

hardware’s support for multicast mode. This method is invoked in the 1/O thread when
the last multicast address has been removed from the list that IOEthernet maintains.

See also: - enableMulticastMode

disablePromiscuousMode
- (void)disablePromiscuousMode

Does nothing. Subclasses that support promiscuous mode must implement this method
so that it disables the hardware’s support for promiscuous mode. This method is
invoked in the I/O thread by the networking subsystem.

See also: - enablePromiscuousMode

enableMulticastMode

- (BOOL)enableMulticastMode
Does nothing and returns YES. Subclasses that support multicast mode can implement
this method so that it enables the hardware’s support for multicast mode. Every time a

new multicast address is added to the list that IOEthernet maintains,
addMulticastAddress: and this method are invoked in the I/O thread.

See also: - disableMulticastMode

enablePromiscuousMode
- (BOOL)enablePromiscuousMode

Does nothing and returns YES. Subclasses that support promiscuous mode must
implement this method so that it enables the hardware’s support for promiscuous
mode. This method is invoked in the I/O thread by the networking subsystem.

See also: —enablePromiscuousMode

free
- free

Frees the IOEthernet instance and retarhs

initFromDeviceDescription:
— initFromDeviceDescription:(IODeviceDescription ®eviceDescription

Initializes a newly allocated IOEthernet instance. This includes invoking
initFromDeviceDescription: onsuper, invokingstartlOThread ; setting the name,
kind, and unit of this instance; and invokiregisterDevice

Subclasses of IOEthernet should implement this method so that it ifgokes
initFromDeviceDescription:] and then performs any device-specific initialization.
The subclass implementation should invoégetAndEnable:NO and should finish

by invokingattachToNetworkWithAddress:. An example of a subclass
implementation of this method is below. Italicized text delineated in angle brackets,
that is << >>, is to be filled in with device-specific code.

- initFromDeviceDescription:(I0DeviceDescription *)devDesc
IOEISADeviceDescription *deviceDescription =
(IOEISADeviceDescription *)devDesc;
IORange *io;

if ([super initFromDeviceDescription:devDesc] == nil)
return nil;

<< Perform any 1-time hardware initialization. >>

/* NOTE: This implementation of resetAndEnable: sets myAddress.
*

[self resetAndEnable:NO]; // Finish initializing the hardware

<< Perform any additional software initialization. >>

network = [self attachToNetworkWithAddress:myAddress];
return self;

}

Returnsselfif the instance was successfully initialized; otherwise, frees itself and
returnsnil.

isRunning
- (BOOL)isRunning

Returns YES if the hardware is currently capable of communication with other
stations in the network; otherwise, returns NO.

See also: - setRunning:

isUnwantedMulticastPacket:
- (BOOL)isUnwantedMulticastPacket(ether_header_t header

Determines whether the specified packet is to a multicast address that this device
shouldn’t listen to. Returns YES if the packet should be dropped; otherwise, returns
NO.

See also: - addMulticastAddress:

performLoopback:
— (void)performLoopback: (netbuf_tpacket

Determines whether the outgoing packet should be received by this device (because
it's a broadcast packet, for example, or a multicast packet for an enabled address). If
so, simulates reception by sending a copyaufketto the protocol stack. You should
invoke this method in youransmit: method if your hardware device can't receive its
own packets.

relativeTimeout
- (unsigned intelative Timeout

Returns the number of milliseconds until a transmission timeout will occur. If no
transmission timeout is currently scheduled, this method returns zero.

See also: clearTimeout, setRelativeTimeout; timeoutOccurred

removeMulticastAddress:

- (void)removeMulticastAddressienet_addr_t *3ddress

Does nothing. Subclasses that support multicast mode can implement this method so
that it notifies the hardware that it should stop listening for packets satdtess

See also: — addMulticastAddress:, — disableMulticastMode

resetAndEnable:
- (BOOL)resetAndEnable(BOOL)enable

Does nothing and returns YES. Subclasses of IOEthernet must implement this method
so that it resets and initializes the hardware. Interrupts should be enaiabldis

YES; otherwise, they should be left disabled. In either case, this method should invoke
setRunning: to record the basic state of the device.

This method should return YES if it encounters no errors (no matter what the value of
enableis); if it encounters errors, it should return NO. For example, the result from
resetAndEnable:NOshould be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your
IOEthernet subclass implementation, is during initialization. Specifically,
resetAndEnable:YESis invoked once in the 1/O thread after
attachToNetworkWithAddress: is invoked.

See also: - setRunning:

setRelativeTimeout:
- (void)setRelativeTimeout{unsigned infijmeout

Schedules a timeout to occurtimeoutmilliseconds. This method is generally
invoked by the IOEthernettsansmit: method. Whetimeoutmilliseconds pass
without the timeout being cleared (witlkearTimeout), the method
timeoutOccurred is invoked.

See also: clearTimeout, relativeTimeout, timeoutOccurred

setRunning:
- (void)setRunning:(BOOL)running

Sets whether the hardware is on line. The valuemiing should be YES to indicate
that the hardware is on line; otherwise, it should be NO. This method is invoked only
by methods in IOEthernet subclasses—not by IOEthernet’s own method
implementations. You should invoke this method in your implementation of
resetAndEnable:

See also: - isRunning

transmit:
— (void)transmit: (netbuf_tpacket

Does nothing except frggcket using thenb_free() function. This method is invoked
by the kernel networking subsystem when the hardware should transmit a packet.

Subclasses of IOEthernet must implement this method. To determine the number of
bytes of data to be transmitted, userntbesize()function. To get a pointer to the data,
usenb_map(). After getting the information you need frgrackef you must free it

with nb_free(). Just before transmitting the packet, you can set a timeout with
setRelativeTimeout: If your hardware can't receive packets it transmits, you must
invoke performLoopback: in your implementation of this method.

This method can be invoked in many contexts, not just from the 1/O thread (or from
the 1/0 task). For examplegansmit: andinterruptOccurred can run at the same
time, so any common structures they both use must be protected with locks.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OFrameBufferDisplay

Inherits From: IODisplay : I0DirectDevice : I0Device : Object
Conforms To: IOScreenEvents
Declared In: driverkit/lIOFrameBufferDisplay.h

Class Description

IOFrameBufferDisplay is an abstract class for managing display cards that support
linear-mode frame buffers. IOFrameBufferDisplay’s close interaction with the
window server and event system means that your driver needs to do very little.

Note: If your display adapter doesn’t allow you to linearly address the entire frame
buffer at once, use the IOSVGADisplay class instead.

IOFrameBufferDisplay currently supports the following bit depths:

e 2-bit grayscale

» 8-bit grayscale

» 8-bit color

* 16-bit RGB (5-5-5 or 4-4-4—both with 4096 colors)
* 24-bit RGB (8-8-8)

Most of the work in writing a IOFrameBufferDisplay driver is determining how to put
the hardware into an advanced mode in which the frame buffer is linearly
addressable. Some drivers support several advanced modes, which the user chooses
between using the Configure application. The IODisplaylnfo specification describes
how to specify the modes your driver supports.

When specifying your driver's memory ranges in its default configuration table, you
must first specify the addresses of the linear frame buffer, and then the addresses
0xa0000-0xbffff and 0xcO000-0xcffff.

"Memory Maps" = "0x7e00000-0x7ffffff 0xa0000-0xbffff
0xc0000-0xcffff";

See the I0DisplayInfo specification for information on display-specific configuration
keys.

Implementing a Subclass

In your subclass of IOFrameBufferDisplay, you must implement the following

methods:

» initfromDeviceDescription:
* enterLinearMode
» revertToVGAMode

You might also need to implement two more methods:
 If the hardware supports setting brightness, you must implese&@itightness:

* To support multiple gamma correction tables, implement
setTransferTable:count.

Instance Variables

None declared in this class.

Method Types

Creating and initializing IOFrameBufferDisplays
+ probe:
— initFromDeviceDescription:

Getting and setting parameters - getintValues:forParameter:.count:
- setCharValues:forParameter:count:
- setIntValues:forParameter:count:

Handling the cursor — hideCursor:
— moveCursor:frame:token:
— showCursor:frame:token:

Setting screen brightness - setBrightness:token:

Setting the gamma correction table
- setTransferTable:count:

Mapping the frame buffer — mapFrameBufferAtPhysicalAddress:length:
Choosing display modes - enterLinearMode
- revertToVGAMode

- selectMode:count:
— selectMode:count:valid:

Class Methods

probe:
+ (BOOL)probe:deviceDescription

Without checking for the presence of hardware, allocates and initializes an
IOFrameBufferDisplay. You shouldn’t reimplement this method.

If the initialization (done withnitFromDeviceDescription:) is unsuccessful, this
method returns NO. Otherwise, this method sets the device kind to “Linear
Framebuffer”, invokesegisterDevice and returns YES.

See also: - initFromDeviceDescription:

Instance Methods

enterLinearMode
- (void)enterLinearMode

Implemented by subclasses to put the display into linear frame buffer mode. This
method is invoked by the system when appropriate, such as when the window server
starts running.

See also: -revertToVGAMode

getintValues:forParameter:count:

- (IOReturnpetintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned int *ount

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parametersdoper.

See also: - getintValues:forParameter:count: (IODevice)

hideCursor:
— hideCursor: (int)token

Implements this method, as described in the I0ScreenEvents protocol specification.
You should never need to invoke or implement this method.

initFromDeviceDescription:
— initFromDeviceDescription:deviceDescription

InvokesinitFromDeviceDescription: onsuper. If successful, sets the unit number
and the name (to “Display” followed by the unit number). Frees itself if initialization
was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary
to set up the device and the driver. This includes setting the 10DisplayInfo structure
(as described in the 10Display class description) and invoking
mapFrameBufferAtPhysicalAddress:length: If possible, this method should also
check the hardware to see if it matches the IOConfigTable. If the hardware doesn’t
match, the driver should do what it can to ensure that the display is still usable.

See also: + probe:

mapFrameBufferAtPhysicalAddress:length:

- (vm_address_mapFrameBufferAtPhysicalAddress{unsigned indddress
length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device
driver. If addresss 0, this method maps the physical memory corresponding to local
memory range 0, antumBytess ignored. Ifaddresss not 0, the reserved resources
are overridden-addresss used as the physical memory addressnamiBytess

used as the length. The mapped memory range is cached as specified in the
IODisplayinfo for this instance.

Note: When overriding reserved resources, you can’t map memory outside of the
memory range reserved for the device. However, you can map a subset of the
memory range.

You should invoke this method during initialization.

Returns the virtual address that correspondsltivess If the memory mapping failed,
this method logs an error message and returns NULL.

See also: - initFromDeviceDescription:

moveCursor:frame:token:

— moveCursor:(Point *)cursorLoc
frame: (int)frame
token:(int)token

Implements this method, as described in the I0ScreenEvents protocol specification.
You should never need to invoke or implement this method.

revertToVGAMode

- (void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it's
in and enter a mode in which it can be used as a standard VGA device.

See also: — enterLinearMode

selectMode:count:
- (int)selectMode(const IODisplayInfo *jnodeListcount:(int)count

InvokesselectMode:count:valid; specifying O for the last argument.

selectMode:count:valid:

— (int)selectMode(const 10Displayinfo *nodeList
count:(int)count
valid: (const BOOL *)sValid

Determines which IODisplayInfo in the driver-suppl@ddeListmatches the value

of the “Display Mode” key in the device’s I0OConfigTable. Drivers that support
multiple advanced modes should invoke this method during initialization. When the
driver receives anterLinearMode message, it should enter the mode selected by
this method. If this method doesn’t find a valid mode, the driver should determine a
mode that will work.

The “Display Mode” key is a configuration key that can be used by drivers to support
multiple modes—for example, both 8-bit gray and 16-bit RGB. 10DisplayInfo is
defined in the header fildriverkit/displayDefs.h.

ThemodeListargument should contain a IODisplaylnfo for each advanced mode the
driver supports. Theountargument should specify the number of IODisplaylInfos in
modeListisValid should either be 0 (in which case it's ignored) or an array that
corresponds to theodeList If isValid[1] is NO, for example, then this method

ignores the 10Displayinfo pointed to nyodeLisil].

If this method finds a match, it returns the index of the matching IODisplayInfo in
modelList If the “Display Mode” key is missing or its value is improperly formatted,
or if a corresponding IODisplayinfo isn’t found, this method returns -1.

See the I0Display class description for information on display modes and the
IODisplaylinfo type.

setBrightness:token:
- setBrightness(int)leveltoken:(int)token

Checks whethdevelis between EV_SCREEN_MIN_ BRIGHTNESS and
EV_SCREEN_MAX_ BRIGHTNESS (inclusive). If not, this method logs an error
message. Subclasses that support brightness changes should override this method and
implement it as described in the I0ScreenEvents protocol specification.

Returnsself.

setCharValues:forParameter:count:

— (IOReturnyetCharValues(unsigned char f)arameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned inyount

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parametersdoper.

See also: - setCharValues:forParameter:.count: (IODevice)

setIntValues:forParameter:count:

- (IOReturn¥etintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned ingount

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parametersdoper.

See also: - setintValues:forParameter:count: (IODevice)

setTransferTable:count:
- setTransferTable:(const unsigned int table count:(int)ynumEntries

Specifies new gamma correction values to be used by the hardware. The default
implement does nothing but retwself. Subclasses that support multiple gamma
correction transforms must override this method so that it sets the hardware to reflect
the values inable

Gamma correction is necessary because displays respond nonlinearly to linear ranges
of voltage. For example, consider a pixel that can have red, green, and blue values
between 0 and 15. This pixel's brightness when the values are (7, 0, 0) might be more
than 7/15 its brightness when the values are (15, 0, 0). Gamma correction lets the
hardware adjust the voltage of the beam—for example, using 6.5/15 of maximum
voltage instead of 7/15, so that the pixel isn’t too bright.

Each entry inable specifies the gamma correction (a value scaled to be between 0

and 255, inclusive) for the corresponding pixel component values. For example, for
RGB color modedabld7] specifies the gamma corrections for a red value of 7, a
green value of 7, and a blue value of 7 (using one byte of the entry per component). If
a pixel's value is (0, 5, 15), for example, the hardware should use the red gamma
correction fromtablg0], the green gamma correction fraablg5], and the blue

gamma correction froablg15]. Which bytes you use from each table entry depends
on whether the transfer table is for a color or black-and-white mode; you can
determine the mode from the valuenoimEntries

WhennumEntriess |IO_2BPP_TRANSFER_TABLE_SIZE or
IO_8BPP_TRANSFER_TABLE_SIZE (as defined in the header file
driverkit/displayDefs.h), the table is for a black-and-white display. In this case,
each table entry has only one meaningful byte: the least significant byte.

WhennumEntrieds 10_12BPP_TRANSFER_TABLE_SIZE,
IO_15BPP_TRANSFER_TABLE_SIZE, or I0_24BPP_TRANSFER_TABLE_SIZE,
the table is for an RGB display, and each entry has three meaningful bytes. The most
significant byte holds the red gamma correction, the next most significant byte holds
the green gamma correction, and the next holds the blue gamma correction. The least
significant byte holds no information.

The following example shows how to copy the correction information from the
transfer table to a particular type of hardware.

[* This driver implements setTransferTable: so that it copies the

* table values into a table that contains first all the red

values,

* then all the green values, and then all the blue values. It

* defines 3 instance variables -- redTransferTable,

* greenTransferTable, and blueTransferTable -- to point to where
* each component’s values begin in the copied table. Finally,

* it puts the values in the hardware gamma correction table. */

- setTransferTable:(unsigned int *)table count:(int)jnumEntries

i
int k;

[* redTransferTable, greenTransferTable, and blueTransferTable
* are driver-defined instance variables
if (redTransferTable !=0)

IOFree(redTransferTable, 3 * transferTableCount);

transferTableCount = numEntries;

redTransferTable = IOMalloc(3 * numEntries);
greenTransferTable = redTransferTable + numEntries;
blueTransferTable = greenTransferTable + numEntries;

switch ([self displaylInfo]->bitsPerPixel) {
case 10_2BitsPerPixel:
case |0_8BitsPerPixel:
for (k = 0; k < numEntries; k++) {
redTransferTable[k] = greenTransferTable[k] =
blueTransferTable[K] = table[k] & OxFF;
}

break;

case |0_12BitsPerPixel:
case IO_15BitsPerPixel:
case |0_24BitsPerPixel:
for (k = 0; k < numEntries; k++) {
redTransferTable[k] = (table[k] >> 24) & OxFF;
greenTransferTable[k] = (table[k] >> 16) & OxFF;
blueTransferTable[k] = (table[k] >> 8) & OXFF;
}

break;

default:
IOFree(redTransferTable, 3 * numEntries);
redTransferTable = 0;
break;

[self setGammaTable]; /* subclass method */
return self;

}

[* subclass function */

static void

SetGammaValue(unsigned int r, unsigned int g, unsigned int b,
int level)

/* EV_SCALE_BRIGHTNESS is a macro defined in bsd/dev/ev_types.h
* that scales a pixel value to the specified brightness level.

*/
outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, r));
outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, g));
outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, b));

}

[* subclass method */
- setGammaTable
{
unsigned int i, j, g;
const IODisplayInfo *displayInfo;

displayInfo = [self displayInfo];
outb(PALETTE_WRITE, 0x00);

[* brightnessLevel is a subclass ivar initialized to

* EV_SCREEN_MAX BRIGHTNESS; setBrightness: changes it */

if (redTransferTable !=0) {

for (i = 0; i < transferTableCount; i++) {
for (j = 0; j < 256/transferTableCount; j++) {
SetGammaValue(redTransferTablel[i],
greenTransferTable[i],
blueTransferTable[i],
brightnessLevel);

}

return self;

}

Gamma correction transforms are set usings#tfamebuffertransfer PostScript
operator. The Window Server uses the functions specifisdtiramebuffertransfer

to fill the values used itable It then passes the values down the display system so
that eventually theetTransferTable:count: message is invoked.

Note: The default transfer table cannot be specified using Netinfo, despite the
claims of thesetframebuffertransfer documentation.

See also: setframebuffertransfer PostScript OperatoNEXTSTEP General
Reference

showCursor:frame:token:

- showCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the I0ScreenEvents protocol specification.
You should never need to invoke or implement this method.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IONetbufQueue

Inherits From: Object

Declared In: driverkit/IONetbufQueue.h

Class Description

IONetbufQueue is used by network device drivers to store packets until they’re
transmitted. IONetbufQueue is a first-in first-out (FIFO) queue.

Instance Variables

None declared in this class.

Method Types

Creating and initializing instances
— initWithMaxCount:

Adding and removing netbufs from the queue
- enqueue:
- dequeue

Getting the size of the queue - count
— maxCount

Instance Methods

count
— (unsigned ingount

Returns the number of netbufs in the IONetbufQueue.

See also: — maxCount

dequeue
— (netbuf_tdlequeue

Removes and returns the netbuf that has been in the queue the longest. Returns NULL
if no netbufs are in the queue.

enqueue:
- (void)enqueue(netbuf_thetbuf

Adds the specified netbuf to the queue, unless the queue already has reached its
maximum length. If the queue is at its maximum length, the netbuf is freed.

See also: - count, — maxCount

initWithMaxCount:
— initWithMaxCount: (unsigned inthaxCount

Initializes and returns a newly allocated IONetbufQueue. The maximum number of
netbufs in the queue is setrtaxCount

maxCount

- (unsigned inthaxCount

Returns the maximum number of netbufs that can be in the IONetbufQueue. This
number is set at initialization time.

See also: — maxCount, — initWithMaxCount:

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IONetwork

Inherits From: Object

Declared In: driverkit/IONetwork.h

Class Description

The IONetwork class connects direct drivers, such as Ethernet drivers, into the kernel
network interface. One IONetwork object is associated with each instance of a
network direct driver. In the future, support may be added for indirect network

drivers, as well.

Network direct drivers must implement the IONetworkDeviceMethods protocol, so
that the IONetwork can send them messages.

Note: Network drivers must run in the kernel.

See the I0OEthernet specification for information on how to write Ethernet drivers, and
the IOTokenRing specification for information on writing Token Ring drivers. See
Chapter 8, “Network Modules,” INEXTSTEP Operating System Softwaremore
information about network drivers.

Instance Variables

None declared in this class.

Method Types

Initializing an IONetwork instance
— initForNetworkDevice:name:unit:type:
maxTransferUnit:flags:
- finishlnitialization

Passing packets from the driver up to the protocol stack
— handlelnputPacket:extra:

Outputting a packet — outputPacket:address:

Performing a command - performCommand:data:

Allocating a network buffer — allocateNetbuf

Keeping statistics — collisions
- incrementCollisions
- incrementCollisionsBy:
- incrementinputErrors
— incrementinputErrorsBy:
- incrementlnputPackets
- incrementinputPacketsBy:
- incrementOutputErrors
- incrementOutputErrorsBy:
- incrementOutputPackets
- incrementOutputPacketsBYy:
— inputErrors
- inputPackets
— outputErrors
- outputPackets

Instance Methods

allocateNetbuf
— (netbuf_tallocateNetbuf

This method creates and returns a netbuf to be used for an impending output.

This method doesn’t always have to return a buffer. For example, you might want to
limit the number of buffers your driver instance can allocate (say, 200 kilobytes
worth) so that it won’t use too much wired-down kernel memory. When this method
fails to return a buffer, it should return NULL.

Here’s an example of implementiafocateNetbut

#define my_HDR_SIZE 14
#define my_MTU 1500
#define my_MAX_PACKET (my_HDR_SIZE + my_MTU)

- netbuf_t allocateNetbuf

if (_numbufs == _maxNumbufs)
return(NULL);
else {
_numbufs++;
return(nb_alloc(my_MAX_PACKET));
}
}

See also: nb_alloc() (NEXTSTEP Operating System Software)

collisions
- (unsigned ingollisions

Returns the total number of network packet collisions that have been detected since
boot time.

finishinitialization
- (int)finishinitialization
This method should perform any initialization that hasn't already been done. For

example, it should make sure its hardware is ready to run. You can specify what the
integer return value (if any) should be.

If you implement this method, you need to check that [self iSRunning] == YES.

handlelnputPacket:extra:
- (inthandlelnputPacket:(netbuf_tpacketextra: (void *)extra

Increments the number of input packets and passaeettio the kernel for
processing. The kernel dispatches the packet to the appropriate protocol handler, as
describeck<only in the OS book, for now>>

A network device driver should invoke this method after it's processed a newly
received packet. The value @ttrashould be zero, unless the protocol handler
requires another value. For instance, token ring drivers need to return a valid pointer
to a token ring header. This method returns EAFNOSUPPORT if no protocol handler
accepts the packet; otherwise, it returns zero.

incrementCollisions
- (void)incrementCollisions

Increments by one the total number of network packet collisions that have been
detected since boot time.

incrementCollisionsBy:
— (void)incrementCollisionsBy:(unsigned inihcrement

Increments byncrementhe total number of network packet collisions that have been
detected since boot time.

incrementinputErrors

- (void)incrementlnputErrors

Increments by one the total number of packet input errors that have been detected
since boot time.

incrementinputErrorsBy:
- (void)incrementinputErrorsBy: (unsigned inihcrement

Increments byncrementhe total number of packet input errors that have been
detected since boot time.

incrementinputPackets
- (void)incrementlnputPackets

Increments by one the total number of packets that have been received by the
computer since boot time. You usually don’t need to invoke this method because
handlelnputPacket:extra: does so for you.

incrementinputPacketsBy:
- (void)incrementinputPacketsBy:(unsigned inipcrement

Increments byncrementthe total number of packets that have been received by the
computer since boot time.

incrementOutputErrors
— (void)incrementOutputErrors

Increments by one the total number of packet output errors that have been detected
since boot time.

incrementOutputErrorsBy:
- (void)incrementOutputErrorsBy: (unsigned infpcrement

Increments byncrementthe total number of packet output errors that have been

detected since boot time.

incrementOutputPackets
— (void)incrementOutputPackets

Increments by one the total number of packets that have been transmitted by the
computer since boot time.

incrementOutputPacketsBY:
- (void)incrementOutputPacketsBy{unsigned inihcrement

Increments byncrementthe total number of packets that have been transmitted by
the computer since boot time.

initForNetworkDevice:name:unit:type:maxTransferUnit:flags:

- initForNetworkDevice: device
name;:(const char *lame
unit: (unsigned intynit
type:(const char *ype
maxTransferUnit: (unsigned inthtu
flags:(unsigned infjlags

Initializes and returns the IONetwork instance associated with the specified direct
device driverdevice This method connectieviceinto the kernel's networking
subsystem. It's typically called from a network driver’'s implementation of
initFromDeviceDescription. You shouldn’t invokenitForNetworkDevice:...

directly. IOEthernet and I0TokenRing invoke this method on behalf of their
subclasses and return an IONetwork object in their respective
attachToNetworkWithAddress: methods.

The nameargument should be set to a constant string that names this type of network
device. For example, Ethernet drivers are named “en”, and Token Ring drivers are
named “tr”. Theunitis an integer greater than or equal to zero that’s uniquefoe

For example, the first instance of an Ethernet driver is unit O, the second is unit 1, and
S0 on.

Thetypeis a constant string that describes this module. For example, Ethernet drivers
supply the constant IFTYPE_ETHERNET (which is definedetietherdefs.hto be
“10MB Ethernet”).

Themtuis the maximum amount of data your module can send or receive. For
example, Ethernet drivers use the vaaelERMTPwhich is defined in the header file

net/etherdefs.has150Q

Finally, flags defines the initial flags for the interface. Possible values are:

IFF_UP: If true, this interface is working.

IFF_BROADCAST: If true, this interface supports broadcast.

IFF_LOOPBACK: If true, this interface is local only.

IFF_POINTTOPOINT: If true, this is a point-to-point interface.
inputErrors

— (unsigned infpputErrors

Returns the total number of packet input errors that have been detected since boot
time.

inputPackets
- (unsigned inipputPackets

Returns the total number of packets that have been received by the computer since
boot time.

outputErrors
— (unsigned ingutputErrors

Returns the total number of packet output errors that have been detected since boot
time.

outputPacket:address:
- (int)outputPacket:(netbuf_tpacketaddress(void *)address
This method should deliver the specified packet to the given address. Its return value

should be zero if no error occurred; otherwise, return an error number from the header
file sys/errno.h

If you implement this method, you need to check that [self isRunning] == YES. If so,
insert the necessary hardware addresses into the packet and check it for minimum
length requirements.

outputPackets

- (unsigned infutputPackets

Returns the total number of packets that have been transmitted by the computer since
boot time.

performCommand:data:
- (int)performCommand:(const char *)commandata:(void *)data

This method performs arbitrary control operations; the character stimmands

used to select between these operations. Although you don’t have to implement any
operations, there are five standard operations. You can also define your own
operations.

The standard commands are listed in the following table. The constant strings listed
below are declared in the header filt/netif.h (under theosd directory of
/NextDeveloper/Headers

Command Operation

IFCONTROL_SETFLAGS Request to have interface flags turned on or off.
Thedataargument for this command is of type
union ifr_ifru (which is declared in the header file
net/if.h).

IFCONTROL_SETADDR Set the address of the interface.
IFCONTROL_GETADDR Get the address of the interface.
IFCONTROL_AUTOADDR Automatically set the address of the interface.

IFCONTROL_UNIXIOCTL Perform a UNIXoctl() command. This is only for
compatibility;ioctl() isn’t a recommended
interface for network drivers. The argument is of
typeif_ioctl_t *, where thef_ioctl_t structure
contains the UNIX ioctl request (for example,
SIOCSIFADDR) in theoctl_commandfield and
the ioctl data in theoctl_data field.

An example of implementingerformCommand:data: follows.
- (int)performCommand:(const char *)command data:(void *)data
int error = 0;

if (strcmp(command, IFCONTROL_SETFLAGS) == 0)
/* do nothing */;

else

if (strcmp(command, IFCONTROL_GETADDR) == 0)
bcopy(&my_address, data, sizeof (my_address));

else

error = EINVAL;

return (error);

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOPCIDeviceDescription

Inherits From: IOEISADeviceDescription : I0DeviceDescription : Object

Declared In: driverkit/i386/IOPCIDeviceDescription.h

Class Description

IOPCIDeviceDescription objects encapsulate information about IODirectDevices that
run on PCl-compliant computers. Usually, you need only to pass around
IOPCIDeviceDescriptions, without creating them, subclassing them, or sending
messages to them. IOPCIDeviceDescriptions are created by the system and
initialized from IOConfigTables.

This object encapsulates the PCI Configuration Space address of the device. This
address contains three fields:

» Device number, ranging from 0 to 31
» Function number, ranging from 0 to 7
* Bus number, ranging from 0 to 255

Instance Variables

None declared in this class.

Method Types

Getting config address of PCI device
- getPCldevice:function:bus:

Instance Methods

getPCldevice

— (IOReturnpetPCldevice(unsigned char tjeviceNumber
function: (unsigned char functionNumber
bus:(unsigned char HusNumber

This method allows callers to get the PCI config address of the PCI device associated
with this device description. If all goes well, the three parameters are filled in and
IO_R_SUCCESS is returned. There are a variety of reasons that the address couldn’t
be known, in which case an appropriate code is returned and the parameters are left
untouched. It is acceptable for any of the parameter pointersiib. be

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IOPCMCIADeviceDescription

Inherits From: IOEISADeviceDescription : I0DeviceDescription : Object

Declared In: driverkit/i386/IOPCMCIADeviceDescription.h

Class Description

IOPCMCIADeviceDescription objects encapsulate information about
IODirectDevices that run on PCMCIA-compliant computers. Usually, you need only
to pass around IOPCMCIADeviceDescriptions, without creating them, subclassing
them, or sending messages to them. IOPCMCIADeviceDescriptions are created by

the system and initialized from IOConfigTables.

Instance Variables

None declared in this class.

Method Types

Getting information about tuples — numTuples
- tupleList

Instance Methods

numTuples
- (unsignedyumTuples

Returns the number of items in the tuple list.

See also: tupleList

tupleList
— (id *)tupleList

Returns the tuple list.

See also: numTuples

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IOPCMCIATuple

Inherits From: IOPCMCIATuple : Object

Declared In: driverkit/i386/IOPCMCIATuple.h

Class Description

IOPCMCIATuple objects encapsulate configuration information about
IODirectDevices that run on PCMCIA-compliant computers. Data from a “tuple” is
from information stored on the PCMCIA card; each tuple stores a separate piece of
information. IOPCMCIADeviceDescription objects typically contain a list of
IOPCMCIATuple objects, containing such configuration data as electrical
requirements, I/O port ranges, and timing information.

Usually, you need only to pass around IOPCMCIATuple objects, without creating
them, subclassing them, or sending messages to them. IOPCMCIATuples are created
by the system.

Instance Variables

None declared in this class.

Method Types

Getting information from a tuple
- code
- data
- length

Instance Methods

code
- (unsigned chacpde

Returns a code describing the contents of the tuple, as described in the PCMCIA

standard.

See also: data, length

data
- (unsigned char fata

Returns the tuple data, which is in machine readable form.

See also: code, length

length
- (unsignedgngth
Returns the length of the tuple data in bytes.

See also: code, data

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|IOSCSIController

Inherits From: IODirectDevice : IODevice : Object
Conforms To: IOSCSIControllerExported
Declared In: driverkit/lIOSCSIController.h

Class Description

IOSCSIController is an abstract class for managing SCSI controllers. It provides a
framework for making SCSI requests and providing standard statistics. It also
provides an I/O thread.

Implementing a Subclass

To write a driver for a SCSI controller, you create a subclass of IOSCSIController.
Your subclass must do the following:

* Implementprobe: (as documented in IODevice) and
initFromDeviceDescription:. These let your driver create instances of itself.

* ImplementexecuteRequest:buffer:client:andresetSCSIBus
» Implement timeouts, as described in “Implementing Timeouts,” below.
* ImplementinterruptOccurred , as documented in IODirectDevice.

To support standard statistics, you should implersemQueuelLengths
maxQueueLength numQueueSamplesandresetStats as described in “Supporting
Standard Statistics,” below.

Implementing Timeouts

To implement timeouts, you need to implementtimeoutOccurred: method (as
documented in I0DirectDevice) and make sure that your driver sends a timeout
message whenever a request has taken too much time. To do the latter, your
executeRequest:buffer:client:method should ud®ScheduleFunc()to schedule a
function; the method should then start 1/O. If the I/O finishes before the function has
executedexecuteRequest:buffer:client:should unschedule the function.

Otherwise, the function should send a timeout message (one mgg adfield set to
IO_TIMEOUT_MSG) to the instance’s interrupt port. An example is below.

Italicized text delineated in angle brackets, that is << >>, is to be filled in with
device-specific code.

In executeRequest:buffer:client:
<< ...Construct a device-dependent command buffer “ccb”...
Since the function we schedule won't be called from the I/O
task, it must use msg_send_from_kernel. This means that we
must convert the interrupt port from the I/O task space to
one
that’s valid in the regular kernel space. We do this in
initFromDeviceDescription: as follows:
interruptPortKern = IOConvertPort([self
interruptPort],
10_KernellOTask, 10_Kernel); >>
ccb->timeoutPort = interruptPortKern;
I0OScheduleFunc(myTimeout, cch, scsiRequest->timeoutLength);
<< ...Start the I/O and wait for it to finish... >>
(void) I0UnscheduleFunc(myTimeout, cch);

/* This method just logs a warning and sends a timeout message. */
static void myTimeout(void *arg)

{

struct ccb *ccb = arg;
msg_header_t msg;

if(lccb->in_use) {
/* Race condition - this CCB got completed another way. */
return;

}

msg.msg_remote_port = cch->timeoutPort;

msg.msg_id = I0_TIMEOUT_MSG;

IOLog("mySCSIController timeout\n™);

(void) msg_send_from_kernel(&msg, MSG_OPTION_NONE, 0);

Supporting Standard Statistics

Subclasses of IOSCSIController can provide information used hgdta command
and any other statistics-gathering modules. To provide this information, the
IOSCSIController must look at the number of requests in its queue of I/O requests,
keeping track of the following:

» The total number of requests detected in the queue. The IOSCSIController should
implementsumQueuelLengthsso that it returns this value.

* The highest number of requests in the queue at one time. This value should be
returned bymaxQueueLength

* The number of times the driver has looked at the queuendih@ueueSamples
method should return this value.

For example, assume the IOSCSIController has looked at its list of outstanding 1/0
requests three times, and found 1 request the first time, 5 the second, and 2 the third.
At this point,sumQueueLengthsshould return 8naxQueuelLengthshould return 5,

andnumQueueSampleshould return 3. The average number of requests in the list is
sumQueuelengthdivided bynumQueueSamples

The IOSCSIController should reset all these values to 0 whenever it receives a
resetStatsmessage.

Instance Variables

None declared in this class.

Adopted Protocols

IOSCSIControllerExported -
allocateBufferOfLength:actualStart:actualLength:

— executeRequest:buffer:client:
- getDMAAlignment:

— maxTransfer

- releaseTarget:lun:forOwner:
- reserveTarget:lun:forOwner:
- resetSCSIBus

- returnFromScStatus:

Method Types

Initializing a newly allocated IOSCSIController
— initFromDeviceDescription:

Reserving target/lun pairs - numReserved

Getting and setting parameters - getintValues:forParameter:count:
- setIntValues:forParameter:count:

Collecting statistics — maxQueuelLength
- numQueueSamples
- sumQueuelLengths
— resetStats

Instance Methods

getintValues:forParameter:count:

- (IOReturnpetintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned int *ount

Handles the two parameters specific to SCSI
controllers—IO_SCSI_CONTROLLER_STATS and

IO_IS_A SCSI_CONTROLLER—and forwards the handling of all other parameters
to super. The array of values returned for IO_SCSI_CONTROLLER_STATS is set to
the numbers returned lyaxQueuelLength numQueueSamplesand
sumQueuelLengthsNo array is returned for IO_IS_A_SCSI_CONTROLLER; only
IO_R_SUCCESS is returned, to indicate that this IODevice is indeed a SCSI
controller.

See also: - setIntValues:forParameter:count:

initFromDeviceDescription:
- initFromDeviceDescription:deviceDescription

Initializes a new IOSCSIController instance. After invoking I0DirectDevice’s

version ofinitFromDeviceDescription:, this method starts an I/O thread (with
startlOThread) and sets its unit, name, and device kind. Each IOSCSIController has
its own unit number. The first instance’s unit is 0, the second is 1, and so on. The
name is the concatenation of “sc” and the unit (for example, “sc0”), and the device
kind is “sc”.

This method also determines the alignment restrictions for the hardware, using the
getDMAAlignment: method. The alignment restrictions are used by the method
allocateBufferOfLength:actualStart:actualLength:.

This method returnsil and frees the instance if initialization failed; otherwise, it
returnsself.

You should implement this method to invoke IOSCSIController’s version and to then
perform any driver-dependent initialization, including initializing the hardware and (at
the very end) invokingegisterDevice

maxQueueLength
- (unsigned inthaxQueuelLength

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the highest number of requests queued since this instance
was initialized oresetStatswas last called. See the class description for more
information on supporting standard statistics.

numQueueSamples
- (unsigned influmQueueSamples

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the number of times the instance has collected information
about its queue of 1/0 requests. This number should be reset to 0 when this instance is
initialized and whemesetStatsis called. See the class description for more

information on supporting standard statistics.

numReserved
- (unsigned inhumReserved

Returns the number of target/lun pairs that are reserved. Each pair corresponds to an
active device on the SCSI bus that this instance controls.

See also: -reserveTarget:lun:forOwner: and- releaseTarget:lun:forOwner:
(IOSCSIControllerExported protocol)

resetStats

- (void)resetStats
Does nothing. Subclasses that support standard statistics should implement this
method so that it resets to zero the numbers that are returmeakQueuelength

numQueueSamplesandsumQueuelengths See the class description for more
information on supporting standard statistics.

setintValues:forParameter:count:

- (IOReturn¥etintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned ingount

Handles the I0O_SCSI_CONTROLLER_STATS parameter, forwarding the handling
of all other parameters super. The I0_SCSI_CONTROLLER_STATS parameter
resets (usingesetStatg the standard statistical data kept by this instance.

See also: - getintValues:forParameter:count:

sumQueuelengths

- (unsigned inumQueuelLengths

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the total number of requests detected in its queue of I/O
requests. This number should be reset to 0 when this instance is initialized and when
resetStatsis called. See the class description for more information on supporting
standard statistics.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

IOSVGADisplay

Inherits From: IODisplay : I0DirectDevice : I0Device : Object
Conforms To: IOScreenEvents
Declared In: driverkit/IOSVGADisplay.h

Class Description

IOSVGADisplay is an abstract class for managing Super VGA (SVGA) video
displays. It provides most of the functionality needed by SVGA drivers. Functionality
that varies from card to card must be provided by subclasses of IOSVGADisplay. In
particular, different SVGA cards have different ways of setting the current plane and
segment and of entering and exiting SVGA modes.

IOSVGADisplay supports 2-bit grayscale modes; it doesn’t currently support 8-bit
gray or color modes. To provide 2-bit grayscale support, IOSVGADisplay uses 2 of
the 8 planes associated with screen pixels. The IOSVGADisplay subclass maps the
values in the two planes into four entries in the hardware color palette, as described in
enterSVGAMode.

Because the VGA specification allows only 64KB of screen memory to be mapped
(from 0xa0000 to Oxbffff), the screen is split up into segments of 64KB or less. The
display system tells the driver which segment and plane to map into the 64KB of
available space. For a screen that's 768 pixels high by 1024 wide, the first 64KB
segment (segment 0) consists of the top 512 rows of pixels. The next segment consists
of the bottom 256 rows.

To write an SVGA display driver, you need to write two software modules:

» A subclass of IOSVGADisplay
» Five functions to be loaded into a user-level PostScript driver

How to write these modules is described below. See the IODisplay class description
for additional notes on implementing a display driver.

Implementing a Subclass
In your subclass of IOSVGADisplay, you must implement the following methods:

» initfromDeviceDescription:
* enterSVGAMode

* revertToVGAMode

* savePlaneAndSegmentSettings

» restorePlaneAndSegmentSettings
» setReadPlane:

* setReadSegment:

» setWritePlane:

» setWriteSegment:

If the hardware supports setting brightness, you should also implement
setBrightness:token:

Writing Functions for the PostScript Driver

Besides implementing a subclass of IOSVGADisplay, you also need to write five C
functions. One, namd®SetSVGAFunctions(), should fill in the structure it's

passed with pointers to the other four functions. It should return zero on success. The
other four functions correspond exactly to four methods that you must also implement;
each function should have exactly the same code as its corresponding method.

Function Prototype Corresponding Method

void setReadPlan@nsigned chanum) setReadPlane:
void setReadSegmdnhsigned chanun) setReadSegment:
void setWritePlan@unsigned chanum) setWritePlane:
void setWriteSegmefutnsigned chanun) setWriteSegment:

Here’s an example of how to implemé@iSetSVGAFunctions().

void SetReadPlane(unsigned char num) . . .
void SetReadSegment(unsigned char num) . . .
void SetWriteSegment(unsigned char num) . . .
void SetWritePlane(unsigned char num) . . .

int I0SetSVGAFunctions(IOSVGAFunctions *funcs)
{

funcs->setReadSegment = SetReadSegment;
funcs->setWriteSegment = SetWriteSegment;
funcs->setReadPlane = SetReadPlane;
funcs->setWritePlane = SetWritePlane;

return O;

}
Note: The functions must contain only C code; Objective C code won't work.

The five functions should be defined in a user-level executable, to be loaded into the
SVGA PostScript driver at run time. You need to inform the PostScript driver of the
executable’s location using the configuration key “SVGA PostScript Driver
Extension”. You also need to specify the SVGA PostScript driver
(/usr/lib/NextStep/Displays/SVGA_psdrvi with the “PostScript Driver” key. For
example, the lines below specify that the SVGA PostScript driver should load the
executable nametisengLabsET4000_psdrvifrom the driver’s configuration

bundle.

"SVGA PostScript Driver Extension” = "TsengLabsET4000_psdrvr";
"PostScript Driver" = "/usr/lib/NextStep/Displays/SVGA_psdrvr";

Note: See the IODisplay class description for other configuration keys that must be
specified.

Instance Variables

None declared in this class.

Method Types
Creating and initializing IOSVGADisplays
+ probe:
— initFromDeviceDescription:

Getting and setting parameters - getintValues:forParameter:count:
- setIntValues:forParameter:count:

Handling the cursor — hideCursor:
— moveCursor:frame:token:
— showCursor:frame:token:

Setting screen brightness - setBrightness:token:
Mapping memory — mapFrameBufferAtPhysicalAddress:length:
Choosing video modes - enterSVGAMode

- revertToVGAMode

- selectMode:count:
— selectMode:count:valid:

Setting planes and segments - savePlaneAndSegmentSettings
- restorePlaneAndSegmentSettings
- setReadPlane:
- setReadSegment:
- setWritePlane:
- setWriteSegment:

Class Methods

probe:

+ (BOOL)probe:deviceDescription

Without checking for the presence of hardware, allocates and initializes an
IOSVGADisplay. You shouldn’t reimplement this method.

If initialization (done withinitFromDeviceDescription:) is unsuccessful, this
method returns NO. Otherwise, this method sets the device kind to “frame buffer”,
invokesregisterDevice and returns YES.

Instance Methods

enterSVGAMode
- (void)enterSVGAMode

Implemented by subclasses to put the display into SVGA mode. This method is
invoked by the system when appropriate, such as when the window server starts
running. This method should set up all the registers necessary for the selected mode,
set the color palette, and clear the screen.

You should set the color palette to contain values for the four supported shades of
gray in the first four entries; the rest of the entries should be zeroed out. NeXT drivers
currently use the palette values shown in the following table.

Color Palette Index Value
Black 0 0
Dark gray 1 0x26
Light gray 2 0x34
White 3 Ox3F

See also: -revertToVGAMode

getintValues:forParameter:count:

— (IOReturnpetintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned int *gount

Handles NeXT-internal parameters specific to IOSVGADisplays; forwards the
handling of all other parametersdoper.

hideCursor:
— hideCursor: (int)token

Implements this method, as described in the I0ScreenEvents protocol specification.
You should never need to invoke or implement this method.

initFromDeviceDescription:
— initFromDeviceDescription:deviceDescription

InvokesinitFromDeviceDescription: onsuper. If successful, sets the unit number
and the name (to “SVGADisplay” followed by the unit number). Frees itself if
initialization was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary
to set up the device and the driver. After invokimg-romDeviceDescription: on

super, this method should determine its mode (involsefgctMode:count:or
selectMode:count:valid; if necessary) and sgself displayMode]to the

IODisplaylnfo appropriate for the mode. The driver should finish by invoking
mapFrameBufferAtPhysicalAddress:length: and setting the 10ODisplayinfo’s
frameBuffer field to the value returned.

If possible, this method should check the hardware to see if it matches the
IOConfigTable. If the hardware doesn’t match, the driver should do what it can to
ensure that the display is still usable.

See also: [0Display class description (“IODisplayInfo”)

mapFrameBufferAtPhysicalAddress:length:

- (vm_address_mapFrameBufferAtPhysicalAddress{unsigned indddress
length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device
driver. If addresss 0, this method maps the physical memory corresponding to local
memory range 0, antumBytess ignored. Ifaddresss not O, the reserved resources
are overridden-addresss used as the physical memory addressnamiBytess

used as the length. The mapped memory range is cached as |O_WriteThrough.

Note: When overriding reserved resources, you can't map memory outside of the
memory range reserved for the device. However, you can map a subset of the
memory range.

You should invoke this method during initialization.

Returns the virtual address that correspondsltivess If the memory mapping failed,
this method logs an error message and returns NULL.

moveCursor:frame:token:

— moveCursor:(Point *)cursorLoc
frame: (int)frame
token:(int)token

Implements this method, as described by the I0ScreenEvents protocol. You should
never need to invoke or implement this method.

restorePlaneAndSegmentSettings
— (void)restorePlaneAndSegmentSettings

Implemented by subclasses to restore the plane and segment settings to the saved
values. This method is invoked by IOSVGADisplay’s cursor handling methods. The
cursor handling methods invokavePlaneAndSegmentSettingslo whatever is
necessary to update the cursor, and then inkedterePlaneAndSegmentSettings

to restore the display’s state.

Here’s an example of implementing this method by saving the current settings into
subclass-defined instance variables.

- (void)restorePlaneAndSegmentSettings

IOWriteRegister(EIDR_SEQ_ADDR, SEQ_AT_MPK, writePlane);
IOWriteRegister(EIDR_GCR_ADDR, GCR_AT_READ_MAPS, readPlane);
outb(EIDR_GCR_SEGS, readSegment);

outb(EIDR_GCR_SEGS, writeSegment);

revertToVGAMode
- (void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it's
in and enter a mode in which it can be used as a standard VGA device. Implementing
this method usually consists of setting registers that aren’t used by VGA.

savePlaneAndSegmentSettings
- (void)savePlaneAndSegmentSettings

Implemented by subclasses to save the current plane and segment settings. This
method is invoked by IOSVGADisplay’s cursor handling methods. The cursor
handling methods invokeavePlaneAndSegmentSettingslo whatever is necessary
to update the cursor, and then invo&storePlaneAndSegmentSettingto restore

the display’s state.

Each invocation ofavePlaneAndSegmentSettings followed by exactly one
invocation ofrestorePlaneAndSegmentSettingswith no intervening invocations of

savePlaneAndSegmentSetting$n other words, the driver only has to remember
one group of settings at a time.

Here’s an example of implementing this method by saving the current settings into
subclass-defined instance variables.

- (void)savePlaneAndSegmentSettings

writePlane = IOReadRegister(EIDR_SEQ_ADDR, SEQ_AT_MPK);
readPlane = IOReadRegister(EIDR_GCR_ADDR, GCR_AT_READ_MAPS);
readSegment = inb(EIDR_GCR_SEGYS);

writeSegment = inb(EIDR_GCR_SEGS);

selectMode:count:
- (int)selectMode(const IODisplayInfo *jnodeListcount:(int)count

InvokesselectMode:count:valid; specifying O for the last argument.

selectMode:count:valid:

- (int)selectMode(const IODisplaylnfo *nodeList
count:(int)count
valid: (const BOOL *)sValid

Determines which IODisplayInfo in the driver-suppl@ddeListmatches the value

of the “Display Mode” key in the device’s I0OConfigTable. Drivers that support
multiple advanced modes should invoke this method during initialization. When the
driver receives anterSVGAMode message, it should enter the mode selected by
this method. If this method doesn’t find a valid mode, the driver should determine a
mode that will work.

The “Display Mode” key is a configuration key that can be used by drivers to support
multiple modes—for example, 66 Hz and 72 Hz. I0ODisplayInfo is defined in the
header filedriverkit/displayDefs.h.

ThemodeListargument should contain an IODisplayinfo for each advanced mode the
driver supports. Theountargument should specify the number of IODisplaylInfos in
modeListisValid should either be 0 (in which case it's ignored) or an array that
corresponds to theodeList If isValid[1] is NO, for example, then this method

ignores the 10DisplayInfo pointed to nyodeListl].

If this method finds a match, it returns the index of the matching IODisplayInfo in
modeList. If the “Display Mode” key is missing or its value is improperly formatted,
or if a corresponding IODisplayinfo isn’t found, this method returns -1.

See the I0Display class description for information on display modes and the
IODisplayinfo type.

setBrightness:token:
— setBrightness(int)leveltoken:(int)token

Checks whethdevelis between EV_SCREEN_MIN_ BRIGHTNESS and
EV_SCREEN_MAX_ BRIGHTNESS (inclusive). If not, logs an error message.
Subclasses that support brightness changes should override this method. A typical
implementation has code like this:

/* Color palette constants (gamma 2.2, for typical CRT displays)
*

#define WHITE_PALETTE_VALUE Ox3F

#define LIGHT_GRAY_PALETTE_VALUE 0x34

#define DARK_GRAY_PALETTE_VALUE 0x26

#define BLACK_PALETTE_VALUE 0

unsigned char val,

val = EV_SCALE_BRIGHTNESS(level, WHITE_PALETTE_VALUE);
/* Write val to the hardware’s color palette entry for white */

val = EV_SCALE_BRIGHTNESS(level, LIGHT_GRAY_PALETTE_VALUE);
/* Write val to the entry for light gray *

val = EV_SCALE_BRIGHTNESS(level, DARK_GRAY_PALETTE_VALUE);
/* Write val to the entry for dark gray */

val = EV_SCALE_BRIGHTNESS(level, BLACK_PALETTE_VALUE);
/* Write val to the entry for black *

Returnsself.

setintValues:forParameter:count:

- (IOReturn¥etintValues:(unsigned int *parameterArray
forParameter: (IOParameterNamparameterName
count:(unsigned ingount

Handles NeXT-internal parameters specific to IOSVGADisplays; forwards the
handling of all other parametersdoper.

See also: - setintValues:forParameter:count: (IODevice)

setReadPlane:
- (void)setReadPlanegfunsigned chaplaneNum

Implemented by subclasses to set which of two planes the display subsystem will

read from. Only one plane can be active at a time. Here’s an example of implementing
this method.

#define GRAPHICS_CONTROLLER_REGISTER_ADDRESS 0x03CE
#define SEGMENT_REGISTER_INDEX 0x09

- (void)setReadSegment: (unsigned char)segmentNum

IOWriteRegister(GRAPHICS_CONTROLLER_REGISTER_ADDRESS,
SEGMENT_REGISTER_INDEX,
(segmentNum << 4));

}

See also: - setWritePlane:

setReadSegment:
- (void)setReadSegmen(unsigned chasegmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read
from.

#define GRAPHICS_CONTROLLER_REGISTER_ADDRESS 0x03CE
#define PLANE_REGISTER_INDEX 0x04
#define PROTECT_HIGH_REGISTER_BITS OxFC

- (void)setReadPlane: (unsigned char)planeNum
IOReadModifyWriteRegister(GRAPHICS_CONTROLLER_REGISTER_ADDRESS,
PLANE_REGISTER_INDEX,

PROTECT_HIGH_REGISTER_BITS,
planeNum);

}
See also: - setWriteSegment:

setWritePlane:
- (void)setWritePlane:(unsigned chaplaneNum

Implemented by subclasses to set which of two planes the display subsystem will
write to. Only one plane can be active at a time.

See also: - setReadPlane:

setWriteSegment:
- (void)setWriteSegment(unsigned chasegmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read
from.

See also: - setReadSegment:

showCursor:frame:token:

- showCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the I0ScreenEvents protocol specification.
You should never need to invoke or implement this method.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

|OTokenRing

Inherits From: IODirectDevice : IODevice : Object
Conforms To: IONetworkDeviceMethods
Declared In: driverkit/lOTokenRing.h

Class Description

IOTokenRing is an abstract class for controlling Token Ring devices. It provides a
framework for sending and receiving packets (also knoviraaseg, handling

interrupts, and setting and detecting timeouts. It also provides an IONetwork instance
that connects the driver with the kernel networking subsystem, as well as an 1/0O
thread from which most of the IOTokenRing instance methods are invoked. To write a
Token Ring driver, you create a subclass of IOTokenRing.

Implementing a Subclass
Your subclass of IOTokenRing must do the following:

* Implementprobe: andinitFromDeviceDescription:. These let your driver create
instances of itself. The implementationpwbbe: should allocate an instance, if
necessary, and invokeitFromDeviceDescription:. See the IODevice
specification for more information on implementioigpbe:.

* ImplementresetAndEnable; andinterruptOccurred . (interruptOccurred is
documented in the 10DirectDevice specification.)

* Implement eithetransmit: or outputPacket:address:

IONetwork Method Usage

When your driver invokes IONetwork’s methbdndlelnputPacket:extra: to hand
off a packet to the kernel, it needs to pass a valid pointer to a tokenHesdet &s
theextra: argument. Passing O for this argument (as ethernet drivers do) won't
suffice.

IONetworkDeviceMethods Protocol Implementation

In IOEthernet’s implementation, finishinitialization invokes resetAndEnable:YES if

[self isRunning] == YES.

Recommended Reading

Besides the documentation for your hardware, see the references in the “Network
Drivers” section of “Suggested Reading” in the Appendix to help you write a Token
Ring driver.

Instance Variables

None declared in this class.

Adopted Protocols

IONetworkDeviceMethods — allocateNetbuf
- finishlnitialization
— outputPacket:address:
- performCommand:data:

Method Types

Creating and destroying I0TokenRing instances
- free
— initFfromDeviceDescription:
— attachToNetworkWithAddress:

Transmitting packets — transmit:

Setting and handling hardware timeouts
- setRelativeTimeout:
- relativeTimeout
- clearTimeout

Setting and getting the state of the hardware
- setRunning:
- isRunning
- resetAndEnable:

Setting and getting maximum sizes
- setMaxInfoFieldSize:
— maxinfoFieldSize

Getting other configuration information
— earlyTokenEnabled
- nodeAddress
- ringSpeed
- shouldAutoRecover

Instance Methods

attachToNetworkWithAddress:
— (IONetwork *)attachToNetworkWithAddress:(token_addr_gddress

InvokesregisterDevice sets the node addressatidress creates an IONetwork

instance, and attaches to the network subsystem by sending the IONetwork an
initForNetworkDevice:... message. Besides starting up the IP protocol stack for the
device, this method also starts up an 802.2-compliant Null SAP interface. Finally, this
method logs a message stating the node address. Returns the IONetwork instance just
created.

To determine the value to specify fmldressfirst invokenodeAddress If
nodeAddressreturns a nonzero value, use that value. Otherwise, use the hardware’s
burnt-in address.

You invoke this method at the end of your implementation of
initFromDeviceDescription:. You must invokeesetAndEnable:NO before
invoking this method, as described unohéiFromDeviceDescription:, later in this
specification.

clearTimeout
- (void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is
normally invoked from a subclass’s implementatiomtgrruptOccurred .

See also: - setRelativeTimeout; — relativeTimeout

earlyTokenEnabled
- (BOOL)earlyTokenEnabled
Returns YES if Early Token Release (ETR) is supported by the station; otherwise,

returns NO. Stations that support ETR can co-exist with non-ETR stations in the ring.
The value returned by this method is setrifFromDeviceDescription:.

free
- free

Frees the I0TokenRing instance and its resources and raturns

initFromDeviceDescription:
— initFfromDeviceDescription:(IODeviceDescription ®evDesc

Invokes the superclass implementation, starts an 1/0O thread @tanti@ Thread),
and sets the device name, kind, and unit.

Next, it examines the device configuration table for such parameters as ring speed
and early token enablement. It then sets the maximum packet size, based on the ring
speed. If the ring speed is 4 megabits per second, the maximum info field size is
MAC _INFO_4MB. If the ring speed is 16, the maximum info field size is
MAC_INFO_16MB. (The maximum packet size is the maximum info field size plus
MAC_HDR_MAX.) These constants are defined in the header file
bsd/net/tokendefs.h

Subclasses of I0OTokenRing should implement this method so that it invokes the
superclass version afitFromDeviceDescription:, makes sure the configuration is
correct, invokesetMaxInfoFieldSize; does any other device-specific software and
hardware initialization, and invokestachToNetworkWithAddress:.

This method should free the instance and retiron failure; otherwise, it should
returnself. A rough example of implementing this method is below.

- initFromDeviceDescription:(IODeviceDescription *)devDesc

if([super initFromDeviceDescription:devDesc] == nil)
return nil;

/* Perform any 1-time hardware initialization. *

[* Finish initializing the hardware. */
[self resetAndEnable:NOJ;

/* Do any additional software initialization, set the max info
* field size; get the node address (as described in the
* documentation of attachToNetworkWithAddress: */

IOLog("%s: Token-Ring at port=%x irg=%d dma=%d speed=%d\n",
[self name], base, mylrg, myDmaChan, [self ringSpeed));

network = [super attachToNetworkWithAddress:myNodeAddress];
return self;

isSRunning
- (BOOL)isRunning
Returns YES if the hardware is currently inserted in the ring; otherwise, returns NO.

See also: - setRunning:

maxInfoFieldSize
— (unsigned inthaxInfoFieldSize

Returns the maximum size of the info field. This value is useallbgateNetbuf It's
also used as the maximum transfer unit specified to the network subsystem.

See also: - setMaxInfoFieldSize:

nodeAddress

— (token_addr_t)odeAddress
Returns the node address for this station. Currently, only burnt-in addresses are
supported. In the future, however, I0TokenRing will be able to initialize the node

address from the device configuration table. The value returned by this method is set
by attachToNetworkWithAddress:.

relativeTimeout
- (unsigned intelative Timeout

Returns the number of milliseconds until a transmission timeout will occur. If no
transmission timeout is currently scheduled, this method returns zero.

See also: - clearTimeout, — setRelativeTimeout:

resetAndEnable:
— (BOOL)resetAndEnable(BOOL)enable

Does nothing and returns YES. Subclasses of IOTokenRing must implement this
method so that it resets and initializes the hardware. This method should invoke
setRunning: to record the basic state of the device.

If enableis YES and the station is already in the ring, this method should do nothing
but invokesetRunning: with a YES argument and return YESeffableis YES and

the station isn’t in the ring, interrupts should be enabled and the station inserted in the
ring; setRunning: should be used to update the device running status to YES or NO,

depending on the success of the insertioan#bleis NO, interrupts should be left
disabled, the station should be removed from the ringsatRunning: should be
invoked with a NO argument.

This method should return YES if it encounters no errors (no matter what value
enablehas); if it encounters errors, it should return NO. For example, the result from
resetAndEnable:NOshould be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your
IOTokenRing subclass implementation, is during initialization. Specifically,
resetAndEnable:YESis invoked once in the 1/O thread after
attachToNetworkWithAddress: is invoked.

See also: - setRunning:

ringSpeed
- (unsigned intjngSpeed
Returns the speed of the Token Ring, in megabits per second. This value, which is

either 4 or 16, is set to the amount specified by the “Ring Speed” key in the device
configuration table. If the value is missing or invalid, the ring speed is set to 16.

setMaxInfoFieldSize:
- (void)setMaxInfoFieldSize(unsigned ingize
Sets the maximum size of the info field. This value is useallbgateNetbuf It's
also used as the maximum transfer unit specified to the network subsystem. Your

subclass should invoke this method in its implementation of
initFromDeviceDescription:.

See also: — maxInfoFieldSize

setRelativeTimeout:
- (void)setRelativeTimeout{unsigned infyjmeout
Schedules a timeout to occurtimeoutmilliseconds. Whetimeoutmilliseconds

pass without the timeout being cleared (vaigarTimeout), timeoutOccurred is
invoked.

See also: - clearTimeout, — relativeTimeout, — timeoutOccurred
(IODirectDevice)

setRunning:
- (void)setRunning:(BOOL)running

Sets whether the hardware is inserted into the ring. The vatuarihgshould be

YES to indicate that the hardware is inserted; otherwise, it should be NO. This
method is invoked only by methods in I0TokenRing subclasses—not by
IOTokenRing’'s own method implementations. You should invoke this method in your
implementation ofesetAndEnable.

See also: - isRunning

shouldAutoRecover
- (BOOL)shouldAutoRecover

Returns YES if the device should try to recover from a failed attempt at inserting itself
into the ring or from an unexpected removal from the ring; otherwise, returns NO.
IOTokenRing sets this value depending on the value of the “Auto Recovery” key in
the device configuration table. This method is provided as a convenience for
IOTokenRing subclasses that support automatic recovery.

transmit:
— (void)transmit: (netbuf_tpacket

Does nothing except frgmcket using thenb_free() function. This method is invoked
by the kernel networking subsystem when the hardware should transmit a packet.

Subclasses of I0OTokenRing can implement this method or they can reimplement the
method that invokes ibutputPacket:address: To determine the number of bytes of
data to be transmitted, use tiie_size()function. To get a pointer to the data, use
nb_map(). After getting the information you need frguacket you should free it with
nb_free().

See also: - outputPacket:address:(IONetworkDeviceMethods protocol)

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Configuration Keys

This section describes keys that can be usddlite files in driver and system
configuration bundles (iMNextLibrary/Devices). The configuration system and
Configure application are described in Chapter 4.

Some keys can have several values, expressed as a space-delimited list.
Space-delimited lists have one space between elements, with nothing before the first
or after the last element.

Key values that specify addresses are expressed as ranges. Ranges include both the
start and end address. If a range consists of a single byte, it's indicated by specifying
the same start and end address—for example, “0x0-0x0".

Driver Configuration Keys

The keys described in this section can be usedlfe files in a driver’s bundle. You

can also specify your own keys. User and kernel modules alike can get the value of
any key using the 10ConfigTable class. Configure inspectors, which set some key
values, use NXStringTable to do so; the NXStringTable corresponding to the instance
configuration is available through tkeble instance variable of IODevicelnspector.

Here’s an example of a default configuration file:

"Class Names" = "myTestDriver";
"Family" = "Example";

"Instance" = "0";

"Version" = "1.1"

"Driver Version" = "myTestDriver, 3.2 version, built by kw
8/20/93";

"DMA Channels" = "1";

"1/0 Ports" = "0x0-0x0";

"IRQ Levels" ="2";

"Valid IRQ Levels" ="1 2 3 4";
"Memory Maps" = "0x20000-0x200ff";
"Server Name" = "myTestDriver";

See the driver bundles unddlextLibrary/Devices for more examples.

The following table shows the keys and explains when they must be used. Each key is
explained in detail later in this section.

Key Used For

“Auto Detect IDs”
“Auto Recovery”

Drivers that support device auto detection
IOTokenRing drivers

“Block Major” Drivers with UNIX block entry points; optional
“Boot Driver” Drivers that must be loaded at boot time
“Bus Type” Drivers that aren’t EISA- or ISA-based

“Character Major”
“Class Names”

Drivers with UNIX character entry points; optional
All drivers that don’t specify “Driver Name”

“Default Table” Instance tables only (inserted by Configure)
“Display Mode” Display drivers

“DMA Channels” Drivers that support DMA

“Driver Name” Alternative to the preferred “Class Names”
“Driver Version” All drivers

“Family” All drivers

“Instance” All drivers

“I/0 Ports” Drivers that need access to I/O ports

“IRQ Levels” Drivers that support interrupts

“Location” All drivers; optional

“Memory Maps” Drivers that need access to mapped device
memory

“Post-Load” Drivers that require user-level help after loading
“PostScript Driver” IOSVGADisplay drivers

“Pre-Load” Drivers that require user-level help before loading
“Ring Speed” IOTokenRing drivers

“Server Name”

“Share IRQ Levels”

All drivers (inserted by Driver Kit makefiles)
Drivers that use shared interrupts

“SVGA PostScript Driver Extension”

Display drivers that require a special PostScript

driver

“Valid DMA Channels” Drivers that support DMA; optional but
recommended

“Valid IRQ Levels” Drivers that support interrupts; optional but
recommended

“Version” All drivers

“VYGA Memory Maps”
“16Mb Early Token”

Display drivers
IOTokenRing drivers

Keys

Auto Detect IDs

Example: “Auto Detect IDs” = “CPQ1234";
or
“Auto Detect IDs” = “Ox71789004 0x0e111234",

This is a string used by Configure and installation software to identify hardware that

can be controlled by the device driver. The string is a space separatedduisi of
detect IDs each of which is an identifier that can be used to match a device
connected to an /O bus.

The auto detect ID contains both a vendor ID and a 16-bit device ID. An ANSI
committee assigns vendor IDs; the vendor assigns device IDs. The auto detect ID
takes the form of a 7 character string described in the EISA specification. It consists
of two fields:VVvVdddd whereV is an upper-case letter, atids a hexadecimal digit.

The three letter¥VVrepresent the vender code; the four digit hexadecimal number
ddddrepresents the device ID. The combination of these two fields is guaranteed to
be unique. For example, “CPQ” is the vendor ID for Compaq, so an ID of “CPQ1234"
represents the Compagq device with device ID “1234".

The 7 character format is the preferred form of the auto detect ID. However, this ID
can also be expressed as a 32-bit hexadecimal number. The vendor ID is translated
into a 16-bit hexadecimal number; the device ID is the same as in the other format.
The layout in this format differs for each bus type. For the EISA buslethieelD is

in the lower 16 bits, and thendorID is in the upper 16 bits. For the PCI bus, the
vendorID is in the lower 16 bits, and tlievicelD is in the upper 16 bits.

Auto Recovery

Example: “Auto Recovery” = “YES”;

Used in IOTokenRing drivers to specify whether the driver should support automatic
recovery from errors. See the I0OTokenRing class specification for more information.
Block Major

Example: “Block Major” = *1";

Used by some drivers with UNIX entry points to specify the device’s block major
number. See the I0ODevice class specification for more information.
Boot Driver

Example: “Boot Driver”;

Specifies that the driver must be loaded at boot time. For example, SCSI controller
drivers must typically be loaded at boot time so that the system can use the disks
attached to the controller.

Bus Type
Example: “Bus Type” = “PCI”;

Indicates the type of bus the device uses. The current valid values are “EISA” (which
includes ISA), “PCI” and “PCMCIA". If the key isn’t present or valid, it defaults to
“EISA”.

Character Major

Example: “Character Major” = “15”;

Used by some drivers with UNIX entry points to specify the device’s character major
number. See the I0ODevice class specification for more information.
Class Names

Example: “Class Names” = “FloppyController FloppyDisk”;
“Class Names” = “AHAController”;

A space-delimited list of the classes in the relocatable object file that should receive
probe: messages. This key is preferred to the “Driver Name” key, which may
become obsolete.

Default Table
Example: “Default Table” = “ATIUltraPro”;

Automatically inserted inténstancen.table files by Configure when necessary. You
should never have to specify this key.

Display Mode

Example: “Display Mode” = “Width: 1024 Height: 768 Refresh: 76Hz
ColorSpace: RGB:555/16";

Used by display drivers to specify the mode the display should be in. This key’s value
should be equivalent to one of the values assigned to the “Display Modes” key in the
bundle’sLanguagdproj/Localizable.strings file.

The key’s value should be of the form:

“Width: width Height:heightColorSpace(BW: bits | RGB:xyZw) Refreshrate
Hz"

White space and ordering are ignored, but correct capitalization is required. The color
space parameter should be eitB&Y: followed by the bits per pixel, ®GB:
followed by the bits per color component and then the bits per pixel.

For example, the string shown below describes a display mode that’s 800 pixels wide
and 600 high, supports color at 16 bits per pixel (5 bits each of red, green, and blue per
pixel), and has a refresh rate of 60 Hz.

Width: 800 Height: 600 ColorSpace: RGB:555/16 Refresh: 60 Hz

DMA Channels

Example: “DMA Channels” = “27;
“DMA Channels” =“3 7™;

A space-delimited list of DMA channels that should be reserved for the device. You
must specify default values with this key if your device performs DMA. The user can
change the default values with the Configure application, subject to restrictions that
you impose with the “Valid DMA Channels” key.

Driver Name

Example: “Driver Name” = “AHAController”;

This is obsolete; use the “Class Names” key instead. The “Driver Name” key is
identical to the “Class Names” key, except that it doesn’t allow you to specify more
than one class.

Driver Version

Example: “Driver Version” = “PROGRAM:Wingine
PROJECT:displayDrivers-14 DEVELOPER:mflynn BUILT:NO DATE SET (-B
used)”;

“Driver Version” = “myTestDriver, 3.2 version, built by kw 8/18/93";

A string uniquely identifying the driver version. In the future, the system may display
this string when appropriate.
Family

Example: “Family” = “Display”;

The family the device belongs to. Configure uses this key to group devices and to
make sure that all essential device families are represented. Valid values are listed in
the table below.

Value Configure View

“Display” Display (at least one is required in the system
configuration)

“Pointing Device” Mouse (at least one pointing device is required)
“Network” Network

“SCSI” SCsSI

“Audio” Audio

“Keyboard” Other (at least one keyboard is required)

“Disk” Other

The “SCSI” value should be used only for SCSI controllers—not for SCSI devices
such as tape drives. The “Disk” value should be used for both disks and disk
controllers (except for SCSI controllers). For example, the IDE disk and IDE
controller drivers (which are in the same relocatable object file) have the value

“Disk” in their default configuration file.

Values besides those listed in the table above are permitted, but aren’t treated
specially. They're included in the Configure view labeled Other. Examples of other
values in use include “Parallel” and “Serial”.

Instance

Example: “Instance” =*“07;

The instance number of this configuration file. Configure automatically specifies this
key inInstancen.table files, but you should specify “Instance” = “0” in default files.
I/O Ports

“Ox170-0x177";
“Ox3f8-0x3ff Ox2f8-0x2ff";

Example: “I/O Ports”
“I/O Ports”

A space-delimited list of I/O port ranges that should be reserved for the device. You
must specify default values with this key if your driver uses I/O ports to get access to
the device. If your driver uses Configure’s default inspector, the user can change the
starting address of the first range (but not the length of the range) using the inspector.

IRQ Levels

Example: “IRQ Levels”
“IRQ Levels”

=“1":
="4 3"

A space-delimited list of interrupts (IRQs) that should be reserved for the device. You
must specify default values with this key if your device interrupts. The user can
change the default values with the Configure application, subject to restrictions that
you impose with the “Valid IRQ Levels” key.

Location

Example: “Location” = “Slot 3”;

The location of the device. This string is set automatically by the device auto
detection software and has a different format for each bus.

EISA

“Slot n” wheren is replaced by a slot number, as in “Slot
1"

PCI

“Dev:d Funcf Busb” whered is the device number,

fis the function number, and
bis the bus number;
“Dev:6 Func:0 Bus:0”, for example.

Memory Maps

Example: “Memory Maps” = “0x0D0000-0xD3FFF”;
“Memory Maps” = “0xa0000-0xbffff 0xcO000-0xcffff”;

A space-delimited list of memory ranges that should be reserved for the device. You
must specify default values with this key if your driver needs access to mapped
device memory. If your driver uses Configure’s default inspector, the user can change
the starting address of the first range (but not the length of the range) using the
inspector.

Post-Load

Example: “Post-Load” = “InstallPPDev”;

A user-level program to be run just after the driver is loaded. In the example above,
the executable filenstallPPDev is a file in the driver’s bundle that installs the
driver’s device files.

PostScript Driver
Example: “PostScript Driver” = “/usr/lib/NextStep/Displays/SVGA_psdrvr”;

Used by display drivers to specify the PostScript driver that matches them.
IOFrameBufferDisplays don’t specify this key, since they use the default PostScript
driver. IOSVGADisplay drivers, however, must specify the SVGA PostScript driver,
as shown above. See the IOSVGADisplay class description for more information.

Pre-Load

Example: “Pre-Load” = “RemovePPDev”

A user-level program to be run just before the driver is loaded. In the example above,
the executable filRemovePPDeuvs a file in the driver's bundle that removes the
driver’s old device files before the driver is loaded.

Ring Speed
Example: “Ring Speed” =*“4”"

Used by IOTokenRings to specify the speed of the Token Ring. This must be either 4
or 16. See the 10TokenRing class specification for more information.

Server Name

Example: “Server Name” = “ATI";

Indicates the name of this driver’s bundle, minus.toafig suffix. You shouldn’t
need to specify this key, since it's inserted automatically by the Driver Kit makefiles.
For information on using the Driver Kit makefiles, refer to Chapter 4.

Share IRQ Levels

Example: “Share IRQ Levels” = “Yes”;

Indicates whether the device uses shared interrupts or not. On EISA and PCI systems,
using shared interrupts implies using level-triggered interrupts. The value is either
“Yes” or “No” with the default being “No”. Shared interrupts are not supported on

ISA bus computers.

SVGA PostScript Driver Extension

Example: “SVGA PostScript Driver Extension” =
“CirrusLogicGD542X_psdrvr”;

Used by IOSVGADisplay drivers to specify the driver-specific module to be loaded
into the SVGA PostScript driver. See the IOSVGADisplay class description for more
information.

Valid DMA Channels

Example: “Valid DMA Channels”=“01356 77;
“Valid DMA Channels” = “2”

A space-delimited list of DMA channels that can be used by the device. When the
user inspects the device, Configure automatically dims every DMA channel that isn’t
valid, so that the user can select only valid channels. See also the “DMA Channels”
key.

Valid IRQ Levels

Example: “Valid IRQ Levels” = “1";
“Valid IRQ Levels” =“11 12 14 15"

A space-delimited list of interrupts (IRQs) that can be used by the device. When the
user inspects the device, Configure automatically dims every IRQ that isn’t valid, so
that the user can select only valid IRQs. See also the “IRQ Levels” key.

Note: IRQ 2 can't be used on ISA- and EISA-based machines, so it should never be
in the “Valid IRQ Levels” list.

Version

Example: “Version” =*“1.0";
“Version” = “2.1”;

A floating point number that describes the version of this driver. In the future, the
system may warn the user whenever the user attempts to install a driver that has a
lower version than the already installed version of the same driver. By convention, the

number before “.” should change only when the driver is incompatible (for user-level
clients) from earlier version€onfigure display this version string.
VGA Memory Maps

Example: “VGA Memory Maps” = “0xa0000-0xbffff 0xcO000-0xcffff”;

A space-delimited list of memory ranges used for VGA access. Every display
driver’'s default configuration table must include this key with the value
“0xa0000-0xbffff 0OxcO000-0xcffff".

16Mb Early Token

Example: “16Mb Early Token” = “YES”;

Used in IOTokenRing drivers to specify whether the driver should support early token
release. See the IOTokenRing class specification for more information.

System Configuration Keys

The keys described in this section are usethbie files in the system bundle. You
don’t usually have to specify any of the keys except perhaps the “Kernel Flags” key.
Active Drivers

Example: “Active Drivers” = “EtherExpress16 ParallelPort ATI Beep”;

Drivers to be loaded automatically and probed after boot time. Configure
automatically adds drivers to either this list or the “Boot Drivers” list whenever the
user adds a driver to the system configuration. By default, drivers are added to this
list; if the default table contains the “Boot Driver” key, however, the driver is added
to the “Boot Drivers” list.

Boot Drivers

Example: “Boot Drivers” = “PS2Keyboard BusMouse DPT2012 IDE Floppy”;

Drivers to be loaded and probed at boot time. See also “Active Drivers”, above.

Boot Graphics

Example: “Boot Graphics” = “Yes”;

Specifies whether graphics (instead of system messages) should be displayed during
boot time.

Bus Type

“ISA”
“EISA,

Example: “Bus Type”
“‘Bus Type”

The system bus architecture. This key isn’t currently used for the System
Configuration.

Kernel

Example: “Kernel” = “mach_kernel”;

The name of the kernel to use.

Kernel Flags

Example: “Kernel Flags” = “rootdev=sdla”;
Options to pass to the kernel.
Machine Name

Example: “Machine Name” = “Dell 450DE/2 DGX”;

The system manufacturer name/model. This key isn’t currently used.

Version

Example: “Version” =“1.0"

Used by the Configure application.

Copyright[11995 by NeXT Computer, Inc. All Rights Reserved.

Suggested Readings on
Writing Device Drivers

These references provide useful information in a variety of areas for driver writers.

NeXT Documentation

NEXTSTEP General Reference

This reference manual describes the Mach Kit, which contains the NXLock and
NXConditionLock classes.

NEXTSTEP Development Tools and Techniques
This manual tells how to use development tools such as ProjectBuildgdiand
NEXTSTEP Operating System Software

This manual has information on the Mach Operating System and using Mach
messages. It contains extensive material on writing Loadable Kernel Servers.

NEXTSTEP Object-Oriented Programming and the Objective C Language

This book explains the basic concepts of Objective C including Objective C
messages, protocols, and categories.

NeXTanswers on archive sites

These files contain much useful information on NeXT device drivers and the
Driver Kit.

Mach Operating System

Programming under Machloseph Boykin, David Kirschen, Alan Langerman, and
Susan LoVerso. Addison-Wesley, 1993.

An introduction to Mach tasks, threads, interprocess communication, and memory
management.

General Driver Writing

Writing a UNIX™MDevice Driver, Second Editiodanet I. Egan and Thomas J.
Teixeira. John Wiley and Sons, 1992.

An excellent general introduction to UNIX drivers. Make sure you specify the
second edition since the first one is very specific to System V and MassComp in
particular.

Writing Device Drivers for SCOUNIX™, A Practical ApproachPeter Kettle and
Steve Statler. Addison-Wesley, 1993.

This book includes some details of Intel hardware. It contains a good reference
section.

Buses

EISA System Architecture, Second Editibom Shanley. Mindshare Press, 1993.

ISA System Architecture, Second Editibom Shanley and Don Anderson.
Mindshare Press, 1993.

PCI System Architecture, Second Editibom Shanley. Mindshare Press, 1993.
This book tells how to work with a version 2.0 compliant bus.
PCMCIA System Architecturéom Shanley. Mindshare Press, 1994.

All of these books are distributed by Computer Literacy Bookshops.

Display Drivers

Programmer’s Guide to the EGA and VGA Cards, Second EdRighard F. Ferraro.
Addison-Wesley.

Network Drivers

Besides the documentation for your hardware, the following references can help you
write a Token Ring driver.

Computer NetworksAndrew S. Tanenbaum, Prentice Hall, 1981.
Has information on networking, in general.
International Standard ISO/IEC 8802-3; ANSI/IEEE Std. 802.3.
IBM Token-Ring Network Architecture Technical ReferdB¢z30-3374-02).

This definitive and readable manual describes a superset of the 802.5
specification. You can get it from IBM or from IBM dealers.

Information Technology—Local and Metropolitan Area Networks. Part 5: Token Ring
Access Method and Physical Layer Specificatitmternational Standard ISO/IEC
8802-5; ANSI/IEEE Std. 802.5.

This is the specification for 802.5.

All NeXT manuals areopyright[] 1995 by NeXT Computer, Inc. All Rights Reserved.

