
Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Preface

Introduction
Some of the most formidable operating system software to understand—and to
write—is the I/O subsystem. Device drivers are essential components of the I/O
subsystem. They control the peripherals required for a multipurpose, flexible
computer system.

In some systems, device drivers are closely entwined with the operating system,
requiring that you have an extensive knowledge of the implementation of the
operating system to write a driver.

Writing a driver for the NEXTSTEPsystem doesn’t demand such difficult
prerequisites. You can write a NEXTSTEP device driver in a very modular fashion,
without knowing a great deal about NEXTSTEP. NeXThas packaged together the
software and tools you need to write in a driver into the Driver Kit, a part of the
NEXTSTEP Developer software. Writing a device driver using the Driver Kit is more
like writing an application using the NEXTSTEP Application Kit than like writing a
driver for other operating systems.

The Driver Kit provides a framework to help you create device drivers for computers
running NEXTSTEP. Although every driver is unique, drivers do have common
elements. The Driver Kit generalizes the software required for a driver, removing the
hardware-specific details. To create a driver, you essentially fill in the
hardware-dependent “blanks” in the Driver Kit software with code that performs the
desired operations on your hardware.

By using the structure that the Driver Kit offers, you can greatly reduce the time and
effort required to write a driver. The conceptual model of a Driver Kit driver is
simpler than that of a driver on other systems. This design simplifies writing a driver
and eliminates many of the problems that make debugging drivers difficult.

This document is part 3 of NEXTSTEP Operating System Software. Chapter 1,
“Driver Kit Architecture,” introduces you to the structure of the Driver Kit. You learn
about designing a Driver Kit driver in Chapter 2, “Designing a Driver.” Chapter 3,

“Support for Specific Devices,” acquaints you with some of the details needed to
write specific types of drivers such as network drivers. The fourth, and last, concepts
chapter, “Building, Configuring, and Debugging Drivers,” describes these topics.
Chapter 5, “Driver Kit Reference,” discusses the classes and other associated tools
provided by the Driver Kit.

The Driver Kit is supported on all NEXTSTEP platforms except 680x0-based
computers.

Before You Read This Document
This document covers only the parts of driver writing that are specific to the Driver
Kit.

To understand this document, however, you need to be familiar with several topics
that aren’t covered here. Some of these topics are discussed in other
NeXTdocumentation.

NeXT Documentation to Read
You need to know the Objective C language, since the Driver Kit is written in this
language. Objective C provides a set of simple, object-oriented extensions to ANSI C.

NEXTSTEP systems use the Mach operating system. Writing most drivers requires
that you understand such Mach concepts as tasks and threads, and writing many
requires familiarity with Mach ports and Mach messages. The Mach Kit contains
useful tools such as facilities for locks. Driver Kit drivers are a part of the Mach
kernel and are known as loadable kernel servers, so you must be familiar with this
concept as well. Access to most of the Mach facilities you need is included with the
Driver Kit in its set of Mach functions.

The following table shows where you can learn about these topics:

Topic Where to Read about It

Objective C language Chapters 1, 2, and 3, NEXTSTEP Object-Oriented
Programming and the Objective C Language

Mach operating system Chapter 1, NEXTSTEP Operating System Software
(read the introduction, “Design Philosophy,” and
“The Mach Kernel”)

Mach Kit Chapter 9, NEXTSTEP General Reference

Loadable kernel servers Chapter 5, NEXTSTEP Operating System Software

You can get updates to NeXT documentation on archive servers through the
NeXTanswersprogram. Send e-mail to nextanswers@next.com with the two-word
subject: INDEX HELP . Or if you can’t receive NeXT mail, add a third word, ASCII .
You’ll receive the current index of documents and instructions for requesting more
information.

Other Reading
It’s helpful if you know how to write a device driver on some system other than
NEXTSTEP. If you haven’t written a driver before, see “Suggested Reading” in the
Appendix for a list of books that can help you learn about drivers. If you’ve never
written a driver for a multitasking operating system, you should familiarize yourself
with the issues involved. The “Suggested Reading” section also lists books that deal
with these issues.

Finally, you should be very familiar with the hardware your driver will control.
Besides your device’s documentation, you’ll also need specifications for the bus your
device attaches to. Some sources of bus documentation are listed in “Suggested
Reading” in the Appendix.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

1

Driver Kit Architecture

The Driver Kit is a tool kit for writing object-oriented device drivers. Part of the
NEXTSTEP Developer software (except for 680x0-based computers), it simplifies
writing device drivers for NEXTSTEP systems. The Driver Kit provides as much of
the software in a device driver as possible without specific information about the
device. The Driver Kit developers have already done much of the work of writing a
NEXTSTEP device driver for you.

The preface briefly described the Driver Kit and mentioned a few of its advantages.
This chapter provides greater detail about what a Driver Kit driver is and how it’s
structured. It discusses the components of the Driver Kit and what they do. It
contrasts developing a Driver Kit driver to developing a typical UNIXdriver—this
contrast shows some of the advantages of the Driver Kit approach. It talks about the
various Driver Kit classes and how you create a driver with them. The chapter
finishes with a discussion of how drivers are integrated into the system at startup
time, how interrupts are handled, and how users interface with drivers.

Driver Kit Components
The Driver Kit consists of the following tools:

• Objective C classes and protocols that provide the framework for writing drivers
for various types of devices. The first three chapters discuss how to use these
classes. The section “Classes” in Chapter 5, “Driver Kit Reference,” specifies
each class in detail.

• Objective C classes that help user-level programs to configure and communicate
with drivers. Configuration is discussed in Chapter 4, “Building, Configuring, and
Debugging Drivers.” The “The User-Level Interface to Drivers” section in this
chapter and “Interfacing with the Driver” in Chapter 2, “Designing a Driver,” tell
how to communicate with drivers.

• C functions that provide debugging capabilities, kernel services such as memory
and time management, and other services. These functions provide most of the
operating system services your driver should need. The “Functions” section of
Chapter 5, “Driver Kit Reference,” contains specifications for these functions.

• Utility programs that help you load a driver into an already running system and
help you test and debug your driver. Chapter 4, “Building, Configuring, and
Debugging Drivers,” tells you about these programs.

The rest of this chapter describes the basics of Driver Kit architecture.

Why Objective C?

Why is Objective C the required language for the Driver Kit? Part of the reason is that
all other NEXTSTEP Application Program Interfaces (APIs) are object-oriented and
use Objective C. But more importantly, drivers benefit in several ways from
object-orientation and Objective C:

• Naturalness —Object orientation is a natural design method for drivers. Each
hardware object can be modeled by a software object, and functionality common to
a group of drivers (such as display drivers) can be provided by superclasses.
• Flexibility —Objective C provides dynamic typing and binding, which help
different objects communicate without having to be compiled together. For
example, this lets a SCSI peripheral driver determine at run time which SCSI
controller driver it should communicate with. You can simulate dynamism using
function lookup tables and type casting in ANSI C, but this results in code that’s
harder to understand and maintain.
• Code reduction —The Driver Kit provides classes that significantly lessen the
amount of code you have to write. For example, the IODirectDevice class greatly
simplifies configuration and initialization, and IOFrameBufferDisplay takes care of
almost everything that a display driver must do.

See NEXTSTEP Object-Oriented Programming and the Objective C Language for
more information on Objective C.

Device and Bus Support
The Driver Kit has classes to help you write drivers for several kinds of devices:

• Displays

• Network cards for Ethernet and Token Ring networks
• SCSI controllers and peripherals such as tape drives
• Sound cards

The IOEthernet class, for example, provides much of the functionality required for
Ethernet drivers. To write a driver for a new type of Ethernet card, you need to
implement only six methods, filling in the details of how your hardware performs the
various functions required in an Ethernet driver.

Chapter 3, “Support for Specific Devices,” tells you how to implement a driver for
device types the Driver Kit explicitly supports.

You can write drivers for other kinds of devices than those listed above. The devices
above are merely those that the Driver Kit specifically supports.

In addition, the Driver Kit has general-purpose classes that support these computer
buses:

• ISA (Industry Standard Architecture)
• EISA (Extended Industry Standard Architecture, a superset of ISA)
• VL-Bus (VESA Local Bus, where VESA is Video Electronics Standards

Association)
• PCI (Peripheral Component Interconnect)
• PCMCIA (Personal Computer Memory Card International Association)

Both ISA and VL-Bus are supported through the EISA bus class.

You indicate the bus type that your driver works with in the configuration file for the
driver. See Chapter 4, “Building, Configuring, and Debugging Drivers,” for more
information.

Driver Structure
To appreciate the structural simplicity of a Driver Kit driver, first consider how
standard UNIX drivers are constructed.

UNIX Driver Architecture
A UNIX driver has a “top-half” that is accessed through the system call interface and
runs in the kernel on behalf of a user process. It manages the driver state and initiates
data transfers. The “bottom- half” runs at interrupt level since it’s driven by interrupts
caused by data transfer completion or other asynchronous events. Interrupts are
handled by the driver’s interrupt handler, which may call top-half routines at interrupt

priorities. Indirect devices—devices that are not directly connected to the processor,
such as secondary-bus devices or SCSI peripherals—are each handled in an
individual fashion—there’s no systematic way to treat them.

This design paradigm has several consequences:

• Multiple requests may attempt to access the same hardware or driver data
structures at the same time.

• Interrupts may occur at any time, and their handlers may also need to access
hardware or data structures.

To coordinate access to these hardware and data resources, the driver must use such
tactics as disabling interrupts, changing processor priority, and engaging locks of
various types. The resulting code is often complicated: difficult to write, debug,
understand, and maintain.

Driver Kit Driver Architecture
You can write a UNIX style driver with the Driver Kit, but that’s not the best way to
go about it. Driver Kit drivers differ significantly from traditional UNIX or
MS-DOSdrivers. Driver Kit drivers have these characteristics:

• Drivers are objects. The Driver Kit is written in the Objective C language, which
supports object-oriented programming. This programming approach also allows
code that’s common to all drivers—or a set of drivers such as network drivers—to
be written once and inherited by subclasses.

• By default, each driver uses only one thread—the I/O thread—to access its
hardware device. All I/O threads reside in a separate kernel task—the I/O kernel
task.

• By default, there’s one I/O thread for each hardware device. Given any hardware
resource, only one thread deals with that resource at a time. Traditional device
drivers use locks and disable interrupts to protect access to hardware and data
structures. Limiting resource access to only one thread greatly simplifies driver
design.

• Interface methods in the driver are invoked from the user thread: the thread
running in the kernel on behalf of the user. These methods communicate requests
to the I/O thread using techniques such as Mach messaging, and they enqueue
commands for the I/O thread to execute. The I/O thread can then handle one
request at a time instead of being subjected to a barrage of requests to access
multiple resources at the same time. (Interface methods don’t perform I/O requests
directly, because only the I/O thread should touch hardware and other critical
resources.)

Note: Mach messages are not the same as Objective C messages that are sent to
objects. Mach messaging refers to use of the Mach operating system’s message
system. See the references on the Mach operating system and the Objective C
language in the “Suggested Reading” section of the Appendix.

• The kernel takes all interrupts and notifies the I/O thread via Mach messages.
Drivers don’t need to run with interrupts disabled. The Driver Kit’s thread-based
model lets the driver delay responding to interrupts until it’s ready to deal with
them. The UNIX concept of a direct interrupt handler—a section of driver code
that executes as soon as an interrupt is detected by the kernel—has been replaced
by this Mach messaging mechanism. Interrupt handling is discussed in greater
detail in “Servicing Interrupts” in this chapter. You can register your own interrupt
handler if that’s required, but unless you do, your driver will run at the user or I/O
thread level—not at interrupt level.

• Drivers for devices that are connected to the processor indirectly through some
secondary bus—such as SCSI peripherals connected to a SCSI bus—have a
structured way to communicate with the drivers controlling the secondary bus. For
example, SCSI controller objects conform to an Objective C protocol that SCSI
peripheral drivers can employ.

• Driver Kit drivers are currently kernel-level drivers, either as loadable kernel
servers or as part of the kernel supplied by NeXT. User-level drivers are not yet
supported.

Tip: Running drivers at user level would make testing hardware much easier, and it
would greatly reduce the likelihood of system panics due to driver bugs. This design
goal hasn’t been realized yet. However, when you design your driver, you should keep
in mind the possibility of it becoming a user-level driver. To make porting drivers
from kernel to user level as easy as possible, much of the Driver Kit API is identical
at kernel level and at user level. In future releases, the goal is to allow all drivers to
run at user level.

Although it’s possible to write a UNIX style driver with the Driver Kit, that’s not the
best way to proceed. You wouldn’t be taking full advantage of the capabilities of the
Driver Kit, and you would be doing a lot of extra work.

Driver Classes and Instances
You implement a driver by creating a subclass of one of the device type classes in the
Driver Kit. A driver object is an instance of this subclass you’ve defined.

Each Driver Kit class has a set of methods, some of which don’t actually do anything.
These methods—even the ones that do nothing—provide a framework for you to build
on. The classes and their methods all ignore hardware-dependent aspects of a driver

to some extent. Of course, every driver must control real hardware, so you must
implement or override the methods provided in the Driver Kit so that they perform
their intended functions with your hardware. You essentially “fill in the blanks” in the
methods to develop much of your driver.

You choose the Driver Kit class for which you’re going to create a subclass based on
the device type, such as display, network, sound, and so on.

For example, you can write an Ethernet card driver by creating a subclass of the
IOEthernet class. You then override each method in the IOEthernet superclass by
writing code that performs that method’s functions—using the software interface to
your particular Ethernet card hardware. In other words, you take the generic methods
provided by the IOEthernet class and make them specific to your hardware in the
subclass that you implement.

Most Driver Kit classes are never instantiated. Instead, they serve as abstract classes
that give capabilities to their subclasses. For example, IODisplay is an abstract class
that implements functionality common to all displays.

The hierarchy of Driver Kit classes has three main branches, as shown in Figure 1-1.

IOEISADeviceDescription

IOConfigTable

IOEthernet

Object

IOLogicalDisk

IODiskIODirectDevice

IODevice

IODiskPartition

IOSCSIController IODisplay

IODeviceDescription

IOFrameBufferDisplay

IOAudio

Figure 1-1 . Some Core Driver Kit Classes

Note: Classes for developing disk drivers, such as IODisk, aren’t currently
documented.

You create a subclass of a class in the IODevice branch to create your driver. All
drivers are instances of subclasses of IODevice. These classes provide frameworks
for specific types of device drivers.

The other two branches—IODeviceDescription and IOConfigTable—provide
information about drivers. IOConfigTable objects get configuration information about

particular devices and the system as a whole from configuration tables, which specify
how a driver is to be configured. IODeviceDescription objects encapsulate
configuration and other information about the driver and are used for initializing the
driver. These classes allow you to configure the driver into the system and allow it to
communicate with system hardware.

In summary, the Driver Kit provides a framework for developing a driver for
NEXTSTEP systems. It provides many of the pieces you need to create a
driver—classes and protocols, methods, functions, and utilities—and puts the pieces
together for you. A class hierarchy groups methods logically by function and device
type. A thread mechanism, including a default I/O thread, ensures that methods work
together, taking advantage of the NEXTSTEP architecture. You still have to
implement the methods to fit your hardware, but the basic structure is already there.
The paradigm embodied in the Driver Kit fits well with NEXTSTEP, but it’s different
from the model that standard UNIX drivers use. You can write a driver using a UNIX
model, but it would require greater effort.

Direct and Indirect Device Drivers
Some devices, such as displays and network devices, are connected directly to the
processor, and their drivers are referred to as direct device drivers. Other devices are
connected to the processor indirectly through some secondary bus—such as SCSI
peripherals connected to a SCSI bus. Drivers for such devices are called indirect
device drivers. Drivers for direct devices talk to the hardware directly. Indirect device
drivers talk to their device hardware indirectly through some direct device. A SCSI
disk driver, for instance, communicates with the disk through a SCSI controller driver,
which controls the SCSI bus.

Thus drivers talk to hardware either directly or indirectly, or they may not deal with
hardware at all. Drivers are thus further classified into these three types:

• Direct device drivers (for example, drivers for SCSI controllers)
• Indirect device drivers (for example, drivers for disks attached to SCSI

controllers)
• Pseudo device drivers (drivers that control no hardware)

These classes work differently, are initialized differently, and require different system
resources. This manual focuses primarily on direct and indirect drivers, not pseudo
device drivers.

Note that the IODevice branch in Figure 1-1 is further split into two branches. On one
side is IODirectDevice, from which you would create a subclass for a direct device
driver. Indirect device drivers stem from the other branch and are subclasses of
IODevice.

Terminology Used in This Document

The term driver refers to the implementation of a subclass of one of the Driver Kit
device classes—since Driver Kit classes are typically abstract classes. Instances of a
driver are instances of the subclass. Often an object is referred to as an object of one
of its superclasses—for example, as an IOSCSIController object or IODevice
object—to indicate that the object is an instance of any subclass of the superclass.
Finally, device is sometimes used to refer to any IODevice object.

As Figure 1-1 shows, IOSCSIController, IODisplay, and IOEthernet are subclasses of
IODirectDevice. This classification occurs because instances of their subclasses talk
directly to the hardware, performing such operations as handling interrupts, mapping
memory, and performing DMA operations. IODisk, an indirect device class, is a
subclass of IODevice—but not of IODirectDevice. This occurs because IODisk
objects don’t talk directly to the hardware: They talk indirectly to the hardware by
sending request messages to IODirectDevice objects such as IOSCSIControllers.

Figure 1-2 shows how two objects—one an instance of a direct device driver, the
other an instance of an indirect device driver—combine to control two pieces of
hardware. The indirect driver, an IOSCSIDisk object, uses the direct driver, an
IOSCSIController object, to control the hardware.

Note: IOSCSIDisk is a nonpublic subclass of IODisk.

IOSCSIDisk

IOSCSIController

Software

Hardware

SCSI
Controller

Disk

SomeClass An object

Direct communication

Legend

Indirect communication

Figure 1-2 . How Objects Correspond to Hardware

One Device Driver Object per Hardware
Device
There is one device driver object for each hardware device. In Figure 1-3, one
IOSCSIController object manages the SCSI controller, and an IOSCSIDisk object
manages each disk. Both disks are connected to the same SCSI controller, so both
IOSCSIDisk objects communicate with the hardware using the single
IOSCSIController object.

IOSCSIDisk

IOSCSIController

Software

Hardware

SCSI
Controller

Disk Disk

IOSCSIDisk

Figure 1-3 . One-to-One Correspondence between Driver Objects and Hardware
Devices

Key Driver Kit Classes
You typically create a subclass of either IODevice or IODirectDevice (or one of its
subclasses) to create a driver.

IODevice: The Generic Device Driver

Every driver is a subclass of IODevice. This class provides a standard programming
interface for probing hardware and for creating, initializing, and registering a driver
instance.

IODirectDevice: The Class for All Direct Devices

IODirectDevice is the class for drivers that directly control hardware. This class adds
data (that is, instance variables) and methods for managing interrupts, DMA
channels, address ranges, and other resources. It contains a configuration table, an
NXStringTable object of key/value pairs that hold configuration data provided by the
system and the user.

The IODirectDevice class has Objective C categories for specific hardware buses:

• IOEISADirectDevice for EISA-, ISA-, and VL-Bus-based systems
• IOPCIDirectDevice for PCI-based systems
• IOPCMCIADirectDevice for PCMCIA-based systems

Display, network, SCSI controller, and sound drivers are all direct drivers that can be
implemented as subclasses of IODirectDevice—or its subclasses. IODirectDevice
has subclasses for each of these specific device types. For example, you can use the
IODisplay class (a subclass of IODirectDevice) to write a display driver.

IODeviceDescription: Device Information

For every IODevice object, there’s a device description object—an instance of the
IODeviceDescription class—that contains information about the device. Thus every
device in a system has a device description that contains information about the
device:

• Device address
• System resources (IRQ, DMA channels, and so on) used by the device
• Other information specific to the bus type

Instance variables in IODevice (of which the driver is a subclass) contain the rest of
the device information, such as device type. The configuration tables, such as
Default.table and Instancen.table, contain the device driver configuration
information. These tables can be modified using the Configure application.

Class Components
When you create a subclass, you add instance variables that are appropriate for your
hardware, such as variables for memory-mapped registers. A subclass might include
the following typical instance variables:

• Pointers to hardware registers
• Device state from volatile or write-only registers
• Driver mode or state
• I/O management variables such as queue heads, locks for critical structures, or

data buffer pointers
• Any per-device private data that normally goes in a UNIX driver’s “softc”

structure

Your subclass inherits a set of methods from its superclass to perform such actions
such as these:

• Initialize the driver object
• Get and set values of instance variables
• Send commands to hardware
• Receive notifications such as interrupts, I/O completions, and timeouts

In your subclass you can override methods from the superclass, and you can also add
new ones. You customize these methods to work with your device’s hardware.

Suppose, for example, you’re implementing a display driver for a display card that can
linearly map the entire frame buffer. Create a subclass of the IOFrameBufferDisplay
class (a subclass of IODisplay), then override four methods to do the following
operations:

• initFromDeviceDescription: to invoke super’s implementation of
initFromDeviceDescription:, map the display into the memory, and select the
display mode.

• enterLinearMode to place the frame buffer device into the linear frame buffer
mode selected during device initialization.

• revertToVGAMode to set the display to run as a standard VGA device.
• setBrightness: to control screen brightness, if the hardware supports this function.

Once you’ve done this, you’ve finished much of your driver.

The User-Level Interface to Drivers
You typically don’t need to be concerned about interfacing with your driver: The
kernel automatically finds the driver and uses its methods to communicate with the
driver. Most display, network, SCSI controller, and sound drivers are integrated into
the system this way. For some devices, such as SCSI peripherals, you may need to
write an interface program called by user programs or other drivers. This interface
program invokes the driver’s methods to communicate with the driver.

See “Interfacing with the Driver” in Chapter 2 for more discussion of user-level to
driver-level communication.

How IODevice Objects are Created
Drivers are packaged into driver bundles. A driver bundle contains its relocatable
code and configuration information—everything needed to load and configure the
driver. It may also contain help information, programs to be run before and after
loading the driver, and a configuration inspector that the Configure application uses to
access configuration data. Chapter 4, “Building, Configuring, and Debugging
Drivers,” tells you more about bundle contents and how to create a driver bundle.

When the system starts up, it goes through three steps to create each driver object,
using the information in the driver bundle:

1. Load the relocatable code for the driver.

2. Create an IODeviceDescription object for the device.

3. Send a probe: message to the IODevice class object to instantiate a driver
object.

The system goes through two phases of driver creation. In the first phase, it performs
these three steps to create all the boot device drivers. Boot drivers are the drivers that
must be loaded before the kernel can be active, such as the driver for the boot device.
In the second phase, the system creates the active device drivers—drivers for the rest
of the devices in the system. The System.config/Instance0.table file defines the boot
and active devices.

Some driver objects need to know about each other. For instance, an indirect driver
controlling a SCSI peripheral needs to communicate with the direct driver that
manages the SCSI controller. These drivers get connected with each other during the
startup process. See “Connecting the Driver,” in Chapter 2, “Designing a Driver.”

The system is not limited to creating drivers only at system start up time. You can also
load a driver after the system has started up with the driverLoader command. See
“Using the driverLoader Command” in Chapter 4, “Building, Configuring, and
Debugging Drivers,” for more information.

Loading Driver Relocatable Code
In the first phase of driver object creation, the kernel loads the driver’s relocatable
code (in the file Driver_reloc in the driver bundle, where Driver is the driver’s name)
if necessary. The driver is already loaded if it’s in the kernel. If there are multiple
instances of the driver, the relocatable code is loaded only once.

Creating a Device Description
Next, the kernel creates an IOConfigTable object that provides methods to examine
the appropriate configuration file for the driver (either Default.table or
Instancen.table). The IOConfigTable object parses the configuration information it
gets, which is in configuration key/value pairs in this file. From this information, the
kernel instantiates an IODeviceDescription object, which encapsulates information
about the driver.

The driver’s bus type is indicated in the configuration table as the value associated
with the “Bus Type” configuration key (see “Configuration Keys” in the Appendix).
The kernel creates the appropriate IODeviceDescription object for the bus:

Bus Type IODevice Description Subclass

EISA, ISA, VL-Bus IOEISADeviceDescription
PCI IOPCIDeviceDescription
PCMCIA IOPCMCIADeviceDescription

IOPCIDeviceDescription and IOPCMCIADeviceDescription are subclasses of
IOEISADeviceDescription, which is a subclass of IODeviceDescription.

After instantiating the IODeviceDescription object, the kernel may do further
initialization, using methods in IODeviceDescription to get configuration information.
For example, for a PCI-bus device, the kernel might check whether the location of the
object on the bus is correct, and if it isn’t, the kernel doesn’t initialize that device.

If the system supports automatic detection of devices, it automatically scans all
system buses to determine which devices are present and to obtain additional
configuration information. For more information, see “Auto Detection of Devices” in
“Other Features” of Chapter 5, “Reference.” Some EISA- and PCI-based systems
support this feature.

For more information on configuration tables, see Chapter 4.

Instantiating Drivers
The kernel invokes probe:, a class method in the IODevice class, to instantiate a
driver. You must override this method in your driver.

The receiver of a probe: message determines whether to create a new instance of
itself, with the help of information passed as the probe: message’s argument—the
IODeviceDescription object created in the previous step. The IODeviceDescription
object contains information about the device’s logical location in the system, and the
device can query this object for additional information about the way it is configured.
From this information, probe: can determine whether the device exists. If the device

is present, probe: instantiates and initializes the driver. Your probe: method should
invoke the initFromDeviceDescription: method, which initializes the driver.

Note: Use the alloc and initFromDeviceDescription: methods to instantiate and
initialize the driver, not the new method.

If probe: creates a driver instance, it returns YES. Otherwise, it returns NO.

Note: Declare your probe: method to return BOOL—not id.

I/O and Interrupt Requests
Everything a driver does—whether or not it’s a Driver Kit driver—is the result of one
of two types of requests:

• I/O requests (from a user-level program, the kernel, or another driver)
• Interrupt requests (from the hardware)

Interrupt requests include “soft interrupts,” such as timeout notifications. The Driver
Kit thread-based design allows you to manage I/O requests and interrupts one at a
time.

Scheduling Hardware Access with I/O
Threads
Different drivers have different requirements for ordering their accesses to the
hardware. Driver Kit display drivers are very simple in this respect: they don’t have to
queue requests because the Window Server is the only process that makes requests,
and it sends them one at a time. Display drivers may be particularly simple because
on many systems, display hardware doesn’t generate interrupts.

Other drivers have to be more careful. These drivers use an I/O thread—a single
thread of execution that handles all access to a single hardware device. Some of the
device classes, such as those for SCSI controllers, network, and sound devices, start
up the default I/O thread for you.

Typically, each driver instance has exactly one I/O thread. However, some drivers
use a single I/O thread for more than one instance. What matters is that only one
thread at a time has access to any particular hardware resource.

Note: Some hardware devices can handle more than one request at once. For
example, some SCSI controllers can queue multiple commands.

 At any given time, the I/O thread should be doing exactly one of two things:

• Waiting for an I/O request (from a user, the kernel, or another driver) or an
interrupt message

• Executing (dealing with the hardware)

Processes can use a variety of mechanisms to communicate I/O requests to the I/O
thread. One of these mechanisms—Mach messages—is the same way the kernel
informs the I/O thread that an interrupt has occurred. In this scheme, the kernel
enqueues Mach messages for the I/O thread. When the I/O thread isn’t executing a
request, it dequeues the message and invokes an appropriate driver method in
response. (You can also write a custom I/O thread to take whatever action you want
in response to messages.) “Synchronizing with the I/O Thread” in Chapter 2 provides
more details.

The I/O thread model greatly simplifies driver development and lessens the time
needed for debugging the driver. Only one thread deals with any hardware resource at
a time, so it’s not necessary to use locks and disable interrupts to protect access to
hardware and data structures. The user thread communicates requests to the I/O
thread, and commands can be enqueued for the I/O thread to execute. The driver can
handle one request at a time—instead of many requests to access multiple resources
at the same time.

Servicing Interrupts
The Driver Kit has a simple scheme for servicing interrupts: The kernel notifies
drivers of interrupts by sending them Mach messages. Each driver can receive these
messages whenever it chooses, typically when it isn’t executing any other requests.

The advantages of this scheme become clear when you consider an alternative—the
traditional UNIX method of handling interrupts. Traditional UNIX drivers handle
interrupts as soon as they happen—even if the driver is already executing an I/O
request. Each driver registers an interrupt handling function that’s called whenever
the device interrupts. Some systems can’t tell exactly which device interrupted, so
they call several drivers’ interrupt handlers until one accepts the interrupt. While an
interrupt is being handled, nothing else in the system (except higher priority interrupt
handlers) can execute.

Under the traditional UNIX scheme, drivers can’t control when interrupts occur. All
they can do is control when interrupts don’t occur by disabling interrupts. Drivers
disable interrupts to protect critical sections of code, such as those that access
hardware or access data structures that are also used by interrupt handlers. However,
disabling interrupts has disadvantages:

• If a driver disables interrupts for too long, the consequences can be anything from
reduced performance to system crashes or hangs.

• If a driver disables interrupts and, through some bug, fails to reenable them, the
system will hang.

• It’s easy to fail to protect a critical section—especially when you’re changing
code that someone else wrote—which can result in bugs that are hard to track
down.

The Driver Kit scheme of interrupt handling lets you choose when to handle
interrupts, so you don’t have to protect critical sections from interrupt handlers. This
scheme works well with most hardware devices.

IODirectDevice provides a default I/O thread that intercepts Mach interrupt messages
and notifies drivers of them with Objective C messages. Driver objects are notified of
interrupts with the interruptOccurred or interruptOccurredAt: message. See the
sections “Interfacing with the Driver” and “Handling Interrupts” in Chapter 2 and the
IODirectDevice class specification in Chapter 5 for more information.

A few devices require that interrupts be handled immediately. For example, a device
might have a register that must be read within 50 microseconds of the interrupt
occurring. On some devices data overruns occur if interrupts aren’t handled quickly
enough. In these cases, a kernel-level driver might need to register a direct interrupt
handler—a function that’s called as soon as the interrupt is detected. This function
should perform any time-critical operations and, if necessary, send a Mach message
so that the driver can further process the interrupt. The section “Custom Interrupt
Handlers” in Chapter 2 describes how this interrupt handling function should work.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

2

Designing a Driver

The previous chapter covered basic Driver Kit concepts. This chapter discusses
details of how to design Driver Kit drivers:

• How to create and initialize a driver
• How tasks and threads work in drivers and how to communicate with the I/O

thread
• How to handle interrupts
• How to connect a driver with other drivers it needs to communicate with

Information about specific kinds of drivers—for example, how to write a SCSI
controller driver—is in Chapter 3, “Support for Specific Devices.”

Driver Writing Guidelines
Here are guidelines to follow in designing and writing a device driver:

• Read the specifications for the hardware you’re working with.
• Read the first four chapters of this manual.
• Read the IODevice and IODirectDevice class descriptions.
• Decide which class your driver will be a subclass of. Read this class description

and the descriptions of any protocols the class conforms to. Read the class
specification for any other related classes. If you’re writing a network driver, for
instance, look at IONetwork.

• Look at examples of drivers for the type you’re writing. Examples are located in
/NextDeveloper/Examples/DriverKit and
/NextLibrary/Documentation/NextDev/Examples/DriverKit

• Create a subclass. Add the appropriate instance variables and methods to your
driver subclass.

• Override or write methods in your subclass and any protocols it conforms to.
Implement the methods to perform their functions with your hardware.

Creating and Initializing Drivers
You must override the probe: class method of IODevice in your subclass. This
important method looks for the hardware and instantiates and initializes a device
driver. The IODeviceDescription object passed as the parameter to probe: provides
information about the driver object, including configuration information.

Warning: You should use the alloc and initFromDeviceDescription: methods to instantiate
and initialize a driver—not the new method.

For direct device drivers, the IODeviceDescription parameter contains
architecture-specific information about a device, such as its DMA channels and
interrupts. Your driver subclass should determine whether the device is really
present. If so, it should create an instance of itself, using the information in the
IODeviceDescription. IODeviceDescription and its subclasses provide access to the
device information.

After probe: instantiates the driver, it should invoke the
initFromDeviceDescription: method to initialize the instance (with help from some
other methods, too). You typically override this method, although you should
incorporate the superclass’s implementation by invoking this message on super prior
to performing the rest of your initialization.

[super initFromDeviceDescription:aDeviceDescription];

Look at this method’s description in your driver’s superclass to see what functions it
provides for you. For example, the IODirectDevice class’s
initFromDeviceDescription: reserves address ranges, DMA channels, and IRQs
(interrupt numbers) for a driver.

The initialization sequence must also include registering the driver with
registerDevice so the rest of the system knows about the driver.

For direct device drivers, attach interrupts using attachInterruptPort or some other
method that invokes attachInterruptPort . IODirectDevice’s startIOThread
invokes it, for example.

Here’s a skeleton of the probe: method for a direct device driver of the class
MyClass. Italicized text delineated in angle brackets, that is << >>, is to be filled in
with device-specific code.

+ (BOOL)probe:devDesc
{
 MyClass *instance = [self alloc];
 IOEISADeviceDescription
 *deviceDescription = (IOEISADeviceDescription *)devDesc;

 if (instance == nil)
 return NO;

 /* Check the device description to see that we have some
 * I/O ports, mapped memory, and interrupts assigned. */
 if ([deviceDescription numPortRanges] < 1
 || [deviceDescription numMemoryRanges] < 1
 || [deviceDescription numInterrupts] < 1) {
 [instance free];
 return NO;
 }

 << Perform more device-specific validation, e.g. checking to
make
 sure the I/O port range is large enough. Make sure the
 hardware is really there. Return NO if anything is wrong.
>>

 return [instance initFromDeviceDescription:devDesc] != nil;
}

If your driver subclass that receives the probe: message is an indirect device driver,
the IODeviceDescription specifies an IODevice instance (typically for a direct
device) that the indirect device driver might want to work with to communicate with
its hardware. For example, if the indirect device driver controls SCSI disks, then the
IODeviceDescriptions it receives specify instances of IOSCSIController, a direct
device driver. Your driver should determine whether it needs to use the hardware
controlled by the specified IODevice instance (for example, whether the SCSI
controller has disks attached). If so, your driver subclass should create instances of
itself. Here’s an outline of probe: for this case:

+ (BOOL)probe:deviceDescription
{
 MyIndirectDevice *instance = nil;
 /*Get IODirectDevice object this indirect device is connected
to*/
 id controller = [deviceDescription directDevice];
 BOOL rtn = NO;

 for (<< each possible device attached to the direct device >>)
{
 if (instance == nil)
 instance = [MyIndirectDevice alloc];

 if (<< we can’t reserve this device
 (implying that another driver controls it) >>) {
 continue;
 }

 << Check whether the device really exists and is a device
we
 can control. If so, initialize an instance of this
driver
 with a driver-specific version of init. For example:
 initRtn = [instance initWithController:controller];
>>

 if (<< the instance was successfully initialized >>) {
 [instance registerDevice];
 /* Do any other driver-specific initialization. */
 instance = nil;
 rtn = YES;
 break;
 }
 else

<< Release our reservation for this device >>
 } /* end of for loop */

 if(instance) {
 /* Free up any leftover indirect devices. */
 [instance free];
 }

 return rtn;
}

Besides the information specific to direct or indirect devices, the
IODeviceDescription’s IOConfigTable contains miscellaneous configuration
information. A beep driver’s configuration table, for example, might specify that the
driver is a sound-related device and specify the frequency of beeps. The
IOConfigTable can be retrieved from the IODeviceDescription using the
configTable method. The probe: method or methods that it invokes may do further
initialization using this information.

Connecting a Driver to Other Drivers
The driverLoader program loads your driver’s code into the kernel, either because
you invoke it or as a result of the driver being specified in the system configuration.
The driverLoader program uses the loadable kernel server mechanism and is
described in Chapter 4. Once loaded, the driver needs to be connected with the
appropriate direct and indirect device drivers that are already in the kernel.

For example, suppose you load a new indirect device driver that controls a SCSI
scanner. The SCSI scanner driver works in combination with one or more SCSI
controller drivers, so the SCSI scanner driver needs to find each IOSCSIController
object in the system.

For another example, consider a direct device driver that manages a SCSI controller.
Once the driver is loaded and initialized, you want to give all of the SCSI indirect
devices (such as disks and scanners) a chance to connect to this controller. Each
SCSI disk that’s attached to the controller needs a new IODisk instance that’s
connected to an instance of the IOSCSIController.

Terminology: Protocols

A protocol is a list of method declarations, unattached to a class definition. Any
class, and perhaps many classes, can implement a particular protocol.

Protocols are discussed in Chapter 3 of NEXTSTEP Object-Oriented Programming
and the Objective C Language.

Discovering Other Objects
When any IODevice subclass is instantiated and initialized, it’s automatically
connected with any IODevices in the system that need to work with it. Here’s how
this happens:

• All IODevices to which an indirect device can be connected must declare their
exported interface as an Objective C protocol. For example, the
IOSCSIController class declares its exported methods (the messages that indirect
devices can send it) in the IOSCSIControllerExported protocol.

• All IODevices that are indirect device drivers must implement the
requiredProtocols class method. This method returns a list of protocols the
driver’s direct devices must conform to.

• Each IODevice must implement the deviceStyle class method, which identifies
the driver as a direct, indirect, or pseudo device driver.

• Each IODevice instance must invoke registerDevice when it’s initialized
(usually in its implementation of initFromDeviceDescription:). This method
tells the rest of the system that the driver exists and also probes all indirect
IODevices that require this object’s protocols, giving them a chance to connect to
this object.

When driver code is loaded into the kernel, the kernel probes the newly added class
and possibly other classes in the system. The result is that each class is probed
exactly once per object that it might need to connect to. The kernel probes classes
with the probe: method as described below.

If the newly loaded class is an indirect device driver (the system determines this
using the deviceStyle class method), the kernel does the following:

For each IODevice object (not just IODirectDevices)
 If the object supports all protocols needed by the new class
 The kernel creates an IODeviceDescription that has this object as the direct

device
 The kernel probes the new class with the IODeviceDescription as its
parameter

If the newly loaded class is a direct device or pseudo device driver, the kernel simply
probes the new class, without trying to connect it yet.

Whenever a device of any style invokes registerDevice—which should happen
whenever a driver object is initialized—the following happens:

For each indirect device class
 If the newly registered object supports all protocols needed by the indirect
driver
 The kernel creates an IODeviceDescription that has this object as the direct
device
 The kernel probes the indirect device class, giving it the
IODeviceDescription

In this way, every indirect driver is probed with the device description for every
possible direct driver object it could feasibly be connected to. When the indirect
driver’s probe: method examines the direct device description, it instantiates itself
only when the indirect device it supports is physically connected to the direct device,
that is, when the hardware is really present.

Interfacing with the Driver
Drivers export a set of methods that the kernel or programs can use to communicate
with the driver. These exported or interface methods communicate requests to the
I/O thread.

You don’t need to be concerned about the interface to your driver in most cases. The
kernel will find your driver and use its exported methods automatically—you don’t
have to do anything. Most display, network, SCSI controller, and sound drivers are
integrated into the system this way.

For some drivers, such as SCSI peripherals, you may need to provide an interface
that user-level programs or other drivers can access. This interface program then
invokes the driver’s exported methods.

The ideal interface between user-level programs and drivers would be Objective C
messages. Currently, this direct interface isn’t possible for these reasons:

• User-level drivers aren’t supported.
• The Distributed Objects system (which enables Objective C messages to be sent

between objects in separate tasks) doesn’t work in the kernel.

You can make your driver’s user level to kernel level API more object-oriented by
providing user-level classes that cover your driver’s interface. For example, Sound
Kit objects such as NXSoundOut hide the sound driver’s private Mach message
interface.

This section discusses ways you can communicate with the driver if you need to.

Entry Points
If you need to provide an interface, you may want to provide a set of entry points for
common driver requests, such as read, write, and so on. Your driver may have
UNIX-style or Mach message-based entry points.

UNIX-style Entry Points

You can add a set of UNIX-style entry point functions, such as open(2) and read(2),
to the cdevsw table for character drivers by invoking the IODevice class method
addToCdevswFromDescription:open:close:read:write:ioctl:stop:reset:select:m
map:getc:putc:. A similar method adds entry points to the bdevsw table for block
drivers. These methods search for free locations in these tables. The entry point
functions added can then communicate with your driver by sending it Objective C
messages or Mach messages. See Chapter 2, “Using Mach Messages” in
NEXTSTEP Operating System Software.

Note: Mach messages are not the same kind of messages as Objective C messages
sent to objects. See the references on the Mach operating system and Objective C
language in the “Suggested Reading” section of the Appendix.

Your driver can retrieve or set the driver’s character major device number with
characterMajor or setCharacterMajor. Similarly, blockMajor or setBlockMajor
retrieves or sets the driver’s block major device number.

UNIX entry points are documented in books about UNIX device drivers. See
“Suggested Reading” in the Appendix for more information about UNIX device
drivers.

Entry Points via Mach Messages

You can develop a message-based driver interface based on Mach messages. You
can create a loadable kernel server and communicate with it using Mach messages.
Use the Mach Interface Generator (MiG) to create this message interface. (MiG
generates remote procedure calls that handle the Mach messaging for you.) The
loadable kernel server can then send Objective C or Mach messages to the driver,

just as UNIX entry point routines can do.

For more information, refer to NEXTSTEP Operating System Software, Chapter 2,
“Using Mach Messages” and Part 2, “Writing Loadable Kernel Servers.”

Other Communication Methods
You can provide other ways to interface with your driver besides entry points.

Using IODeviceMaster

An IODeviceMaster object can get the object number of a device driver using one of
the lookUp... methods such as
lookUpByDeviceName:objectNumber:deviceKind:. Then it can get or set
parameters via methods such as
getCharValues:forParameter:objectNumber:count: or
setCharValues:forParameter:objectNumber:count:. Manipulating parameters
enables applications to control the driver. It also allows telling preloaded programs
which major device numbers are used.

You can also send driver-specific commands and send and receive small amounts of
data. Since IODeviceMaster’s buffers are small, the performance overhead would be
prohibitive to handle large amounts of data. Although any process can use
IODeviceMaster to get information from a driver, IODeviceMaster allows only the
superuser to send information to a driver. This mechanism replaces the UNIX ioctl()
interface.

Using IODevice Methods

If the amount of data you need to transfer to and from your driver is relatively small,
you can use the getIntValues/setIntValues or the getCharValues/setCharValues
methods in IODevice to communicate with user-level applications. Using those
methods is easier than using Mach messages.

Threads in Kernel-Level Drivers
In a user-level driver, every thread the driver creates executes in the driver’s own
task, as shown in Figure 2-1. There’s no way for any driver code to execute in any
other task; neither the kernel nor any task besides the driver’s own task ever
executes the driver’s code. Kernel-level drivers aren’t so simple, however—and the

Driver Kit currently supports only kernel-level drivers.

All kernel-level device drivers run in the kernel’s memory address space, but unlike
user-level drivers, their threads aren’t all in the same task. A loaded kernel driver
might run in a thread in the kernel task created especially for the driver. (A kernel
task is a task that shares the kernel’s address space but not the kernel’s IPC space.)
Additional threads created by kernel-level drivers execute as part of another kernel
task, the kernel I/O task. Figure 2-1 shows the relationship between kernel-level
driver threads and the kernel I/O task.

Main Thread

Driver Task

Kernel I/O Task

Thread Thread Thread

IO
F

orkT
hread()
IO

F
or

kT
hr

ea
d(

)

IO
F

or
kT

hr
ea

d(
)

Main Thread

Driver Task

Driver Task

Thread Thread Thread

IO
F

orkT
hread()

IO
ForkThread()

Main Thread Main Thread

Driver Task

IO
F

or
kT

hr
ea

d(
)

User Level

Kernel Level

Figure 2-1 . Threads in User-Level and Kernel-Level Drivers

A complication for kernel-level drivers is that their code can execute in threads that
don’t belong to the driver. For example, the kernel invokes a network driver’s
outputPacket:address: method whenever the driver should transmit a packet. This
method executes in whatever context the invoker of the method is in, not in the
context of any of the driver’s threads. Another example of executing in a nondriver
thread is that drivers with UNIX entry points operate in the calling user process’s
context.

In general, if a method or function isn’t always called directly by an I/O thread (or by
functions or methods that are called directly by the I/O thread) and the documentation
doesn’t say that the method is called in the context of the kernel I/O task, you should
assume that the method or function has been called by an unknown thread in an
unknown task.

Synchronizing Driver Requests with the I/O
Thread

A device driver receives requests to perform operations from various sources
external to the driver via its exported methods. Both the user’s kernel thread and the
I/O thread may invoke the driver’s exported methods against the driver. As the
previous section “Threads in Kernel-Level Drivers” noted, a driver can run in three
places: The user’s kernel thread (the thread that synchronously receives user
commands), in another kernel thread (a timeout function, for example), or in the I/O
thread. This section discusses how to coordinate these activities in different threads.

You may not need to be concerned about synchronizing these requests with your
driver. Display drivers don’t use an I/O thread. For other devices, the default I/O
thread (which is started automatically by the network, SCSI controller, and sound
device classes) handles this coordination for you. The driver’s methods are invoked
from the appropriate threads, and so on. Most display, network, SCSI controller, and
sound drivers require no further integration.

For some devices, such as SCSI peripherals, you may need to coordinate these
requests and services between the various threads. If you had to provide your own
driver interface, for instance, you need to pay attention to these issues.

In keeping with the Driver Kit paradigm, exported methods should generally not
perform I/O requests directly but send requests to the I/O thread. Only the I/O thread
touches hardware and other critical resources. This way, no exported methods
manipulate hardware or other critical resources—the I/O thread does all of the work.
This structure eliminates the need to use the UNIX spl... functions to change priority,
to disable interrupts, or to employ other mechanisms to prevent multiple threads from
accessing the hardware and interfering with each other. The I/O thread can perform
operations in a straightforward sequence as it chooses, without interference from
other threads. The benefit is that your code will be simpler and more reliable, your
design will be more comprehensible, and you’ll eliminate deadlocks and race
conditions.

Starting the I/O Thread

To start the default I/O thread, invoke IODirectDevice’s startIOThread method. It
forks the thread and invokes attachInterruptPort , which creates an interrupt port
for the thread. The thread receives Mach messages on this port. A Mach message
could be from the user’s kernel thread requesting it to execute an I/O operation, or it
could be from the kernel notifying the I/O thread that an interrupt occurred. Some of
the device classes, such as those for SCSI controllers, network, and sound devices,
start up the default I/O thread automatically.

Note: Even though it is called an interrupt port, the I/O thread receives all its Mach
messages on this port—not just interrupt messages.

To start a custom I/O thread, call the function IOForkThread() . Its argument is a
function, which consists of a while loop that waits for and executes commands from
the rest of the driver. This function runs in the kernel’s I/O task. Like the default I/O
thread, only this function should touch the hardware.

Synchronizing with the I/O Thread
A device driver’s exported methods execute in response to some action initiated by a
user program. A method may have two flavors of communication with the I/O thread.
In some cases, an exported method needs to do synchronous communication with the
I/O thread—that is, the exported method sends some work to the I/O thread and waits
until that work is done. In other cases, an exported method does asynchronous I/O—it
just sends some work to the I/O thread and continues executing, without waiting for
the work to be done.

In either case, the I/O thread may not be ready to perform the requested hardware
operation when the user thread requests it. Therefore, there must be a way to
synchronize the interface functions with the I/O thread. This synchronization is
essentially automatic if you use the default I/O thread, because the thread takes
requests only when it’s ready to handle them.

Coordination between the driver’s user-level exported methods and the I/O thread
can occur in two ways:

• Using Mach messages, but it’s recommended that they be used only with the
default I/O thread. See “Synchronizing Using Mach Messages” later in this
section.

• Using a type of lock known as a condition lock. See “Synchronizing Using
Condition Locks” later in this section. They’re fast and easy to use.
NXConditionLock is documented in the Mach Kit in NEXTSTEP General
Reference.

Sometimes, for performance or other reasons, a driver might have its exported
methods perform some I/O directly without going through the I/O thread. An Ethernet

driver might be an example of this. The method that’s called when a client wants to
send a packet out to the network might perform no I/O—it might just add a DMA
frame to the device’s DMA queue. The exported method could do this directly
without waking up the I/O thread. The Ethernet I/O thread would basically just
service interrupts and dispatch incoming packets. A lock in the driver would protect
access to the hardware in the case where the output method has to start up an idle
DMA channel.

Synchronizing Using Mach Messages

A user-level process typically doesn’t communicate directly with the driver. The
user-level process communicates with a set of UNIX entry points or with a loadable
kernel server, as indicated in “Interfacing with the Driver.” These entry points or
loadable kernel server can then communicate with the I/O thread via Objective C
messages (through the driver’s exported methods) or Mach messages. Both
synchronous and asynchronous I/O requests can be performed using Mach messages
between the exported methods and the I/O thread.

A way of communicating with the I/O thread is supported by the default I/O thread
provided by IODirectDevice. In this scheme, each request is sent to the
IODirectDevice’s interrupt port, using a message ID. The file
/NextDeveloper/Headers/driverkit/interruptMsg.h defines a set of messages. The
only information in a message is its ID. Command buffers or other data, for instance,
are not part of the message. The default I/O thread invokes one of the following
methods, based on the message ID received:

Message ID Method Invoked

IO_TIMEOUT_MSG timeoutOccurred

IO_COMMAND_MSG commandRequestOccurred

IO_DEVICE_INTERRUPT_MSG interruptOccurred

IO_DEVICE_INTERRUPT_MSG_FIRST interruptOccurredAt:
to IO_DEVICE_INTERRUPT_MSG_LAST

(anything else) otherOccurred:

You implement these methods to respond appropriately to the condition.

Interrupt messages are sent automatically by the kernel. If you want to use the other
types of Mach messages, your driver or some other module it works with must
explicitly send them. An advantage of using Mach messages to notify the I/O thread
of requests is that the thread can service incoming I/O requests while waiting for
interrupt messages.

You can also devise your own Mach messages and invoke whatever I/O thread
methods you choose in response to them. You would implement the receiveMsg

method in IODirectDevice to dequeue the next Mach message from the interrupt
port.

The IOSCSIController class is an example of this. The SCSI bus is capable of
performing overlapped I/O requests, in which one I/O request can be started while
another is in progress and is disconnected from the bus. In this case, the
IOSCSIController I/O thread receives I/O requests through Mach messages.

IOSCSIController itself doesn’t manage, allocate, or use any Mach ports at all. It
depends on startIOThread to set up one port, the standard interrupt port. Everything
else is done by subclasses of IOSCSIController. IOSCSIController subclasses
currently use the interrupt port for all Mach interprocess communication, including
command messages and timeout messages. The messages are distinguished by their
message ID, not the port to which they are sent.

The example SCSI driver in /NextDeveloper/Examples/DriverKit/Adaptec1542B
is a good illustration of these techniques.

An older technique that created a custom Mach message that included the command
buffer is no longer used. It’s been replaced by the mechanism of enqueuing a
command buffer on some well-known location (such as an instance variable) and
sending a command message to the interrupt port. This results in
commandRequestOccurred being invoked by the I/O thread, as noted above.

Synchronizing Using Condition Locks

Condition locks are provided by the Mach Kit’s NXConditionLock class, which
works at both user and kernel level. For information about NXConditionLock beyond
what’s given here, see NEXTSTEP General Reference.

Using Mach messages and condition locks for synchronization aren’t necessarily
mutually exclusive. For instance, you could use a condition lock on a buffer as
illustrated in “Using a Command Buffer” below and have the I/O thread wait for
Mach messages on its interrupt port. However, the following two synchronization
techniques are mutually exclusive:

• I/O thread waiting for messages on its interrupt port
• I/O thread waiting for work using a condition lock (as shown in the example

below)

A general technique for passing I/O information from a driver’s exported methods to
its I/O thread using condition locks is shown below and illustrated with an example.

Using a Command Buffer

Some known location, perhaps an instance variable in the driver object, can be used
to pass commands from the exported driver methods to the I/O thread. This variable

may contain a structure (called cmdBuf_t in the following example) that serves as a
command buffer, the fundamental unit of communication between exported methods
and the I/O thread. You would define the command buffer differently for each
driver—it must contain all the information needed by the I/O thread to perform a
single I/O request. For example, a command buffer for a disk driver might contain a
disk address, a virtual address, a byte count, and a read/write command flag. The
command buffer might also contain fields by which the I/O thread can indicate
completion status—for example, a device-specific status field and a field indicating
the number of bytes transferred.

The command buffer contains a variable for a token that indicates which hardware
operation the I/O thread should perform. This variable may be the value of an enum,
for instance.

The command buffer also contains an NXConditionLock (called cmdBufLock in the
example below), which manages access to the command buffer. An exported method
(a write routine, for example) sets the lock unconditionally when it wants the I/O
thread to execute a command. It sets up the command buffer for the operation it
wants to perform and releases the lock with the condition NOT_COMPLETE. It then
waits on the lock until its state is COMPLETE, which results in the user thread
sleeping until the I/O thread sets the lock condition to COMPLETE. Meanwhile, the
I/O thread is waiting on the lock until its state is NOT_COMPLETE and it has a
command to execute. When those conditions are satisfied, the I/O thread then sets
the lock. When it finishes executing the command, it releases the lock and sets its
state to COMPLETE, which is the cue for the user thread to wake up.

Managing Multiple Requests

You can also queue multiple requests with condition locks. This lock works
independently of the lock indicating a command completion.

Declare an instance variable (which may be in the driver object) that’s the head of a
queue of command buffers. Command buffers are added to the queue by exported
methods and removed from the queue by the I/O thread.

Declare an instance variable that’s an NXConditionLock (this variable is called
ioQueueLock in the following example). This lock protects the queue and provides a
way for the I/O thread to sleep until it has work to do. This lock has two states,
QUEUE_EMPTY and QUEUE_NOT_EMPTY. Note that each command buffer has
its own condition lock (cmdBufLock in the example below) to control completion of
the I/O request specified in that particular buffer.

Example

Here’s an example of an exported method that communicates with the I/O thread
synchronously. This example shows how locks can be used to synchronize with a

custom I/O thread in lieu of command messages to the interrupt port. It also shows
how to queue multiple requests. Italicized text delineated in angle brackets, that is <<
>>, is to be filled in with device-specific code.

- (IOReturn)makeIORequest:(int)anArgument
{
 cmdBuf_t cmdBuf;

 /* Initialize lock */
 [cmdBuf.cmdBufLock lock];

 << Fill in cmdBuf fields appropriate for this I/O. >>
 /* Unlock and set cmdBufLock to condition NOT_COMPLETE. */
 [cmdBuf.cmdBufLock unlockWith:NOT_COMPLETE];

 /*
 * Enqueue this command buffer and let the I/O thread
 * know that it has work to do.
 */
 [ioQueueLock lock];
 << Enqueue cmdBuf on ioQueue. >>
 [ioQueueLock unlockWith:QUEUE_NOT_EMPTY];

 /*
 * Wait for I/O thread to process the command buffer and
signal
 * completion.
 *
 * NOTE: The following is necessary only for synchronous I/O.
 */
 [cmdBuf.cmdBufLock lockWhen:COMPLETE]; //ONLY FOR SYNCHRONOUS
 [cmdBuf.cmdBufLock unlock];

 /*
 * I/O is complete.
 */
 << Free necessary data from cmdBuf. >>
 << Return I/O result. >>
}

The I/O thread invokes the following method while waiting for work from the
exported methods:

- (cmdBuf_t *)waitForWork
{
 cmdBuf_t *cmdBuf;

 [ioQueueLock lockWhen:QUEUE_NOT_EMPTY];
 << Dequeue head of ioQueue, save in cmdBuf. >>
 if(<< ioQueue is empty >>)
 [ioQueueLock unlockWith:QUEUE_EMPTY];
 else
 [ioQueueLock unlockWith:QUEUE_NOT_EMPTY];
 return cmdBuf;
}

The I/O thread executes the request and wakes up the user thread as follows:

- (void)performIO:(cmdBuf_t *)cmdBuf

{
 << Execute I/O request >>
 [cmdBuf->cmdBufLock lock];
 [cmdBuf->cmdBufLock unlockWith:COMPLETE];
}

Sending Messages Outside the I/O Task
When a driver executes outside the I/O task, it no longer has send rights to ports that
it has in the I/O task. A workaround for this problem is to use the
msg_send_from_kernel() function instead of msg_send() to send the message to the
port. The port must first be converted to a form that’s valid in the kernel’s IPC space,
using IOConvertPort() . An example of using msg_send_from_kernel() is in the
IOSCSIController class specification.

Handling Interrupts
Most kernel-level drivers don’t handle interrupts directly. Instead, the kernel notifies
the driver of an interrupt by sending a Mach message to the interrupt port. An
interrupt port is allocated when a direct driver object is initialized by the
attachInterruptPort method of IODirectDevice. Figure 2-2 shows how interrupts
are handled by the kernel and the I/O thread of a direct device driver.

Handle interrupt Enable interru
pt

Disable interru
pt

2

Hardware

Interru
pt CPU

Kernel Driver
Support

1

3 4

5

6

7

Interrupt
Port

Receive
interrupt
message

Send
interrupt
message Direct Driver

I/O Thread

Request interrupt enable

Figure 2-2 . Driver Kit Interrupt Handling

As Figure 2-2 shows, when an interrupt occurs (1), the kernel masks off further
occurrences of that particular interrupt (2) and sends a message to the appropriate
interrupt port (3). It then returns from the interrupt. The interrupt message contains no
information except for a message ID in its header that identifies this message as an
interrupt message.

When the driver receives an interrupt message (4), it should examine the hardware to
determine the cause of the interrupt and perform whatever action is necessary for
continuing the I/O transfer in progress (5). It should then request that the kernel
reenable interrupt notification for the device (6).

No further interrupt messages are sent to the driver until the kernel enables interrupts
(7). If interrupts are shared between devices, the kernel reenables interrupts. If
interrupts are not shared, the kernel resumes sending interrupt messages. See the
section “Shared Interrupts” in this chapter.

When a device interrupts while a message is queued on the corresponding interrupt
port, the kernel returns immediately without sending an interrupt message. After
msg_receive() returns (which dequeues the message), the kernel regains the ability
to send interrupt messages (but not until the device interrupts again). The memory for
messages is fixed since the kernel can’t allocate more memory at the interrupt level.
The message buffers accommodate only one interrupt message, so any interrupts that
arrive while an interrupt message is already queued are lost.

The I/O thread automatically calls msg_receive() to get messages on its interrupt
port. The default I/O thread also invokes the interruptOccurred or
interruptOccurredAt: method in response to interrupt messages. Most of the
device-specific classes in the Driver Kit do this for you.

One Device, One Thread
A driver is responsible for maintaining and dealing with three kinds of
resources—hardware, the driver’s private data, and client I/O requests. In a
multiprocessor system, or in a system in which driver code contains interrupt
handlers, a great deal of care must be taken to protect access to all three of these
resources. Almost every function must use locks and disable interrupts. Even in the
most well-thought out design, the presence of locks and interrupt disabling makes
code hard to read and tends to lead to bugs. The problem is most apparent in code
that manipulates the hardware directly.

The Driver Kit’s solution to this problem is this:

Given any hardware resource, one and only one thread can deal with that
resource at a time. Interrupt handlers have no direct access to the resource.

Consider a SCSI controller chip, for example. If exactly one thread in the system has

access to the chip, there’s no need for locking or for disabling interrupts to protect the
code that manipulates the chip.

Another way of looking at this is that for a given piece of hardware, only one
operation at a time can happen. At point A, a driver might be setting up a chip to start
I/O. At point B, the driver might be waiting for an interrupt from the chip. At point C,
the driver might be responding to an interrupt and interrogating registers to see what
caused the interrupt. A driver is never setting up a chip to start an I/O at the same
time it’s interrogating registers to see what caused an interrupt. In UNIX drivers, a
combination of locks, interrupt disabling, and an interrupt-driven state machine
assure that the driver attempts only one hardware operation at a time. In the Driver
Kit, the one-at-a-time sequence of operations is enforced by having a single thread
(the I/O thread) perform all hardware operations.

Another reason for this model is the desire to have drivers run in user space. There’s
no practical way for user-level drivers to run interrupt handlers with interrupts
disabled; only kernel software can do this.

Some drivers in exceptional cases may choose to have multiple threads with access
to one piece of hardware. The “one device, one thread” model is not an absolute. It’s
merely a design goal that has proved to be a viable basis for writing Driver Kit
drivers.

Example: Floppy Disk

Let’s look at a simple piece of hardware, a floppy disk controller chip. Floppy disk
I/O consists of a predictable sequence of operations—starting an I/O request, waiting
for an interrupt, and manipulating some registers. A feasible template for a floppy
disk I/O thread looks like this:

floppyThread()
{
 << Initialize local data structures. >>
 << Initialize hardware. >>
 while(1) {
 << Wait for an I/O request from a client. >>
 << Set up the controller chip to start the I/O. >>
 << Wait for interrupt. >>
 << Manipulate controller registers to finish the I/O. >>
 << Notify client of I/O completion. >>
 }
}

Not all devices are this simple, but this illustrates how a single thread suffices to
manipulate a hardware resource.

Traditional UNIX Interrupt Handling

Compare the Driver Kit’s interrupt handling to the UNIX approach.

The traditional UNIX driver design involves a conceptual top-half, which is code
called from higher layers in the kernel to initiate an I/O, and a bottom-half, which
consists of various interrupt handlers and I/O completion logic. A simple example
follows:

1. High-level kernel code calls the driver’s strategy() or write() or read()
routine (in the driver’s top-half) to start an I/O.

2. The driver’s top-half enqueues the I/O on a queue that is private to the
driver, perhaps after translating the incoming data into a driver-specific
format.

3. If the bottom half of the driver is idle, the top-half calls a start() routine to
initiate a hardware operation.

4. The bottom-half takes over from here. When an interrupt occurs, the driver’s
interrupt handler runs and decides either that the hardware needs some more
attention before completing the I/O (in which case a state machine is
advanced and the driver awaits another interrupt) or that the I/O is complete
(in which case higher-level code in the kernel is notified of this fact).

Things can actually get much more complicated than this. For instance, a certain
section of code may sometimes run as the result of an interrupt and run the rest of the
time for some other reason. Because an interrupt might occur while the code is
already running, the code must protect itself during critical sections by disabling
interrupts. One example of code that must be protected is a function that starts I/O. In
the example given previously in this section, the start() function doesn’t run as the
result of an interrupt. However, if more work remains at I/O completion time, the
start() function is called from the interrupt handler. The section of code that starts
the I/O must be protected from interrupts so that it can complete its work correctly.

Sometimes interrupts are disabled for hundreds of microseconds or more. Such long
periods without interrupts seriously hamper system throughput and cripple the ability
of the system to respond to real-time events such as the arrival of serial data.

Another problem with running some subset of a driver’s code at interrupt level is that
locking shared data structures (even if they are shared only between the files
constituting one driver) is difficult on a multiprocessor system. To access a critical
data structure on a multiprocessor system—when the data can be accessed at
interrupt level by all processors—noninterrupt code must first disable interrupts on all
processors and then acquire a lock.

Custom Interrupt Handlers
You may need to write your own interrupt handler in some cases. A driver for a
device with high data rates that depends on programmed I/O would be a good
candidate for a custom interrupt handler, for instance. The IODirectDevice
getHandler:level:argument:forInterrupt: method has been provided to support
such handlers. It specifies an interrupt handler function for the driver.

Warning: Use interrupt level IPLDEVICE (defined in
/NextDeveloper/Headers/kernserv/i386/spl.h) unless a higher interrupt level is
absolutely necessary and you’re fully aware of the possible consequences of using it.

If you want the I/O thread to take some action, the interrupt handler can call the
IOSendInterrupt() function, which sends a Mach message to the I/O thread with
the specified message ID.

Warning: Your driver must not send Objective C messages in an interrupt handler, since
sending a message can result in memory allocation. Allocating memory can lead to
sleeping, and interrupt handlers must not sleep, as described in NEXTSTEP
Operating System Software.

Read “Designing a Loadable Kernel Server” in NEXTSTEP Operating System
Software for more information on executing as the result of an interrupt.

Shared Interrupts
Devices may share the same interrupt. Since there are only 15 IRQs available on
Intel-based computers, sharing interrupts may be necessary for some configurations.

Each time an interrupt occurs for a shared IRQ number, every driver that shares the
interrupt gets an interrupt message. If the driver has its own interrupt handler, it is
called.

At the end of your interrupt handling method or function, you must reenable the
interrupt—whether or not the interrupt was intended for your device. You accomplish
this by invoking enableAllInterrupts :

 [self enableAllInterrupts];

If you are using a special interrupt handler, reenable interrupts by calling
IOEnableInterrupt() in the handler. You should only reenable the interrupt after
removing the source of the interrupt—by clearing the interrupt status register on the
device, for example, or by using whatever mechanism is necessary for the hardware
your driver controls.

The shared interrupt is masked each time an interrupt occurs. It is only unmasked

after all drivers that are sharing the interrupt reenable their own interrupts.

IODisableInterrupt() allows handlers of non-shared interrupts to indicate that the
interrupt should be left disabled on return from the interrupt handler.

Note: IOEnableInterrupt() and IODisableInterrupt() must be called only inside
a special interrupt handler function, that is, at interrupt level. (The special interrupt
handler is the one you specified in getHandler:level:argument:forInterrupt: .)
These functions can’t be called from any other context. You shouldn’t call them from
interruptOccurred , for example.

Enable shared interrupts for your system by setting the “Share IRQ Levels” key in
your driver’s Default.table:

"Share IRQ Levels" = "Yes";

Note: Currently, shared interrupts imply level-triggered interrupts on EISA and PCI
bus machines. Shared interrupts are not supported on ISA bus machines.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

3

Support for Specific Devices

Earlier chapters considered generic issues for all drivers. This chapter concentrates
on the essentials of writing drivers for the following specific types of devices:

• Display
• Network
• SCSI (both controllers and devices attached to controllers)
• Sound

The section for each device type lists the development hardware needed. It indicates
the basic operations required for such a device driver and provides some
implementation suggestions.

Figure 3-1 shows the IODevice classes that you can use to write specific drivers.

IODevice IODirectDeviceObject

EventSrc

IODisk
IOEthernet

IODisplay

IOFrameBufferDisplay

IOSCSIController

IOSVGADisplay

IOAudio

Figure 3-1 . Public IODevice Classes

The Driver Kit has special support for these devices although you can also write other
kinds of drivers with the Driver Kit.

In addition to device-specific classes, some kinds of drivers use non-IODevice
classes that work with the IODevices. For example, network drivers typically use the
IONetwork and IONetbufQueue classes.

Examples of each driver type are located in /NextDeveloper/Examples/DriverKit.
See also the examples located in
/NextLibrary/Documentation/NextDev/Examples/DriverKit .

Development Support
You need support from these sources during driver development:

• Hardware vendors. You may need new hardware or firmware. You also want
advance notice of changes and information about new products. Support for drivers
is an ongoing process.

• Accurate and complete specifications for the hardware you’re working with.
Ancillary documentation such as support notes, technical notes, and sample code
is also very useful.

Warnings
Driver development is hazardous to the health of your system. You will corrupt your
kernel and hang your system during development, so be prepared to recover from
these incidents. Furthermore, you’ll most likely corrupt your system disk, so take
these precautions:

• Keep code and other critical resources off your development systems.
• Have a plan for backup and rapid restoration of your disk’s contents.

Display Devices
A driver for a display card is a subclass of one of these two classes:

• IOFrameBufferDisplay, for cards that can linearly map the entire frame buffer
• IOSVGADisplay, for other display cards

Figure 3-1 shows display device classes’ position in the Driver Kit class hierarchy.

IOFrameBufferDisplay supports the following modes:

• 2-bit grayscale
• 8-bit grayscale

• 8-bit color
• 16-bit color (4 or 5 bits each for red, green, and blue, but only 4096 colors in either

case)
• 24-bit color (8 bits each for red, green, and blue).

IOSVGADisplay supports only 2-bit grayscale.

Note: All display cards with VGA support work with NEXTSTEP. Without special
drivers, however, they have a small display area (640×480) and are 2-bit grayscale.

Both classes support EISA and VL-Bus display cards. A limited number of ISA
display cards are supported for performance reasons. PCI display cards are
supported, but not PCMCIA display cards.

Driver Kit display drivers are simpler than their DOS or Windowscounterparts
because they perform no graphics operations—the Window Server handles all
graphics.

See the IODisplay, IOFrameBufferDisplay, and IOSVGADisplay class specifications
for additional information about how to implement a driver.

Directories in /NextDeveloper/Examples/DriverKit with examples of video drivers
include ATI , CirrusLogicGD542X, QVision, S3, and TsengLabsET4000.

IODeviceObject IODirectDevice
IOFrameBufferDisplay

IOSVGADisplay
IODisplay

Figure 3-2 . Classes for Display Drivers

Development Requirements
The following hardware is required or recommended for development and support
efforts:

• A workstation with NEXTSTEP User and Developer software
• A second NEXTSTEP workstation for the target system (optional, but

recommended)
• Adapter hardware
• Multisync monitor
• Frequency counter (optional, but recommended)
• Oscilloscope (optional)

Setting the Frame Buffer Address Range
If you implement an IOFrameBufferDisplay driver, you must supply the frame buffer
memory range as the first range in the memory range list. This is normally done by
placing this range as the first range of the “Memory Maps” key in Default.table.
(You can also set this list with the setMemoryRangeList:num: method in
IODeviceDescription.) The value should be the physical address memory byte range
of the frame buffer. This range should be high in memory—above 2 GB, for
example—to avoid conflicting with physical memory.

On PCI-based systems, the BIOS attempts to allocate the frame buffer address range
for you. The BIOS places this address range in the PCI configuration data but not in
the device description, so you need to update the device description with this range.
Furthermore, the BIOS doesn’t always succeed in determining a valid frame buffer
address, so you need to check the address. Follow these steps to check and set the
frame buffer address range for PCI-based systems:

1. Get the memory ranges from the device description by invoking
IODeviceDescription’s memoryRangeList method. The frame buffer
address range is the first one in the list—this is the range value provided in
the Default.table.

2. Get the PCI configuration space’s frame address range, which was
determined by the BIOS. Read the PCI configuration space by using the
getPCIConfigData:atRegister:withDeviceDescription: method. Consult
your device’s hardware specifications to determine which PCI register holds
the frame buffer address.

3. Check that the range’s starting address is greater than or equal to 4 MB and
correctly aligned for your hardware.

4. If the address is invalid, don’t update the device description with this range.
Instead, update the PCI configuration space with the range from the device
description. Take the device description’s address range you determined in
the first step and write it to the PCI configuration space using the
setPCIConfigData:atRegister:withDeviceDescription: method.

5. If the address is valid, update the device description. Replace the first range
in the list you obtained in step 1 with the range you got from the PCI
configuration. Set the ranges with the setMemoryRangeList:num: method
in IODeviceDescription.

You should go through these steps in your probe: method, prior to invoking
initFromDeviceDescription:.

Basic Operations
A display driver must perform the following basic operations:

• Instantiating and initializing a driver object
• Selecting the display mode
• Reconfiguring display hardware for the selected display mode
• Reverting to VGA display mode
• Adjusting display brightness

Instantiating and Initializing a Driver Object

Override the probe: method in IODevice. Your probe: method should find and
characterize the hardware. It must verify the presence and operation of the graphics
controller (CRTC) and determine its revision. The probe: method should also
determine the DAC type, the memory size, and the clock chip type, if necessary. For
PCI-based drivers, probe: should check and set the frame buffer range address, as
indicated in “Setting the Frame Buffer Address Range.” It should create a driver
instance of IOFrameBufferDisplay or IOSVGADisplay. If invalid values are found
during verification, the method shouldn’t create a driver instance but should send an
appropriate diagnostic message and return NO.

Note: Instead of using probe:, the current display driver examples use
initFromDeviceDescription: to perform all this initialization, because they were
written before the API was fully developed. The probe: method is preferred.

Selecting a Display Mode

IOFrameBufferDisplay’s method selectMode:count:valid: selects the display mode
for you. To use it, you need to declare an IODisplayInfo array with one element per
mode and initialize it, as in this example:

 const IODisplayInfo QVisionModeTable[] = {
/* 0: QVision 1024 x 768 x 8 (Mode 0x38) @ 60Hz. */
{

1024, 768, 1024, 1024, 60, 0,
IO_8BitsPerPixel, IO_OneIsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38_60Hz,

},

/* 1: QVision 1024 x 768 x 8 (Mode 0x38) @ 66Hz. */
{

1024, 768, 1024, 1024, 66, 0,
IO_8BitsPerPixel, IO_OneIsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38_66Hz,

},
}

Declare an array of boolean values with one element per display mode and fill it. In

the following example, italicized text delineated in angle brackets, that is << >>, is to
be filled in with driver-specific code.

BOOL validModes[QVisionModeTableCount];

for (k = 0; k < QVisionModeTableCount; k++) {
if (<< current hardware supports this mode >>)

validModes[k] = YES;
else

validModes[k] = NO;
}

Finally, send a message to select a mode and handle the result, as this code section
illustrates:

mode = [self selectMode:QVisionModeTable
count:QVisionModeTableCount

valid:validModes];

if (mode < 0) {
IOLog("%s: Sorry, cannot use requested display mode.\n",

[self name]);

/*
* Pick a reasonable default
*/

mode = DEFAULT_QVISION_MODE;
}

Reconfiguring Display Hardware for the Selected Display Mode

Using the appropriate commands for your display hardware, reconfigure it for the
selected mode with these operations, the order of which is hardware-dependent:

• Turn off the CRTC
• Configure the CRTC
• Configure the DAC
• Configure the clock chip
• Configure memory, if necessary
• Restart the CRTC
• Enable linear frame buffer mode

Reverting to VGA Display Mode

Return the adapter to the state it would be in after a hard reset, and, in the typical
case, set VGA mode to 3.

Adjusting Display Brightness

If the hardware supports changing the brightness of the display, implement the

setBrightness:token: and use the setTransferTable:count: method to adjust it as
desired.

If the DAC supports downloading a color palette, override setTransferTable:count:
to receive a gamma-corrected transfer table from the Window Server, or declare your
own table in a static array. Override setBrightness:token: and then download the
transfer table to the DAC. Look at an example of the setGammaTable method in one
of the display driver examples in /NextDeveloper/Examples/DriverKit. Finally,
indicate that you’ve implemented a transfer table by setting a flag:

displayInfo->flags |= IO_DISPLAY_HAS_TRANSFER_TABLE;

If the DAC doesn’t support downloading a color palette, don’t override these methods,
and set the flag to indicate there’s no transfer table:

displayInfo->flags |= IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION;

Network Devices
Two classes, IONetwork and IONetbufQueue, support all drivers that directly control
networking hardware.

The Driver Kit contains special support for Ethernet and Token Ring drivers in two
IODirectDevice subclasses—IOEthernet and IOTokenRing—from which you create a
subclass to build your network driver. IOEthernet and IOTokenRing implement the
hardware-independent code needed to control Ethernet and Token Ring cards.

Figure 3-1 shows the network device classes relative to their superclasses.

See the IOEthernet and IOTokenRing class descriptions for additional information on
writing Ethernet and Token Ring drivers.

/NextDeveloper/Examples/DriverKit/SMC16 contains a network driver example.

IODevice IODirectDeviceObject

IONetbufQueue

IONetwork
IOEthernet

IOTokenRing

Figure 3-3 . Classes for Network Drivers

Development Requirements

The following hardware is required or recommended for development and support
efforts:

• Two workstations with NEXTSTEP User software (mandatory—these serve as
debug master and slave)

• NEXTSTEP Developer software on one of the workstations
• For Ethernet drivers, two supported Ethernet adapters, one of which supports

NEXTSTEP kernel debugging (contact NeXT to get a list of qualifying adapters)
• Target adapter hardware
• Networking hardware (cables, tees, terminators, transceivers, and hub) to link the

two workstations
• Network analyzer (optional, but highly recommended)

Basic Operations
A network driver needs to support these operations:

• Instantiating and initializing a driver object
• Handling interrupts and timeouts
• Cold initialization
• Warm initialization
• Transmitting
• Receiving

Instantiating and Initializing a Driver Object

Override IODevice’s probe: method. Your probe: method should find the hardware
based upon a user-configured parameter such as an ID sequence or signature. This
method must validate the device description passed to probe:, failing with a
diagnostic message if any values are invalid. The probe: method should allocate an
instance of IOEthernet or IOTokenRing, if necessary, and invoke
initFromDeviceDescription: to initialize the instance. If it finds anything invalid in
the hardware or device description, it shouldn’t create a driver instance and should
return NO.

Handling Interrupts and Timeouts

Implement interruptOccurred and timeoutOccurred. The kernel invokes
interruptOccurred from the I/O thread whenever the hardware interrupts and
invokes timeoutOccurred when a timeout occurs.

Cold Initialization

Cold initialization should perform any one-time initialization actions, such as reading
the hardware address from ROM or allocating system memory for DMA buffers.

Warm Initialization

Implement the resetAndEnable: method to prepare the hardware and software for
network activity. This method should do the following:

• Disable interrupts
• Clear pending timeouts
• Initialize hardware settings and software data structures
• Cache physical addresses
• Enable running by invoking setRunning:
• Reenable interrupts if the enable parameter is YES

Transmitting

Depending on what your hardware supports, choose between using a single frame or a
transmit queue.

To transmit a frame, implement the transmit: method to follow these steps:

1. Queue the frame if it can’t be processed immediately.

2. Perform a software loopback if necessary using performLoopback: .

3. Transfer the frame to the hardware.

4. Free the frame’s network buffer; you may need to do this in an interrupt
handler.

5. Set a timeout.

6. Handle the transmit interrupt or timeout.

7. Increment statistics such as number of frames sent, number of timeouts, and
so on by invoking methods such as incrementOutputPackets in IONetwork.

Warning: Never attempt to retransmit at the driver level.

Receiving

To receive a packet, follow these steps:

1. Handle the receive interrupt, which indicates that a packet has been
received. Incoming frames must be in a network buffer. You can allocate
network buffers with nb_alloc() or use nb_alloc_wrapper() to wrap already
allocated memory as a network buffer. Note that these functions can’t be
called at the interrupt level.

2. Check that the network buffer size is correct. You can shrink it with
nb_shrink_bot() if needed.

3. Filter unwanted packets with isUnwantedMulticastPacket: in IOEthernet if
the hardware doesn’t provide filtering based on individual multicast
addresses.

4. Hand off the packet to the kernel by invoking handleInputPacket:extra: in
IONetwork. This automatically invokes incrementInputPackets to
increment that count.

5. Update statistics appropriately using methods such as
incrementInputErrors in IONetwork.

SCSI Controllers and Peripherals
You can write drivers for both SCSI controllers and SCSI peripherals with the Driver
Kit.

Drivers for SCSI controllers should generally be implemented as subclasses of
IOSCSIController. Drivers for SCSI devices are indirect drivers that are typically
implemented as subclasses of IODevice. These indirect drivers use the
IOSCSIControllerExported protocol to communicate with the SCSI controller driver
object, which must conform to the IOSCSIControllerExported protocol. (Required
protocols and the role they play in connecting drivers are discussed in Chapter 2.)

Figure 3-1 illustrates the position of SCSI driver classes in the Driver Kit class
hierarchy.

For more information on writing a SCSI driver, see the IOSCSIController and
IODevice class descriptions.

An example of a SCSI controller driver is located in
/NextDeveloper/Examples/DriverKit/Adaptec1542B. For an example of a SCSI
tape drive controller, see /NextDeveloper/Examples/DriverKit/SCSITape.

IODeviceObject IODirectDevice IOSCSIController

Figure 3-4 . Classes for SCSI Controllers

Development Requirements
The following hardware is required or recommended for development and support
efforts:

• A workstation with NEXTSTEP User and Developer software
• A second NEXTSTEP workstation with NEXTSTEP User software. This is

strongly recommended: It’s virtually guaranteed that you’ll corrupt your disk. It’s
essentially mandatory if you’re developing a boot driver. Furthermore, the second
station allows you to debug the loaded driver at source level. Set up a procedure to
quickly recover the contents of your disk.

• SCSI Host adapter
• Peripherals for testing the adapter: hard disk, CD-ROM, tape drive
• SCSI analyzer

Basic SCSI Controller Driver Operations
The basic operations needed for a SCSI driver are the following:

• Instantiating and initializing a driver object
• Initiating commands
• Handling interrupts and command completion
• Handling timeouts

Instantiating and Initializing a Driver Object

Override IODevice’s probe: and initFromDeviceDescription: methods.

Implement probe: to test for system resources such as I/O ports and to verify the
presence of hardware. If the hardware is present, create a driver instance and return
YES. If invalid values are found during verification, probe: shouldn’t create an
instance; it should instead send an appropriate diagnostic message and return NO.

Your initFromDeviceDescription: method must invoke super’s implementation:

[super initFromDeviceDescription: deviceDescription];

IOSCSIController’s initFromDeviceDescription: method starts up the default I/O
thread provided by IODevice and initializes its instance variables. Your
initFromDeviceDescription: method should initialize the hardware state and
software structures such as queues and locks.

Initiating Commands

Implement resetSCSIBus (in the IOSCSIControllerExported protocol) to reset the
SCSI bus for your hardware.

Implement executeRequest:buffer:client: (also in the IOSCSIControllerExported
protocol). This exported method should convert the command and data (in the
IOSCSIRequest struct passed to it) into the format for the specific hardware and
place it in a command buffer. Enqueue the buffer in some well-known location—a
queuing instance variable you define in your subclass, for example. Send a Mach
message with the ID IO_COMMAND_MSG to the I/O thread’s interrupt port to
notify the I/O thread that it should execute a command that’s been placed in global
data. Wait for the command to complete; you can synchronize this with the I/O thread
by using an NXConditionLock object in the command buffer. (For example, you set
the lock to a CMD_READY state and then do a lockWhen:CMD_COMPLETE. The
I/O thread sets the lock state to CMD_COMPLETE when it’s done. See the example
in Chapter 2.) Return SCSI and driver status.

The commandRequestOccurred method is invoked by the I/O thread when it
receives a Mach message with the ID IO_COMMAND_MSG. Implement this
method to dequeue all commands that have been queued for execution. Send them to
the host adapter, using the private methods and functions that you implement for your
hardware. If the host adapter isn’t able to accept all the enqueued commands, wait
until an interrupt message arrives indicating that the host adapter has completed
commands previously sent to it and may now accept more commands.

Handling Interrupts and Command Completion

When the I/O thread receives a message with the ID IO_INTERRUPT_MSG, it
invokes the interruptOccurred method against the driver instance. Your
implementation of this method should find all commands that the host adapter has
completed, mark their respective command buffers complete, and dequeue them. It
should reinvoke the commandRequestOccurred method to process any remaining
enqueued commands.

Handling Timeouts

Just before the I/O thread tells the hardware to execute a command, it should call the
IOScheduleFunc() function to arrange for a specified timeout function to be called
at a certain time in the future. If the timeout function is called, it sends a Mach
message with the ID IO_TIMEOUT_MSG to the I/O thread.

The timeoutOccurred method is invoked by the I/O thread if it receives a message

with the ID IO_TIMEOUT_MSG. Your implementation of this method should abort
pending commands and reset the SCSI bus.

Other Considerations
You need to consider a few other issues in implementing a SCSI driver.

Sending Messages to the I/O Thread

During initialization, get the I/O thread’s interrupt port:

port = [self interruptPort];

Also get the port’s name in the kernel’s IPC (inter process communication) name
space:

ioTaskPort = IOConvertPort(port, IO_KernelIOTask, IO_Kernel);

Use the msg_send_from_kernel() function to actually send a message from the
timeout function or from executeRequest:buffer:client: to the I/O thread. You can’t
use msg_send() because when a driver executes outside the I/O task, it no longer has
send rights to ports that it had in the I/O task. The same applies to any method or
function that you specified in a call to IOScheduleFunc().

Alignment

To specify the buffer allocation alignment restrictions that apply to your driver, all you
need to do is implement the IOSCSIControllerExported protocol’s method
getDMAAlignment , which returns the DMA alignment requirements for the current
architecture. This method must fill in all four fields of an IODMAAlignment structure
that indicates buffer starting points and total length for reading and writing.

Client drivers can use getDMAAlignment to obtain alignment requirements. They
can then use the IOAlign() macro to determine how much memory they really need to
allocate. These drivers should do the allocation with
allocateBufferofLength:actualStart:actualLength: that allocates well-aligned
memory, which is required for calls to executeRequest:buffer:client:.

Mapping Virtual Memory

This is generally not a concern unless the driver itself must touch data, such as in
programmed I/O. In these cases, use IOPhysicalFromVirtual() to get the physical
address of the desired data. Of course, there’s no guarantee that you can access every

physical address—you only get a valid physical address if the memory is wired down.

Use IOMapPhysicalIntoIOTask() to create a virtual address in the IOTask’s virtual
address space. Deallocate this virtual memory by calling
IOUnmapPhysicalFromIOTask().

Maximum Data Transfer

If you implement the method maxTransfer, it may simplify your design. Upper layers
can use the value returned by this method to determine the maximum data transfer
size your driver can handle. They won’t try to send commands that attempt to transfer
more data than the driver can handle.

Statistics

A suite of methods such as maxQueueLength are available to return statistics used
by iostat and other commands. The example located in
/NextDeveloper/Examples/DriverKit/Adaptec1542B illustrates gathering these
statistics.

SCSI Peripheral Drivers
To write a SCSI peripheral device driver, create a subclass of IODevice. Use the
methods in the IOSCSIControllerExported protocol to allow the SCSI peripheral
driver object to talk to the SCSI controller object. Some of this protocol’s key methods
include:

• executeRequest:buffer:client:, which sends SCSI commands to a peripheral
device.

• getDMAAlignment: , which returns DMA alignment requirements.
• allocateBufferOfLength:actualStart:actualLength: , which allocates and

returns a pointer to well-aligned memory, required for invoking
executeRequest:buffer:client:. It’s used with other alignment functions such as
IOAlign() and getDMAAlignment: .

• reserveTarget:lun:forOwner: and releaseTarget:lun:forOwner:, which
respectively reserve and release a specified target/lun pair.

• resetSCSIBus, which resets the SCSI bus.

Implement the probe: method to get the id of the SCSI controller object from the
IODeviceDescription object that’s handed to probe: as its parameter. In addition,
probe: may send a SCSI INQUIRY command to each target/lun pair on its controller
to see if a peripheral supported by the driver is connected to the SCSI bus. For every

peripheral it finds, probe: should instantiate a SCSI peripheral driver object.

For an example of a SCSI tape drive controller, see
/NextDeveloper/Examples/DriverKit/SCSITape.

Sound Devices
To write a driver for a sound device, create a subclass of IOAudio. See the IOAudio
Class description for additional information on writing a driver.

Directories in /NextDeveloper/Examples/DriverKit with examples of sound drivers
include ProAudioSpectrum16 and SoundBlaster8.

Development Requirements
The following hardware is required or recommended for development and support
efforts:

• At least one workstation with NEXTSTEP User and Developer software
• A second NEXTSTEP workstation (optional, but recommended. One can serve as

debug master, the other slave. This allows source debugging of the loaded driver.)
• Sound card
• Microphone, headphones or amplifier, and speakers that are all known to work

with the sound card
• Logic analyzer

Basic Operations
Here are the basic operations needed for an audio driver:

• Instantiating and initializing a driver object
• Starting and stopping data transfers
• Handling interrupts
• Determining supported features
• Changing hardware settings such as volume

Instantiating and Initializing a Driver Object

Override probe: to allocate an instance of the driver and initialize it by invoking

IOAudio’s initFromDeviceDescription: method.

Override initFromDeviceDescription: method and invoke super’s implementation.
IOAudio’s initFromDeviceDescription: method invokes the reset method, which
you must implement to check whether hardware is present. If hardware is present, the
method should set it to a known state. It should also configure the host DMA channel
to auto initialize mode if the sound card supports it. (Otherwise, you’ll have to restart
the DMA transfer every time you handle an interrupt.) It should return nil if the
hardware isn’t present.

If initFromDeviceDescription: returns nil , probe: shouldn’t allocate a driver
instance and should return NO.

Starting and Stopping Data Transfers

Override IOAudio’s startDMAForchannel:read:buffer:bufferSizeForInterrupts:
method in your driver. Your method should do the following:

• Configure your audio hardware to use the selected sample rate, data encoding, and
channel count.

• Set audio hardware to auto initialize mode, if possible.
• Start the audio hardware’s data transfer engine.
• Enable interrupts and start the host master DMA.
• Invoke IODirectDevice’s startDMAForBuffer:channel: (part of the kernel),

which you’ve configured to start the DMA on a selected channel.

Note: startDMAForchannel:read:buffer:bufferSizeForInterrupts: must be
called only from the I/O thread.

Override IOAudio’s stopDMAForChannel:read: method in your subclass to perform
these operations:

• Disable interrupts.
• Turn off the DMA channel.
• Stop any data transfer from the audio hardware.

Handling Interrupts

The Driver Kit already implements an interrupt handler for sound. You must
implement the method interruptOccurredForInput:forOutput: to take these
actions:

• Determine which, if any, channel interrupted and perform the necessary actions to
acknowledge the interrupt.

• Return BOOL values in each of the method’s two BOOL parameters: YES if there
is data in the corresponding channel and NO otherwise.

Note: The interruptOccurredForInput:forOutput: method must be called only
from the I/O thread.

Write a function that clears audio hardware interrupts and implement
interruptClearFunc to return the address of this function. This function is called by
the interrupt handler when there’s an audio interrupt, so it can’t block.

Determining Supported Features

Implement the following methods to provide the following feature information:

• acceptsContinuousSamplingRates to return whether continuous sampling rates
is supported

• channelCountLimit to return 1 for mono or 2 for stereo
• getDataEncodings:count: to return an array of supported data encodings
• getInputChannelBuffer:size: to return the input channel’s buffer address and

size
• getOuputChannelBuffer:size: to return the output channel’s buffer address and

size
• getSamplingRates:count: to return supported sampling rates in an array and a

count of the number of rates supported
• getSamplingRatesLow:high: to return the lowest and highest sampling rates

supported

Setting Hardware State

The user can set various audio parameters. IOAudio has a set of methods that return
the values set by the user. You implement an accompanying set of methods to convert
these user values to values your hardware understands by scaling the values
appropriately and updating the hardware state to the scaled values. Implement the
methods if the audio hardware supports the corresponding features. IOAudio provides
the following methods to get the user value and update the associated hardware state:

• inputGainLeft and updateInputGainLeft
• inputGainRight and updateInputGainRight
• isLoudnessEnhanced and updateLoudnessEnhanced
• isOutputMuted and updateOutputMute
• outputAttenuationLeft and updateOutputAttenuationLeft
• outputAttenuationRight and updateOutputAttenuationRight

Input gain runs from 0 (no sound) to 32767 (maximum); attenuation goes from −84 (no
sound) to 0 (maximum).

Note: IOAudio invokes all the update... methods from the I/O thread.

Caveat
IOAudio’s support for audio drivers has the following limitation you should know
about:

 You can’t override the methods (dataEncoding and getDataEncodings:count:,
for example) that interpret NXSoundParameterTags passed from user-level
programs. Consequently, you have to use some other way to provide support for
device-specific features such as on-board compression.

Suggestions for Development
If the audio hardware supports a superset of a well-known interface, consider
developing it first. It’s even better if a template is available. Then add features
specific to your audio hardware.

When you start debugging, first try to get an interrupt. When you do, you know data
transfers are occurring.

As a debugging aid, consider writing a user-level program to use IODeviceMaster to
read and write ports.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

4

Building, Configuring, and
Debugging Drivers

This chapter tells you how to integrate your Driver Kit driver with the rest of the
system. It first describes building the driver using Project Builder. It tells how to set
up the initial configuration files and set the configuration parameters with the
Configure application. Finally, it highlights some of the debugging aids available for
finding driver bugs and tracing your driver’s execution. Consult the other sources
mentioned for in-depth information about the tools.

Also see Chapter 9, “Building, Loading, and Debugging Loadable Kernel Servers” in
NEXTSTEP Operating System Software for details on that topic. Look at
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver for an
example of building, loading, and debugging a driver.

Driver Bundles
To load your driver into the kernel—even if only for testing—you need to create a
driver bundle for it with Project Builder. A driver bundle contains all the files needed
to load and configure a driver: Its relocatable code and configuration information. A
bundle may also contain help information and a configuration inspector for Configure
to access configuration data. A driver bundle is also called a config bundle because it
contains configuration information for the driver and typically has the name
Driver.config, where Driver is the driver’s name.

The driver name should be of the form

<vendor><model><type>Driver

The driver name Adaptec1542SCSIDriver follows this form.

Bundle Locations
Driver bundles for each system device—like the mouse, display, network card, SCSI
devices, and so on—reside in a special directory called /NextLibrary/Devices. The
bundles for each type of device are called Driver.config, where Driver is a type of
device or a device name. In addition, every system has a bundle called System.config
that configures the whole system.

An average system’s directory /NextLibrary/Devices might contain the following
directories, each of which is a bundle for a specific device:

ATI.config PS2Mouse.config
Adaptec1542B.config ParallelPort.config
Beep.config ProAudioSpectrum.config
BusMouse.config QVision.config
CirrusLogicGD542X.config S3.config
CompaqAudio.config SCSITape.config
DPT2012.config SMC16.config
EtherExpress16.config SerialMouse.config
EtherLink3.config SerialPorts.config
Floppy.config System.config
IDE.config TokenExpress.config
IntelGXProAudio.config TsengLabsET4000.config
JAWS.config VGA.config
MSWSoundSystem.config Wingine.config
PS2Keyboard.config

/NextLibrary/Devices is a link to the /private/Devices directory, which is a link to
the driver directory for the current architecture (for example, /private/Drivers/i386).
This link is always valid.

What’s in a Bundle
Each driver bundle (including System.config) can contain the following files and
directories:

Default.table
Instancen.table (created by Configure)
x.table
Display.modes
x.modes
CustomInspector (optional binary)

Language.lproj/
CustomInspector.nib (optional)
Localizable.strings
Help/ (replaces Info.rtf)

Driver_reloc (omitted for NeXT drivers that are compiled into the kernel)
Pre-Load
Post-Load

Default.table is a commented, read-only file that gives the default configuration
settings for a generic device. Configure uses Default.table to build Instancen.table
files, which contain specific configuration information for each device you have.
There may be other x.table files, each expressing a different possible instance of the
driver.

Each .table file is the ASCII representation of an NXStringTable object. Drivers and
nondrivers can get access to these tables by using the IOConfigTable class. In
addition, Driver Kit classes automatically interpret and use some of the standard keys
in these tables.

Direct drivers have one Instancen.table for each device. For example, if you have
two of the same card, Configure makes two files called Instance0.table and
Instance1.table in the card’s bundle. Indirect drivers and the system bundle have
only one file, called Instance0.table.

Note: Because Configure’s default device inspector has no way of knowing whether
a device is direct or indirect, it can create more than one Instancen.table for an
indirect driver. The consequence is that the driver’s probe: method gets invoked more
than once for each direct driver it might want to attach to. To get around this, you
should either write your own device inspector or ensure that your driver’s probe:
method can handle more than one probe per direct driver.

The Display.mode and x.mode files hold display mode information. Default
information is in Display.mode, and x.mode holds the information for other instances
of the driver (just as x.table expresses configuration information for other driver
instances).

For each language, Localizable.strings contains the text strings that applications
display about the device. For example, it includes the name of the device as it appears
in the list of devices in Configure. The Help/ directory contains files to inform the
user about the driver and help them use it.

The Driver_reloc file is the relocatable object file of the device driver. The
CustomInspector binary is the executable file for the Inspector panel; its name is the
same as the bundle name (without the .config suffix). CustomInspector.nib is the nib
file for the Inspector panel.

The bundle may contain Pre-Load and/or Post-Load programs that are run before

and/or after the driver is loaded.

Configuration Tables

Files with a .table suffix contain strings of key/value pairs that describe a
configuration. See “Configuration Keys” in the Appendix for information on what
these tables should contain.

You can use the Default.table of an existing driver as a starting point for a
configuration. Later, you should let the Configure application (with your custom
inspector, if any) create the Instancen.table files.

Here’s a sample Instancen.table for a parallel port driver:

"Driver Name" = "IOParallelPort";
"Title" = "System Parallel";
"Location" = "System Baseboard";
"Family" = "Parallel";
"Version" = "1.0";
"Server Name" = "ParallelPort";
"Path 0" = "/dev/pp0";
"Post-Load" = "InstallPPDev";
"Memory Maps" = "";
"Pre-Load" = "RemovePPDev";
"DMA Channels" = "";
"Minor Device Number" = "0";
"Valid IRQ Levels" = "7";
"I/O Ports" = "0x378-0x37f";
"Instance" = "0";
"Port Count" = "1";
"IRQ Levels" = "7";

Warning: C-style comment delimiters (that is, /* */) aren’t recognized in configuration tables,
such as Default.table or Instance0.table. Anything inside the delimiters will be
parsed along with the rest of the file. This means that, for example, if you are testing a
driver under development, you can’t remove a key-value pair by simply commenting it
out.

Other Configuration Tables

A bundle may also contain other configuration tables of the form x.table, where x is a
prefix such as “PCI”. Each of these is a table like default.table but expresses a
possible instance of the driver with a slightly different “personality” than
default.table. For example, PCI.table might be identical to Default.table except
that it contains a line specifying a PCI-compliant driver:

"Bus Type" = "PCI";

By convention, Default.table specifies an ISA or VL-bus compliant driver—the
simplest case. The prefix x in x.table usually designates the bus type.

These configuration table files should contain all information appropriate for the bus
type. PCI-compliant drivers, for instance, contain a line specifying the auto detect
IDs, such as this:

"Auto Detect IDs" = "0x71789004 0x0e111234";

Custom Device Inspector Files

For initial testing, you probably don’t need a custom inspector. Instead, you can put
the appropriate values directly into your test Default.table or Instancen.table files.

If you create a custom inspector, you should put the executable file and nib file in the
places described in “What’s in a Bundle,” earlier in this chapter. Project Builder does
this for you automatically. See “Writing a Custom Inspector” later in this chapter for
information on creating custom inspectors.

Note: Project Builder creates an Inspector Panel executable file in the bundle and
gives it the same name as the bundle (without the .config suffix). This executable
loads the default inspector.

Localizable Strings File

This file should contain any strings you add to your Configure inspector’s user
interface, plus the following strings:

" Driver " = "UltimateTech XYZ-12";
"Long Name" = "Ultimate Technologies XYZ-12 Transmogrifier";

where Driver is the name of the bundle (minus the .config suffix). Configure uses the
string associated with the Driver key (“UltimateTech XYZ-12”) whenever space is
tight. When Configure has more space to display the driver’s name, it uses the string
associated with the “Long Name” key.

Display Mode Tables

If your driver is a display driver that supports multiple display modes, you need to
specify which modes the user can choose. This information is supplied in the
Display.modes file. Here’s a sample file:

"Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 600 Width: 800 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: RGB:256/8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 66Hz ColorSpace: BW:8";

"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 76Hz ColorSpace: BW:8";
"Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:555/16";
"Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: RGB:256/8";
"Height:1024 Width:1280 Refresh: 68Hz ColorSpace: BW:8";
"Height: 400 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";
"Height: 400 Width: 640 Refresh: 70Hz ColorSpace: RGB:888/32";
"Height: 480 Width: 640 Refresh: 60Hz ColorSpace: RGB:888/32";

If your driver has more than one “personality,” specify alternate display information
in x.modes files where x is the appropriate prefix such as “PCI”.

See the specification for the IODisplayInspector, IOFrameBufferDisplay, and
IOSVGADisplay classes for more information on display modes.

Help Directory

This directory contains the help files supported by the NeXT help facility. You add
this directory to your project with Project Builder’s Add Help Directory command.
For more information on adding help to your driver, see “Attaching Help to Objects”
in Chapter 3, “The Interface Builder Application” of NEXTSTEP Development Tools
and Techniques.

The Help directory replaces the Info.rtf file, formerly used to provide information
about the driver.

Driver Relocatable Code

This file contains the driver’s relocatable code. An example of building a driver
relocatable object file is located in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver .

Pre- and Post-Load Programs

Your driver may require some action to be taken before and/or after it is loaded. For
instance, you may want to run a program after the driver is loaded to look up its major
device number and create a device node for the driver. Use the “Pre-Load”
configuration key to specify a program that will run prior to your driver being loaded;
use the “Post-Load” key to specify a program that runs after the driver is loaded.

The System Configuration Bundle
The System.config bundle is special in several ways. Its Instance0.table has default

configuration information for the system as a whole. For example, it specifies which
device drivers to load at boot time (“Boot Drivers”) and which to load later (“Active
Drivers”). Here’s a sample Default.�table from a System.config bundle:

"Version" = "2.0";
"Boot Drivers" = "PS2Keyboard PS2Mouse BusMouse Adaptec1542B
DPT2012 IDE Floppy VGA";
"Active Drivers" = "SerialPorts SerialMouse ParallelPort";
"Kernel" = "mach_kernel";
"Kernel Flags" = "";
"Boot Graphics" = "No";

For writers of Driver Kit drivers, “Active Drivers” and “Boot Drivers” are the most
important keywords. They specify which drivers are automatically loaded into the
system the next time it’s started. When someone uses Configure to add a device that
has a loadable driver, the driver is added to one of these two lists. See the “Boot
Drivers” and “Active Drivers” keys in the “Configuration Keys” section of the
Appendix to see how to specify which list a driver should be in. This section also lists
the other keywords for the system configuration table.

Note: Changes to system configuration information don’t take effect until the system
is restarted. However, you can load a driver without rebooting by using the d option of
driverLoader (documented in “Loading a Driver with driverLoader” later in this
chapter).

Creating a Driver Bundle
Create a project for your driver with Project Builder, and give the project the name
you want your driver to have. Copy your driver files into the project by dragging them
into the appropriate suitcase (header files to the Header suitcase and so on) or by
using the Add command in the Files menu. Switch to the Builder view in the project
window and select “bundle” as the Target. Click the Build button. Project Builder
builds the driver and puts it in a driver bundle called Driver.config where Driver is the
name you chose for the driver. Now you can configure and load the driver.

See NEXTSTEP Development Tools and Techniques for more information about using
Project Builder. The example in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver shows
building a bundle with Project Builder.

Configuring Drivers
After you have built your driver, you need to configure it with the Configure
application.

Configure Application
You can configure devices and add drivers with the Configure application. When you
select a device, Configure loads the device’s inspector, which provides a user
interface for manipulating the device configuration (choosing its DMA channels, for
example). If you don’t supply a device inspector for your driver, Configure uses a
default device inspector. See the IODeviceInspector class and IOConfiguration
protocol specifications for more information on device inspectors.

The Configure application reads the key/value pairs from a driver bundle’s
Default.table and displays them in a Configuration Inspector Panel. The user
interface allows the user to change the displayed parameters and warns of possible
value conflicts. When the user finishes modifying the configuration, Configure writes
the updated configuration to the indicated Instancen.table and configures the driver
based on the information in the configuration and kernel tables.

When the system starts up, the kernel uses an IOConfigTable object to parse the
configuration information in the Instancen.table. From this information, the kernel
instantiates an IODeviceDescription object, which encapsulates information about the
driver. The kernel passes the IODeviceDescription object as the parameter to the
probe: method, which instantiates the driver object based on this information.

There’s a list of standard key/value configuration pairs in the “Configuration Keys”
section in the Appendix.

How Configuring Kernel-Level Driver Kit Drivers Differs from
Configuring Other Loadable Kernel Servers

The configuration of Driver Kit kernel-level drivers differs from that of other Loadable
Kernel Servers (LKSs) in the following ways:

• Each Driver Kit driver has its own configuration directory under
/NextLibrary/Devices . Other LKSs have no standard way of getting configuration
information.

• With the Configure application, users can add Driver Kit drivers to the system, as
well as specify configuration information for each driver. Other LKSs are generally
added to the system by adding a line to /etc/kern_loader.conf .

• Driver Kit drivers are allocated and loaded with the driverLoader command, which
uses the information in the driver’s configuration directory. You can load an LKS
with the kernel-server utility, kl_util , but it doesn’t cause the driver to be probed.

• Driver Kit drivers can’t currently be unloaded, unlike other LKSs. For example, if
you want to change a driver that’s already running, you must restart the system to
be able to load the new driver.

Writing a Custom Inspector
The Configure application uses inspectors to configure a driver. With the default
inspector in Configure, you can configure values that belong to the standard set of
keys with no further implementation effort. If you’ve added custom parameters,
however, you need to implement a custom inspector to view and modify them.

You have two choices in implementing a custom inspector:

• Add an accessory view to the inspector, with an 80-pixel height limit.

• Replace the standard inspector completely. You’re still limited to a 640×480 view.
However, you can use a button to display a panel if you run out of space.

You implement an inspector by creating a subclass of IODeviceInspector. For
example, you can create a subclass of IODisplayInspector (a subclass of
IODeviceInspector) to implement a display inspector. For an example, study the
inspector in
/NextLibrary/Documentation/NextDev/Examples/DriverKit /DriverInspector .

Other classes relevant to creating an inspector include IOAddressRanger,
IODeviceDescription, IODeviceMaster, and IOEISADeviceDescription. Some of
these classes adopt the IOConfigurationInspector protocol.

Creating an Inspector

Override the following methods in the IODeviceInspector class and the
IOConfigurationInspector protocol:

• init . Find and load the nib file that contains the accessory view using the bundle
for your inspector. Initialize the user interface and find your driver.

• inspectionView. Override this if you’re replacing the standard inspector.

• setTable:. Invoke the superclass’s implementation:

[super setTable:]

Invoke setAccessoryView: to specify and initialize the accessory View. Initialize

the user interface settings from the table being inspected.

• resourcesChanged:. Update the user interface in response to resources being
chosen or dropped in the inspector.

Modifying Custom Parameters

Implement a set of target/action methods to change the custom parameters. The user
interface elements of the inspector invokes these methods. Convert the new
parameter state to an appropriate string value for display, and insert it into the
inspected table with insertKey:value:. The key must be a unique string, and you can
use the NXUniqueString() function to generate a unique key based on the string
argument. The value should be a copy—use NXCopyStringBuffer() to copy it:

[table insertKey: key value:NXCopyStringBuffer(value)];

Changing Driver Parameters with
IODeviceMaster
Besides Configure, another way to change parameters associated with a driver is
through the IODeviceMaster class, which provides access to a driver instance. First,
find your driver using the lookUpByDeviceName:objectNumber:deviceKind:
method. Then manipulate parameters associated with that instance with these
methods:

• getCharValues:forParameter:objectNumber:count:
• setCharValues:forParameter:objectNumber:count:
• getIntValues:forParameter:objectNumber:count:
• setIntValues:forParameter:objectNumber:count:

Active driver values should be displayed in the user interface—even if they differ
from the current configuration table values. If you want the values you change to
persist beyond the time the system is powered off or restarted, you must write them to
the configuration table.

Loading a Driver with driverLoader
You can load your driver into an already running system. The driverLoader
command loads or configures a driver after startup time. You initiate the command as
follows (as superuser):

/usr/etc/driverLoader option [v] [instance]

Specifying v results in more verbose output from driverLoader . The instance
argument can be used only with the d option, as described below.

The option is one of the following:

a Configure all devices. This option is used when driverLoader is
run during system boot (by /etc/rc).

i Interactive mode. With this option, you can look at all active and
boot drivers in the system configuration. Note that if you add a
driver to the system, the driver isn’t recognized as “active” until
you reboot.

d=deviceName Configure one device interactively. This is how you load drivers
that aren’t specified in the system configuration. This is usually
used for testing purposes. You can specify instance to use a
specific Instancen.table file. For example, if you specify
instance as 1, the driver is probed using the information in its
Instance1.table file.

Here’s an example of using the d option:

/usr/etc/driverLoader d=myDriver

Here’s an example of using the d option and specifying instance:

/usr/etc/driverLoader d=fooDriver 1

For another example of using driverLoader , see
/NextLibrary/Documentation/NextDev/Examples/DriverKit .

Recovering from a Bad Configuration
If you can’t restart your system because of a bad configuration or because of bugs in
your driver, try restarting with a default configuration. To do this, type the following at
the boot: prompt when the system starts:

boot: config=Default

This causes the boot program to use Default.table in System.config as the system
configuration, which usually works. Once you’ve started up, log in as me or root and
use Configure to fix the rest of the configuration.

If you still can’t start the system, try starting in single-user mode and editing the
bundles by hand. This is risky since the configuring process has many “rules of

thumb,” and you might not know all the effects of a change. To restart in single-user
mode, type the following at the boot: prompt after you restart:

boot: mach_kernel -s config=Default

You can then use a single-user mode editor (such as vi or emacs) to edit the
configuration bundles.

Debugging a Driver
You have two choices for creating debugging messages: the IOLog() function and the
Driver Debugging Module (DDM). Most drivers just use IOLog() until a need arises
for the more powerful and complex DDM functions.

Another debugging tool, gdb, is described in NEXTSTEP Development Tools and
Techniques. You can run the driver with gdb from Project Builder—the example
located in
/NextLibrary/Documentation/NextDev/Examples/DriverKit/TestDriver shows
how to do this. NEXTSTEP Development Tools and Techniques also describes Project
Builder.

Using the IOLog Function
Using IOLog() is similar to using printf() to print error or debug messages. You can
output strings and parameters, just as for printf() . One difference is that output is
placed in the /usr/adm/messages file instead of the console window. Place a call to
IOLog() anywhere in your driver where you want to get information about the driver
state—or to indicate that the driver reached that point during execution.

IOLog() is useful both for status messages and as a basic debugging tool. Although
IOLog() is useful for debugging, it can affect the timing of the driver. When timing is
important, you should use DDM instead.

See “Functions” in Chapter 5, “Driver Kit Reference”, for more information about
IOLog() .

Using the Driver Debugging Module (DDM)
The Driver Debugging Module (DDM) provides support for viewing debugging
information without disturbing the timing of the kernel. By using the DDMViewer

application (in /NextDeveloper/Demos), you can specify which information should
be stored in the event buffer and display debugging information from this buffer.

The core of DDM is a circular event buffer that stores the debugging information sent
to it by drivers. Each entry in the buffer is timestamped (to the microsecond) and
consists of a printf -style format string and up to five arguments associated with the
format string. A call to the function that timestamps and stores one entry takes about
10 microseconds.

Gathering DDM Events

The function IOAddDDMEntry() adds an event to the DDM buffer. An event
consists of a character string and several integer values. The IODEBUG() macro is
provided to call IOAddDDMEntry() : A driver typically doesn’t call
IOAddDDMEntry() directly. Instead, the driver should define its own macros using
the IODEBUG() macro, as in this example:

#define ddm_exp(x, a, b, c, d, e) \
IODEBUG(A7770_DDM_INDEX, DDM_EXPORTED, x, a, b, c, d, e)

#define ddm_him(x, a, b, c, d, e) \
IODEBUG(A7770_DDM_INDEX, DDM_HIM, x, a, b, c, d, e)

These macros can then be called like this:

ddm_him("abort_channel chan %d\n", channel, 2,3,4,5);

ddm_him("scb_int_preempt: scb 0x%x index %d haStat %s\n",
scb_ptr, scb_index,
IOFindNameForValue(compstat, scbHaStatValues),
4,5);

A word of mask bits controls the collection of DDM entries. All calls to IODEBUG()
don’t add data to DDM’s circular buffer—only those events whose mask bits are
enabled are added. The mask bits are enabled and disabled by a user-level tool like
DDMViewer. A driver isn’t (and shouldn’t be) concerned about which mask bits are
enabled. Typically you turn on one or two bits of the mask word to study the trace
information for a particular module.

See the SCSI example driver in
/NextDeveloper/Examples/DriverKit/Adaptec1542B, which illustrates all aspects
of using DDM.

Viewing DDM Events with DDMViewer

You can examine DDM traces at the user-level with the DDMViewer application,
which is located in /NextDeveloper/Demos. You can also specify DDM mask bits
with this application. DDMViewer can be run on any computer running NEXTSTEP,
not just the machine being tested.

The DDMViewer window contains the following controls:

• Device Name field. Enter the name of the target to which you want to attach. The
name is determined by the driver.

• Host Name field. Enter the name of the host on which the target is running. Leave
it empty if you are debugging a driver or kernel on the current machine.

• List button . Click this button to start and stop the display of DDM entries. Entries
are displayed starting from the last event in time and scrolling backward.

• Set Mask button. Click this button to send the mask defined in the Mask window
(see below) to the target.

• Disable button. Click this button to freeze the state of the DDM buffer at the
target. Click again to reenable.

• Clear Window button. Click this button to clear the display area.

• Clear Buffer button . Click this button to clear the target’s circular DDM buffer.

You can specify the value of the DDM mask bits by name if you open a .ddm file that
specifies the names of the mask bits. You create .ddm files with an editor such as
Edit. Here’s an example of a .ddm file:

#
DDMViewer data file for kernel devices.
#
Index : 0 : "Kernel Devices"
#
Common fields.
#
0x0001 : "Device Object"
0x0002 : "Disk Object"
0x0004 : "Net"
0x0020 : "DMA"
#
SCSI.
#
0x0100 : "SCSI Control"
0x0400 : "SCSI Disk"

Comments start with “#”. The line that starts with “Index” defines which DDM Mask
word is being defined (there are currently four mask words). The Index line also
defines the name of the window associated with this set of mask bits. All other lines
define one bit in the mask word, specifying the value of the bit and an ASCII name
equivalent. The SCSI example driver in
/NextDeveloper/Examples/DriverKit/Adaptec1542B has a sample .ddm file.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

5

Driver Kit Reference

Library: Configure application API has no library
Other user-level API is in libDriver.a
Kernel-level API has no library

Header File Directory: /NextDeveloper/Headers/driverkit

This chapter documents the Driver Kit’s API—public classes, protocols, functions,
and types and constants. The “Other Features” section describes such features as
device auto detection.

Warning: You should avoid using an undocumented API, since it’s subject to change. For
example, if a method is in a class header file but not in the class documentation, the
method is likely to change or disappear in future releases.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Functions

This section describes three types of functions and macros:

• General-purpose functions—to perform basic tasks

• Driver Debugging Module (DDM) functions—to help all drivers keep debugging
information

• Miscellaneous functions—such as DMA alignment macros, functions that work
only in the kernel, and functions specific to a particular machine architecture.

Unless noted otherwise, all of the functions described in this section work in both
user-level and kernel-level drivers.

Other Functions Available to Drivers

Almost all Mach functions are available to kernel-level device drivers. If you don’t
find the appropriate functionality in a method or function, you can use a Mach
function. For example, port_allocate() and msg_send() are used by many drivers.

Note: Instead of including the header file mach/mach.h, you must include
mach/mach_user_internal.h and mach/mach_interface.h.

The host_priv_self() Mach function does not work in the kernel. You should use
IOHostPrivSelf() instead.

General-Purpose Functions
The general-purpose functions, defined in the header file driverkit/generalFuncs.h,
provide a consistent interface for device drivers that may have to run in kernel space
at one time (or in one configuration) and in user space at another time. Using these
functions minimizes the work or porting between the two environments. All the
Driver Kit classes, as well all NeXT kernel-level drivers that use the Driver Kit,
were written using these functions so that they have one set of source files with
minimal kernel and user mode differences.

Warning: Before using any of the general-purpose functions, each user-level driver must call

IOInitGeneralFuncs(). (Kernel-level drivers don’t need to call it.)

Thread Functions

These functions provide the functionality of the C-thread functions in a uniform way
in both user and kernel space.

IOForkThread()
IOSuspendThread()
IOResumeThread()
IOExitThread()

Timer Functions

IOSleep()
IODelay()
IOScheduleFunc()
IOUnscheduleFunc()
IOGetTimestamp()

Memory Allocation and Copying Functions

IOCopyMemory()
IOMalloc()
IOFree()

Miscellaneous General-Purpose Functions

IOInitGeneralFuncs()
IOFindNameForValue()
IOFindValueForName()
IOLog()
IOPanic()

Driver Debugging Module (DDM) Functions
See the “Adding Debugging Code” section in Chapter 2 for information on using the
DDM.

IOAddDDMEntry()
IOClearDDM()

IOCopyString()
IODEBUG()
IOGetDDMEntry()
IOGetDDMMask()
IOInitDDM()
IONsTimeFromDDMMsg()
IOSetDDMMask()

Miscellaneous Functions

Kernel-Only Functions

The function IOConvertPort() is necessary for some kernel-level drivers—and not
for user-level drivers—because kernel-level drivers can execute in more than one
task. The first thread of a kernel-level driver executes in the loadable kernel server’s
task, any threads that the driver creates execute in the kernel I/O task, and network
drivers and drivers with UNIX entry points (at some stage) can execute in the
context of an unknown task.

IOGetObjectForDeviceName() provides to kernel-level drivers some of the
functionality provided to user-level programs by IODeviceMaster. Similarly,
IOHostPrivSelf() is used by some kernel-level drivers that need the information
normally returned by host_priv_self() (which is one of the few Mach functions that
doesn’t work in the kernel).

The function IOVmTaskSelf() supplies a vm_task_t for Mach function calls that
expect one for the kernel; this is necessary because vm_task_t and task_t aren’t the
same in the kernel (as they are at user level). IOVmTaskCurrent() supplies a
vm_task_t that’s needed by some UNIX-style drivers. Finally, IOVmTaskForBuf()
supplies a vm_task_t for the unknown task that is requesting UNIX-style I/O.

IOConvertPort()
IOGetObjectForDeviceName()
IOHostPrivSelf()
IOPhysicalFromVirtual()
IOSetUNIXError()
IOVmTaskCurrent()
IOVmTaskForBuf()
IOVmTaskSelf()

DMA Alignment Macros

IOAlign()
IOIsAligned()

Architecture-Specific Functions

The following functions are used by some Intel drivers to read and write I/O ports:

inb()
inw()
inl()
outb()
outw()
outl()

Some Intel drivers use the following function to help handle interrupts:

IODisableInterrupt()
IOEnableInterrupt()
IOSendInterrupt()

Some Intel devices require memory in the low 16 MB:

IOMallocLow()

Intel display drivers often use the following functions to read and write VGA
registers:

IOReadRegister()
IOReadModifyWriteRegister()
IOWriteRegister()

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

inb(), inw(), inl(), outb(), outw(), outl()

SUMMARY

Read or write data to an I/O port

DECLARED IN

driverkit/i386/ioPorts.h

SYNOPSIS

unsigned char inb(unsigned int address)
unsigned short inw(unsigned int address)
unsigned long inl(unsigned int address)
void outb(unsigned int address, unsigned char data)
void outw(unsigned int address, unsigned short data)
void outl(unsigned int address, unsigned long data)

DESCRIPTION

These inline functions let drivers read and write I/O ports on Intel-based computers.
Use inb() to read a byte at the I/O port address. Use inw() to read the two bytes at
address and address + 1, and inl() to read four bytes starting at address. To write a
byte, use outb(); to write two bytes (to address and address + 1), use outw(); to write
four bytes, use outl().

These functions have nothing to do with main memory; they work only for the 64
kilobytes of I/O address space on an Intel-based computer. These functions use the
special machine instructions that are necessary for reading and writing data from and
to the I/O space.

Note: These functions work only at kernel level and only on Intel-based computers.

EXAMPLE

temp_cr = inb(base+CR); /* get current CR value */

IOAddDDMEntry()

SUMMARY

Add one entry to the Driver Debugging Module

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IOAddDDMEntry(char *format, int arg1, int arg2, int arg3, int arg4, int
arg5)

DESCRIPTION

This is the exported function that is used to add events to the DDM’s circular buffer.
However, drivers typically don’t use this directly; instead, they should use macros that
call IOAddDDMEntry() conditionally based on the current state of debugging flags.
See the description of IODEBUG() for examples.

Note: The last 5 arguments to this function are typed above as int , but they are
really untyped and could be any 32-bit quantity. They are stored in the debugging log
as int but are eventually evaluated as arguments to sprintf() , so they could be int ,
char, short, or pointers to a string. See IOCopyString() , later in this section, for
information on passing string pointers to IOAddDDMEntry() .

SEE ALSO

IODEBUG()

IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVfssw()

SUMMARY

Add UNIX-style entry points to a device switch table

DECLARED IN

driverkit/devsw.h

SYNOPSIS

int IOAddToBdevsw(IOSwitchFunc openFunc, IOSwitchFunc closeFunc,
IOSwitchFunc strategyFunc, IOSwitchFunc dumpFunc, IOSwitchFunc psizeFunc,
BOOL isTape)

int IOAddToCdevsw(IOSwitchFunc openFunc, IOSwitchFunc closeFunc,

IOSwitchFunc readFunc, IOSwitchFunc writeFunc, IOSwitchFunc ioctlFunc,
IOSwitchFunc stopFunc, IOSwitchFunc resetFunc, IOSwitchFunc selectFunc,
IOSwitchFunc mmapFunc, IOSwitchFunc getcFunc, IOSwitchFunc putcFunc)

int IOAddToVfssw(const char *vfsswName, const struct vfsops *vfsswOps)

DESCRIPTION

These functions find a free row in a device switch table and add the specified entry
points. Each function returns the major number (equivalent to the row number) for the
device, or -1 if the device couldn’t be added to the table.

Note: You should use IODevice’s addToBdevsw... and addToCdevsw... methods
instead of IOAddToBdevsw() and IOAddToCdevsw(), whenever possible.

SEE ALSO

IORemoveFromBdevsw(), IORemoveFromCdevsw(), IORemoveFromVfssw()

IOAlign()

SUMMARY

Truncate an address so that it’s aligned to a buffer size

DECLARED IN

driverkit/align.h

SYNOPSIS

type IOAlign(type, address, bufferSize)

DESCRIPTION

This macro truncates address to a multiple of bufferSize.

SEE ALSO

IOIsAligned()

IOClearDDM()

SUMMARY

Clear the Driver Debugging Module’s entries

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IOClearDDM()

DESCRIPTION

This function empties the DDM’s circular buffer.

IOConvertPort()

SUMMARY

Convert a port name from one IPC space to another

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

port_t IOConvertPort(port_t port, IOIPCSpace from, IOIPCSpace to)

DESCRIPTION

This function lets a kernel driver convert a port name (port) so that the port can be
used in a different IPC space. Three types of conversion are supported:

• From the current task’s IPC space to the kernel I/O task’s space
• From the kernel’s IPC space to the kernel I/O task’s space
• From the kernel I/O task’s IPC space to kernel’s IPC space

The arguments from and to should each be specified as one of the following:
IO_Kernel, IO_KernelIOTask, or IO_CurrentTask. For example, the following code
converts a port name from the current task’s name to the name used by the kernel I/O
task.

ioTaskPort = IOConvertPort(aPort, IO_CurrentTask, IO_KernelIOTask);

Note: This function works only in kernel-level drivers.

RETURN

Returns the port’s name in the to space. Specifying an invalid conversion results in a
return value of PORT_NULL.

IOCopyMemory()

SUMMARY

Copy memory using the specified transfer width

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOCopyMemory(void *from, void *to, unsigned int numBytes,
 unsigned int bytesPerTransfer)

DESCRIPTION

Copies memory 1, 2, or 4 bytes at a time (as specified by bytesPerTransfer) until
numBytes bytes starting at from have been copied to to. The from and to buffers must
not overlap.

This function is useful when devices have mapped memory that can be accessed in
only 8-bit or 16-bit quantities. In these situations, bcopy() isn’t appropriate, since it
assumes 32-bit access to all memory involved.

If from is not aligned on a bytesPerTransfer boundary, IOCopyMemory() performs
8-bit transfers until it has reached a bytesPerTransfer boundary. Similarly, if the end
of the from buffer extends past a bytesPerTransfer boundary, the remaining memory
is copied 8 bits at a time.

IOCopyString()

SUMMARY

Return a copy of the specified string

DECLARED IN

driverkit/debugging.h

SYNOPSIS

const char *IOCopyString(const char *instring)

DESCRIPTION

This function is required when you want to use a pointer to a string whose existence is
transitory as an argument. The reason for this is that the string won’t be read until the
Driver Debugging Module’s buffer is examined, which could be a long time (minutes
or more) after the call to IOAddDDMEntry() . By then, the string pointer passed to
IOAddDDMEntry() no longer might no longer point to a useful string.

Warning: The string returned by this function is created with IOMalloc() and is
never freed. Use this function with discretion.

IODEBUG()

SUMMARY

Conditionally add one entry to the Driver Debugging Module

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IODEBUG(int index, int mask, char *format, int arg1, int arg2, int arg3, int
arg4, int arg5)

DESCRIPTION

This macro is used to add entries to the DDM’s circular buffer. The entry is added
only if both of the following are true:

• The C preprocessor flag DDM_DEBUG is defined.
• A bitwise and operation performed on mask and IODDMMasks[index] results in

a nonzero result.

IODEBUG() is typically used to define other macros specific to a driver, as shown in
the following example.

EXAMPLE

#define MY_INDEX 0

#define MY_INPUT 0x00000001 //
#define MY_OUTPUT 0x00000002 //
#define MY_OTHER 0x00000004 //

#define logInput(x, a, b, c, d, e) \
 IODEBUG(MY_INDEX, MY_INPUT, x, a, b, c, d, e)

#define logOutput(x, a, b, c, d, e) \
 IODEBUG(MY_INDEX, MY_OUTPUT, x, a, b, c, d, e)

#define logOther(x, a, b, c, d, e) \
 IODEBUG(MY_INDEX, MY_OTHER, x, a, b, c, d, e)

. . .
IODDMMasks[MY_INDEX] = MY_INPUT | MY_OUTPUT;
. . .
logInput("Input error %d: %s\n", error, IOFindNameForValue(error,
 &errorList));

IODelay()

SUMMARY

Wait (without blocking) for the indicated number of microseconds

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IODelay(unsigned int microseconds)

DESCRIPTION

This is a quick, nonblocking version of IOSleep().

Note: This function guarantees a minimum “spin” delay in the user-level version;
due to thread scheduling, the call to IODelay() could take much longer than the
indicated time. This should not be a problem with properly designed user-level drivers
as this is a common real-time constraint on all user-level code.

IODisableInterrupt()

SUMMARY

Prevent interrupt messages from being sent

DECLARED IN

driverkit/IODirectDevice.h

SYNOPSIS

void IODisableInterrupt(void *identity)

DESCRIPTION

This function allows handlers of non-shared interrupts to indicate that the interrupt
should be left disabled on return from the interrupt handler.

The identity argument should be set to the value that the interrupt handler received in
its own arguments.

Note: IODisableInterrupt() must be called inside a special interrupt handler
function. It can’t be called from any other context.

SEE ALSO

IOEnableInterrupt(), IOSendInterrupt()

IOEnableInterrupt()

SUMMARY

Allow interrupt messages to be sent

DECLARED IN

driverkit/IODirectDevice.h

SYNOPSIS

void IOEnableInterrupt(void *identity)

DESCRIPTION

This function allows interrupt handlers to indicate that the interrupt should be
reenabled on return from the interrupt handler. You should only re-enable the
interrupt after removing the source of the interrupt—by clearing the interrupt status
register on the device, or by using whatever mechanism is necessary for the hardware

your driver controls.

The identity argument should be set to the value that the interrupt handler received in
its own arguments.

Note: IOEnableInterrupt() must be called inside a special interrupt handler
function. It can’t be called from any other context.

SEE ALSO

IODisableInterrupt(), IOSendInterrupt()

IOExitThread()

SUMMARY

Terminate the execution of the current thread

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

volatile void IOExitThread()

DESCRIPTION

This function terminates the execution of the current (calling) thread. Note that
there’s no way for one thread to kill another thread other than by sending some kind of
message to the soon-to-be-terminated thread instructing it to kill itself.

Note: In the user-level implementation, the main C thread (the first thread in the
task) doesn’t exit until all other C threads in the task have exited.

IOFindNameForValue(), IOFindValueForName()

SUMMARY

Convert an integer to a string, or vice versa, using an IONamedValues array

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

const char *IOFindNameForValue(int value, const IONamedValues *array)
IOReturn IOFindValueForName(const char *string, const IONamedValue *array,

int *value)

DESCRIPTION

These functions are the primary use of the IONamedValues data type, which maps
integer values to strings. IOFindNameForValue() maps a given integer value to a
string, given a pointer to an array of IONamedValues. IOFindValueForName()
maps a given string into an integer, returning the integer in value.

One typical use for IOFindNameForValue() is to map integer return values into
error strings. IODevice’s IOStringFromReturn: method performs this function. A
subclass that defines additional IOReturn values should override this method and call
[super IOReturnToString:] if the specified value does not match one of the
class-specific IOReturns.

RETURN

IOFindNameForValue() returns the string corresponding to value, or a string
indicating that value is undefined if the integer wasn’t found.
IOFindValueForName() returns IO_R_SUCCESS if it finds the specified string;
otherwise, it returns IO_R_INVALIDARG.

IOForkThread()

SUMMARY

Start a new thread

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

IOThread IOForkThread(IOThreadFunc function, void *arg)

DESCRIPTION

This function causes a new thread to be started up. For kernel-level drivers, the new
thread is in the IOTask’s address space; for user-level drivers, the thread is in the

current task. The thread begins execution at function, which is passed arg as its
argument.

IOFree()

SUMMARY

Free memory allocated by IOMalloc()

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOFree(void *var, int numBytes)

DESCRIPTION

This function frees memory allocated by IOMalloc() .

Note: You must use the same value for numBytes as you used for the call to
IOMalloc() that allocated the memory you’re now freeing.

IOFreeLow()

SUMMARY

Free memory allocated by IOMallocLow()

DECLARED IN

driverkit/i386/kernelDriver.h

SYNOPSIS

void IOFreeLow(void *var, int numBytes)

DESCRIPTION

This function frees memory allocated by IOMallocLow() .

Note: This function works only in kernel-level drivers.

IOGetDDMEntry()

SUMMARY

Obtain an entry from the Driver Debugging Module

DECLARED IN

driverkit/debugging.h

SYNOPSIS

int IOGetDDMEntry(int entry, int outStringSize, char *outString, ns_time_t
* timestamp, int *cpuNumber)

DESCRIPTION

Returns in outString an entry from the DDM. The entry argument should indicate
which entry to return, counting backwards from the most recent entry. The timestamp
argument is set to a value indicating the time at which the entry was logged. The
cpuNumber argument is set to the number of the CPU that the retrieved entry is
associated with.

RETURN

Returns a nonzero value if the specified entry doesn’t exist. Otherwise, returns zero.

IOGetDDMMask()

SUMMARY

Returns the specified bitmask word

DECLARED IN

driverkit/debugging.h

SYNOPSIS

unsigned IOGetDDMMask(int index)

DESCRIPTION

This is typically not used by drivers; it provides a procedural means of obtaining a

specified bitmask value. For performance reasons, the macros that filter and call
IOAddDDMEntry() typically read the index words directly (the IODDMMasks
array is a global variable).

IOGetObjectForDeviceName()

SUMMARY

Obtain the id of a kernel device, given its name

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

IOReturn IOGetObjectForDeviceName(IOString deviceName, id *deviceId)

DESCRIPTION

This function provides a simple mapping of device names to objects. Since this is
valid only at kernel level, no security mechanism is provided; any kernel code can get
the id of any kernel IODevice.

Note: This function works only in kernel-level drivers.

RETURN

Returns IO_DR_NOT_ATTACHED if deviceName isn’t found; otherwise returns
IO_R_SUCCESS.

IOGetTimestamp()

SUMMARY

Obtains a microsecond-accurate current timestamp

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOGetTimestamp(ns_time_t *nsp)

DESCRIPTION

This function obtains a quick, microsecond-accurate, system-wide timestamp.

IOHostPrivSelf()

SUMMARY

Returns the kernel I/O task’s version of the privileged host port

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

port_t IOHostPrivSelf()

DESCRIPTION

This function is necessary because the Mach function host_priv_self() doesn’t work
at kernel level.

Note: This function works only in kernel-level drivers. In user-level drivers, use
host_priv_self() instead.

IOInitDDM()

SUMMARY

Initialize the Driver Debugging Module

DECLARED IN

driverkit/debugging.h

SYNOPSIS

Kernel level: void IOInitDDM(int numBufs)
User level: void IOInitDDM(int numBufs, char *serverPortName)

DESCRIPTION

This function must be called once by your driver before calling any other DDM
functions.

IOInitGeneralFuncs()

SUMMARY

Initialize the general-purpose functions

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOInitGeneralFuncs()

DESCRIPTION

Each user-level driver must call IOInitGeneralFuncs() once before calling any
other functions declared in the driverkit/generalFuncs.h header file.

Note: Kernel-level drivers don’t need to call this function, because it’s
automatically called by the kernel.

IOIsAligned()

SUMMARY

Determine whether an address is aligned

DECLARED IN

driverkit/align.h

SYNOPSIS

unsigned int IOIsAligned(address, bufferSize)

DESCRIPTION

This macro returns a nonzero value if address is a multiple of bufferSize; otherwise, it

returns 0.

IOLog()

SUMMARY

Adds a string to the system log

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOLog(const char *format, ...)

DESCRIPTION

This is the Driver Kit’s substitute for printf() ; its implementation is similar to
syslog(). IOLog() logs the string to /usr/adm/messages by default; you can specify
another destination in the configuration file /etc/syslog.conf. The arguments are
stdargs, just as for printf() . This function doesn’t block on single-processor systems.
It runs at level LOG_ERR and its facility is kern.

SEE ALSO

printf (3) UNIX manual page, syslog(3) UNIX manual page

IOMalloc()

SUMMARY

Standard memory allocator

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void *IOMalloc(int numBytes)

DESCRIPTION

This function causes numBytes bytes of memory to be allocated; a pointer to the
memory is returned. No guarantees exist as to the alignment or the physical contiguity
of the allocated memory, but when IOMalloc() is called at kernel-level, the allocated
memory is guaranteed to be wired down. Memory allocated with IOMalloc() should
be freed with IOFree().

Warning: If no memory is available, IOMalloc() blocks until it can obtain memory.
For this reason, you shouldn’t call IOMalloc() from a direct interrupt handler.

Drivers that can control (directly or indirectly) disks, network cards, or other devices
used by a file system can run into a deadlock situation if they use IOMalloc() during
I/O. This deadlock can occur when the pageout daemon attempts to free memory by
moving pages out to disk. When the pageout daemon requests this I/O and the driver
uses IOMalloc() to request more memory than is available, IOMalloc() blocks. The
result is deadlock: the driver can’t perform the I/O until memory is freed, and the
memory can’t be freed by the pageout daemon until the I/O happens. In general, a
driver can avoid this deadlock by not allocating large amounts of memory during I/O.
For example, allocating less than 100 bytes is safe, but allocating 8K bytes is very
unsafe.

IOMallocLow()

SUMMARY

Allocates memory in the low 16MB of the computer’s memory range

DECLARED IN

driverkit/i386/kernelDriver.h

SYNOPSIS

void *IOMallocLow(int numBytes)

DESCRIPTION

This function acts like IOMalloc() , except that the allocated range of memory is
guaranteed to be in the low 16MB of system memory and to be physically contiguous.
This function is provided because some cards for Intel-based computers must be
mapped to low memory. Memory allocated with IOMallocLow() should be freed
with IOFreeLow().

Note: This function works only in kernel-level drivers running on Intel-based
computers.

IOMapPhysicalIntoIOTask

SUMMARY

Map a physical address range into your IOTask’s address space

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

IOReturn IOMapPhysicalIntoIOTask (unsigned physicalAddress,
unsigned length,
vm_address_t *virtualAddress)

DESCRIPTION

This function maps a range of physical memory into your IOTask. It returns the virtual
address at which the range is mapped in the virtualAddress argument.

Note: This function works only in kernel-level drivers.

RETURN

Returns an error if the specified physical range could not be mapped; otherwise,
returns IO_R_SUCCESS.

SEE ALSO

IOUnmapPhysicalFromIOTask()

IONsTimeFromDDMMsg()

SUMMARY

Extracts the time from a Driver Debugging Module message

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

ns_time_t IONsTimeFromDDMMsg(IODDMMsg *msg)

DESCRIPTION

This inline function combines the timestampHighInt and timestampLowInt fields
from msg and returns the result.

IOPanic()

SUMMARY

Panic or dump memory after logging a string to the console

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOPanic(const char *reason)

DESCRIPTION

The reason argument is logged to the console, after which either a kernel panic (if in
kernel space) or a memory dump (if in user space) occurs.

Note: Use of this function is an extreme measure. Use IOPanic() only when
continued execution may cause system corruption.

IOPhysicalFromVirtual()

SUMMARY

Find the physical address corresponding to a virtual address

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

IOReturn IOPhysicalFromVirtual(vm_task_t task,

vm_address_t virtualAddress, unsigned int *physicalAddress)

DESCRIPTION

This function gets the physical address (if any) that corresponds to virtualAddress. It
returns IO_R_INVALID_ARG if no physical address corresponds to virtualAddress.
On success, it returns IO_R_SUCCESS. If virtualAddress is in the current task, then
the task argument should be set to IOVmTaskSelf(). This function will never block.
Use this function only to find the physical address of wired down memory since the
physical address of unwired down memory might change over time.

Note: This function is available only at kernel level. This function shouldn’t be used
in a custom interrupt handler—it can’t run at the interrupt level.

IOReadRegister(), IOWriteRegister(), IOReadModifyWriteRegister()

SUMMARY

Read or write values of display registers

DECLARED IN

driverkit/i386/displayRegisters.h

SYNOPSIS

unsigned char IOReadRegister(

IOEISAPortAddress port,

unsigned char index)
void IOWriteRegister(IOEISAPortAddress port, unsigned char index, unsigned

char value)
void IOReadModifyWriteRegister(IOEISAPortAddress port, unsigned char index,

unsigned char protect, unsigned char value)

DESCRIPTION

These inline functions perform operations commonly used to read or write display
registers. IOReadRegister reads and returns the value of the register specified by
port and index. IOWriteRegister() writes value to the register specified by port and
index. IOReadModifyWriteRegister() reads the specified register, zeroes every bit
that isn’t set in the protect mask, sets every bit that’s set in value, and sets the register
to the new value. When the protect mask is zero, the effect is to set the register to
value.

Note: These functions are supported only on Intel-based computers.

IORemoveFromBdevsw(), IORemoveFromCdevsw(),
IORemoveFromVfssw()

SUMMARY

Remove UNIX-style entry points from a device switch table

DECLARED IN

driverkit/devsw.h

SYNOPSIS

void IORemoveFromBdevsw(int bdevswNumber)
void IORemoveFromCdevsw(int cdevswNumber)
void IORemoveFromVfssw(int vfsswNumber)

DESCRIPTION

These functions remove a device from a device switch table, replacing it with a null
entry.

Note: You should use IODevice’s removeFromBdevsw and removeFromCdevsw
methods instead of IORemoveFromBdevsw() and IORemoveFromCdevsw(),
whenever possible.

SEE ALSO

IOAddToBdevsw(), IOAddToCdevsw(), IOAddToVfssw()

IOResumeThread()

SUMMARY

Resume the execution of a thread suspended with IOSuspendThread()

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOResumeThread(IOThread thread)

DESCRIPTION

This function causes the execution of a suspended thread to continue.

IOScheduleFunc()

SUMMARY

Arrange for the specified function to be called at a certain time in the future

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOScheduleFunc(IOThreadFunc function, void *arg, int seconds)

DESCRIPTION

This function causes function to be called in seconds seconds, with arg as function’s
argument. The call to function occurs in the context of the caller’s task, but in a thread
that is unique to the Driver Kit. The call to function can be cancelled with
IOUnscheduleFunc().

Note: The kernel version of IOScheduleFunc() performs the callback in the kernel
task’s context, not the I/O Task context. One consequence is that function can’t send
Mach messages with msg_send(); it needs to use msg_send_from_kernel() instead,
as described in Chapter 2.

IOSendInterrupt()

SUMMARY

Arrange for an interrupt message to be sent

DECLARED IN

driverkit/IODirectDevice.h

SYNOPSIS

void IOSendInterrupt(void *identity, void *state, unsigned int msgId)

DESCRIPTION

This function is useful if you need to handle interrupts directly—for example, because
of a timing constraint in the hardware—but don’t wish to give up the advantages of
interrupt notification by messages. To handle interrupts directly, you must implement
the getHandler:level:argument:forInterrupt: message of IODirectDevice.

The msgId argument specifies the message ID of the interrupt message that will be
sent. This should be IO_DEVICE_INTERRUPT_MSG unless the driver’s
documentation specifies otherwise. The identify and state arguments should be set to
the values that the interrupt handler received in its own arguments. For example
(italicized text delineated in angle brackets, that is << >>, is to be filled in with
device-specific code):

static void myInterruptHandler(void *identity, void *state,
 unsigned int arg)
{
 << handle the interrupt >>
 IOSendInterrupt(identity, state, IO_DEVICE_INTERRUPT_MSG);
}

SEE ALSO

IODisableInterrupt(), IOEnableInterrupt()

IOSetDDMMask()

SUMMARY

Set specified bitmask word to specified value

DECLARED IN

driverkit/debugging.h

SYNOPSIS

void IOSetDDMMask(int index, unsigned int bitmask)

DESCRIPTION

This is typically used by individual user-level drivers at initialization time, if then.
Subsequently, it is usually used only by the Driver Debugging Module’s server thread
to change the current bitmask value.

The index argument is an index into IODDMMasks , which is an array of unsigned
int . Each entry of the array contains 32 mask bits.

IOSetUNIXError()

SUMMARY

Explicitly return an error value from a UNIX-style driver

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

void IOSetUNIXError(int errno)

DESCRIPTION

Most UNIX-style drivers don’t need to use this function. However, those that
explicitly set the caller’s errno can use this function to do so. This function is used
when the caller executes as a result of a UNIX-style entry point.

Note: This function works only in kernel-level drivers.

IOSleep()

SUMMARY

Sleep for indicated number of milliseconds

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOSleep(unsigned int milliseconds)

DESCRIPTION

This function causes the caller to block for the indicated number of milliseconds.

IOSuspendThread()

SUMMARY

Suspend the execution of a thread started with IOForkThread()

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOSuspendThread(IOThread thread)

DESCRIPTION

This function causes the execution of a running thread to pause. The thread can be
resumed with IOResumeThread().

IOUnmapPhysicalFromIOTask

SUMMARY

Unmap a physical address range from your IOTask’s address space

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

IOReturn IOUnmapPhysicalFromIOTask(vm_address_t virtualAddress,
unsigned length)

DESCRIPTION

This function unmaps a range of memory that was mapped with
IOMapPhysicalIntoIOTask() . You should use this to destroy a mapping when you
no longer need to use it.

Note: This function works only in kernel-level drivers.

RETURN

Returns an error if the specified virtual range was not mapped by
IOMapPhysicalIntoIOTask() ; otherwise, returns IO_R_SUCCESS.

SEE ALSO

IOMapPhysicalIntoIOTask()

IOUnscheduleFunc()

SUMMARY

Cancel a request made with IOScheduleFunc()

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

void IOUnscheduleFunc(IOThreadFunc function, void *arg)

DESCRIPTION

This function removes a request made using IOScheduleFunc() from the current list
of pending requests. An error will be logged to the console if the specified
function/arg pair is not currently registered.

IOVmTaskCurrent()

SUMMARY

Returns the vm_task_t of the current task

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

vm_task_t IOVmTaskCurrent()

DESCRIPTION

Returns the vm_task_t for the current task. The only reason to use this function is to
perform DMA to user space memory transfers in a UNIX-style driver.

Note: This function works only in kernel-level drivers.

SEE ALSO

IOVmTaskSelf()

IOVmTaskForBuf()

SUMMARY

Returns the vm_task_t associated with a buf structure

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

vm_task_t IOVmTaskForBuf(struct buf *buffer)

DESCRIPTION

Block drivers use this function to determine the task for which they’re doing I/O. The
value returned by this function is used in calls to IOPhysicalFromVirtual() , which
returns an address that’s used in IODirectDevice’s createDMABufferFor:... method.

Note: This function works only in kernel-level drivers.

IOVmTaskSelf()

SUMMARY

Obtain the vm_task_t of the kernel

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

vm_task_t IOVmTaskSelf()

DESCRIPTION

This function is used to obtain the kernel’s vm_task_t, which is the vm_task_t for
memory allocated with IOMalloc() . This function is required because the type
definition of vm_task_t at kernel level is different from that of vm_task_t at user
level.

Note: This function works only in kernel-level drivers.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Other Features

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Auto Detection of Devices
EISA- and PCI-compliant systems can support automatic detection of devices,
referred to as the auto detect feature. When auto detect is supported, the system can
determine which devices are connected to the bus and the location of the devices.
Devices are easier to configure because less information is required in the .table files
for the driver. Auto detect is nondestructive: It doesn’t change the state of any device.

Auto detect determines which devices are connected to a bus and their bus location.
Each device identifies itself with an auto detect ID and indicates its location with an
anchor.

Auto Detect IDs and Anchors
Each device driver identifies itself by an auto detect ID string, which is a list of
identifiers that can be used to detect the devices that can be controlled by the driver.
The meaning of the identifiers is different for each bus type.

For the EISA, PCI and Plug and Play bus types, this ID is expressed as a 32-bit
hexadecimal number containing the vendor ID and the device ID for the device. For
the EISA bus and for Plug and Play, the device ID is in the lower 16 bits, and the
vendor ID is in the upper 16 bits. For the PCI bus, the vendor ID is in the lower 16 bits,
and the device ID is in the upper 16 bits. The “Auto Detect IDs” key should contain
IDs for all the devices that can be controlled by the device driver. There is currently
no provision for matching “don’t care” bits in the ID, although that may be added in
the future.

When your driver is configured in the system, the configuration software will scan the
bus for devices that match your auto detect IDs. When it finds a device, it will create
a device description for your driver with a value for the “Location” key that allows
you to locate your device on the bus. This key is known as the “anchor” for your
device and is different for each bus type.

For the EISA bus, the anchor is a slot number between 0 and 15. The value of the
“Location” key is “Slot <n>”, where <n> is your slot number.

For the PCI bus, the anchor is a three-part identifier containing the bus number, the
device number, and the function number for your device. The bus number can be
between 0 and 255, the device number can be between 0 and 31, and the function
number can be between 0 and 7. The syntax of the “Location” key is “Dev:<d>

Func:<f> Bus:”, where is the bus number, <d> is the device number, and <f>
is the function number.

Plug and Play support does not currently define an anchor for the card. Instead, the
resources assigned in your configuration table, such as base I/O address, IRQ level,
and DMA channels, are programmed into your device using the Plug and Play control
registers. In the future, an anchor will be assigned so you can use new Driver Kit
methods to control resources in more detail.

Auto Detect Process
The driver bundle’s Default.table has two key/value pairs of interest for auto
detection: “Bus Type” and “Auto Detect IDs”. The first tells which bus the driver
supports. The second lists the auto detect IDs of all the supported devices for this
driver, expressed in the 32-bit hexadecimal number format.

Auto detection is used at two times: During installation and when you use the
Configure application.

During initial installation, the auto detect software scans each bus and obtains from
each device its auto detect ID and its anchor in the form that the bus uses. It adds the
“Location” key to your driver’s device description in memory.

Note: A computer may have more than one bus, and the buses may be different
types.

When you use Configure to add a driver to your system, it looks at every file with a
.table extension (with the exception of Instancen.table files) in each configuration
bundle, trying to match bus types and auto detect IDs. It first examines the “Bus
Type” and then the “Auto Detect IDs” key/value pairs and generates a candidate list
of drivers for each device found. There may be more than one candidate driver for a
device. In that case, the user is presented with a list of drivers for the device and
asked to pick one. After the user chooses, the .table file is copied to an
Instancen.table with this line appended:

"Location" = " anchor "

where anchor is the anchor in the format appropriate for the bus.

There are cases where “Location” is blank. Each bus-specific category of
IODirectDevice (IOEISADirectDevice, IOPCIDirectDevice, and so on) and
IODeviceDescription subclass (IOPCMCIADeviceDescription and so on) provide
methods for extracting this information, such as getPCIDevice:function:bus and
getEISASlotNumber.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Protocols

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOConfigurationInspector

Adopted By: IODeviceInspector class
IODisplayInspector class

Declared In: driverkit/IODeviceInspector.h

Protocol Description

The IOConfigurationInspector protocol is adopted by inspectors that are loaded into
the Configure application. Each inspector lets the user inspect and set information
about a device, such as a specific brand of Ethernet card. The inspector stores this
information in an NXStringTable that is specified to the inspector with the setTable:
method.

The default, customizable inspector implemented by the IODeviceInspector class is
sufficient for many devices. However, if IODeviceInspector doesn’t suit your
configuration needs, you should implement your own inspector class that adopts the
IOConfigurationInspector protocol. An example of adopting this protocol is under
/NextLibrary/Documentation/NextDev/Examples/DriverKit in the
DriverInspector directory.

Method Types

Get the inspector’s View − inspectionView

Notify that resources have changed
− resourcesChanged

Set the description table − setTable

Instance Methods

inspectionView

− (View *)inspectionView

Returns the View of the inspector.

resourcesChanged:

− resourcesChanged:(IOResources *)resources

The Configure application sends this message to all inspectors whenever an interrupt,
DMA channel, I/O port, or memory range is chosen or dropped in any inspector. This
method should check for conflicts and update the UI.

This message is sent as often as you might need it, including immediately after a
setTable: and after your own changes. You are guaranteed to be deactivated before
your current table is freed, but you will not receive a setTable:nil, so don’t count on
accessing or modifying the table except in response to a user action.

setTable:

− setTable:(NXStringTable *)anObject

Sets the NXStringTable describing the inspector’s device to anObject. You should
update the UI when setTable: gives you a table to inspect. Your object should keep a
handle to the table. When the user makes changes, immediately update the table; do
not use OK/Revert buttons.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOEventThread

Adopted By: The event system

Declared In: driverkit/eventProtocols.h

Protocol Description

The IOEventThread protocol provides access to the event system’s I/O thread. You
can obtain an IOEventThread-compliant object from IOEventSource’s owner method.

Method Types

Sending messages − sendIOThreadAsyncMsg:to:with:

− sendIOThreadMsg:to:with:

Instance Methods

sendIOThreadAsyncMsg:to:with:

− (IOReturn)sendIOThreadAsyncMsg:(id)instance
to:(SEL)selector
with: (id)data

From the event system’s I/O thread, sends the message specified by selector to
instance, with the argument data. This method doesn’t wait for the selector method to
be called, and doesn’t detect whether selector is a valid method of instance. Returns
IO_R_IPC_FAILURE if an error occurred; otherwise, returns IO_R_SUCCESS.

See also: − sendIOThreadMsg:to:with:

sendIOThreadMsg:to:with:

− (IOReturn)sendIOThreadMsg:(id)instance
to:(SEL)selector
with: (id)data

From the event system’s I/O thread, sends the message specified by selector to

instance, with the argument data. This method waits until the selector method has
returned. Returns IO_R_IPC_FAILURE if the message couldn’t be sent; otherwise,
returns IO_R_SUCCESS.

See also: − sendIOThreadAsyncMsg:to:with:

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IONetworkDeviceMethods

Adopted By: IOEthernet
IOTokenRing

Declared In: driverkit/IONetwork.h

Protocol Description

This protocol must be implemented by network direct device drivers that use
IONetwork to tie into the kernel network system. These methods are invoked by
IONetwork objects in response to events in the network system.

Note: Network drivers must run at kernel level.

Method Types

Creating netbufs − allocateNetbuf

Initializing the hardware − finishInitialization

Sending out a packet − outputPacket:address:

Performing control commands − performCommand:data:

Instance Methods

allocateNetbuf

− (netbuf_t)allocateNetbuf

This method creates and returns a netbuf to be used for an impending output.

This method doesn’t always have to return a buffer. For example, you might want to
limit the number of buffers your driver instance can allocate (say, 200 kilobytes
worth) so that it won’t use too much wired-down kernel memory. When this method
fails to return a buffer, it should return NULL.

Here’s an example of implementing allocateNetbuf.

#define my_HDR_SIZE 14

#define my_MTU 1500
#define my_MAX_PACKET (my_HDR_SIZE + my_MTU)

- netbuf_t allocateNetbuf
{
 if (_numbufs == _maxNumbufs)
 return(NULL);
 else {
 _numbufs++;
 return(nb_alloc(my_MAX_PACKET));
 }
}

See also: nb_alloc() (NEXTSTEP Operating System Software)

finishInitialization

− (int)finishInitialization

This method should perform any initialization that hasn’t already been done. For
example, it should make sure its hardware is ready to run. You can specify what the
integer return value (if any) should be.

If you implement this method, you need to check that [self isRunning] == YES.

outputPacket:address:

− (int)outputPacket:(netbuf_t)packet address:(void *)address

This method should deliver the specified packet to the given address. Its return value
should be zero if no error occurred; otherwise, return an error number from the header
file sys/errno.h.

If you implement this method, you need to check that [self isRunning] == YES. If so,
insert the necessary hardware addresses into the packet and check it for minimum
length requirements.

performCommand:data:

− (int)performCommand:(const char *)command data:(void *)data

This method performs arbitrary control operations; the character string command is
used to select between these operations. Although you don’t have to implement any
operations, there are five standard operations. You can also define your own
operations.

The standard commands are listed in the following table. The constant strings listed
below are declared in the header file net/netif.h (under the bsd directory of

/NextDeveloper/Headers).

Command Operation

IFCONTROL_SETFLAGS Request to have interface flags turned on or off.
The data argument for this command is of type
union ifr_ifru (which is declared in the header file
net/if.h).

IFCONTROL_SETADDR Set the address of the interface.

IFCONTROL_GETADDR Get the address of the interface.

IFCONTROL_AUTOADDR Automatically set the address of the interface.

IFCONTROL_UNIXIOCTL Perform a UNIX ioctl() command. This is only for
compatibility; ioctl() isn’t a recommended
interface for network drivers. The argument is of
type if_ioctl_t * , where the if_ioctl_t structure
contains the UNIX ioctl request (for example,
SIOCSIFADDR) in the ioctl_command field and
the ioctl data in the ioctl_data field.

An example of implementing performCommand:data: follows.

- (int)performCommand:(const char *)command data:(void *)data
{
 int error = 0;

 if (strcmp(command, IFCONTROL_SETFLAGS) == 0)
 /* do nothing */;
 else
 if (strcmp(command, IFCONTROL_GETADDR) == 0)
 bcopy(&my_address, data, sizeof (my_address));
 else
 error = EINVAL;

 return (error);
}

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOSCSIControllerExported

Adopted By: IOSCSIController class

Declared In: driverkit/scsiTypes.h

Protocol Description

Indirect device drivers for devices attached to SCSI controllers use the methods in
this protocol to communicate with IOSCSIController.

Method Types

Allocating well-aligned buffers −
allocateBufferOfLength:actualStart:actualLength:
− getDMAAlignment:

Requesting I/O − executeRequest:buffer:client:

− maxTransfer

Reserving SCSI targets − reserveTarget:lun:forOwner:

− releaseTarget:lun:forOwner:

Resetting the SCSI bus − resetSCSIBus

Getting the IOReturn equivalent of a sc_status_t value
− returnFromScStatus:

Instance Methods

allocateBufferOfLength:actualStart:actualLength:

− (void *)allocateBufferOfLength:(unsigned)length
actualStart:(void **)actualStart
actualLength:(unsigned *)actualLength

Allocates and returns a pointer to some well-aligned memory. Well-aligned memory
is necessary for calls to executeRequest:buffer:client:. You should use actualStart
and actualLength when freeing the memory, as follows (italicized text delineated in

angle brackets, that is << >>, is to be filled in with device-specific code):

dataBuffer = [_controller allocateBufferOfLength:block_size
 actualStart:&freePtr, actualLength:&freeLength];
<< Use the buffer... >>
IOFree(freePtr, freeLength);

Here’s a typical use of this method:

IODMAAlignment dmaAlign;
unsigned int alignment, alignedLength, freeLength;
void *alignedPtr = NULL;
unsigned int maxLength; /* Max length of the current transfer
*/
/* . . . */
[_controller getDMAAlignment:&dmaAlign];
if(<< we’re doing a write >>)
 alignment = dmaAlign.writeLength;
else
 alignment = dmaAlign.readLength;

if(alignment > 1)
 alignedLength = IOAlign(unsigned int, maxLength, alignment);
else
 alignedLength = maxLength;

alignedPtr = [_controller allocateBufferOfLength:alignedLength
 actualStart:&freePtr
 actualLength:&freeLength];

<< If we’re going to do a write, copy the data to alignedPtr.
 Set up the request and submit it, as described in the
 executeRequest:buffer:client: description. >>
<< Do any post-I/O processing that’s necessary. >>

IOFree(freePtr, freeLength);

See also: − getDMAAlignment:

executeRequest:buffer:client:

− (sc_status_t)executeRequest:(IOSCSIRequest *)scsiRequest
buffer: (void *)buffer
client:(vm_task_t)client

Executes the specified request. Indirect devices invoke this method whenever they
need the IOSCSIController to perform I/O.

Subclasses of IOSCSIController must implement this method. A typical
implementation of this method consists of the following:

• Using IOScheduleFunc() to schedule a timeout function to be called after
scsiRequest->timeoutLength time has elapsed without I/O completion

• Sending the command descriptor block (CDB) specified in scsiRequest to the
controller

• When the I/O has completed, unscheduling the timeout function

This method should return scsiRequest->driverStatus, which should be set by the
part of the driver that detected I/O completion or timeout.

Indirect devices use this method as shown below (italicized text delineated in angle
brackets, that is << >>, is to be filled in with device-specific code):

void *alignedPtr = NULL;
unsigned int alignedLength;
IOSCSIRequest request;
cdb_t cdb;

/* . . . */
if (<< we’re going to be doing DMA >>) {
 << Ensure we have a well-aligned buffer that starts at
alignedPtr
 and continues for alignedLength bytes. See the
 allocateBuffer: description for one way of doing this. >>
} else {
 alignedLength = 0;
 alignedPtr = 0;
}

bzero(&request, sizeof(request));
request.target = [self target];
request.lun = [self lun];
request.read = << YES if this is a read; NO otherwise >>;
request.maxTransfer = alignedLength;
request.timeoutLength = << some timeout length, in seconds >>;
request.disconnect = << 1 if allowed to disconnect; otherwise 0 >>;
request.cdb = cdb;
<< Set up the cdb (command descriptor block) field. The type of
this
 field, cdb_t, is defined and described in the header file
 bsd/dev/scsireg.h. >>

rtn = [_controller executeRequest:&request
 buffer:alignedPtr
 client:IOVmTaskSelf()];

getDMAAlignment:

− (void)getDMAAlignment: (IODMAAlignment *)alignment

Returns the DMA alignment requirements for the current architecture.
IOSCSIController subclasses can override this method to specify any device-specific
alignment requirements. See the description of
allocateBufferOfLength:actualStart:actualLength: for an example of using this
method.

See also: − allocateBufferOfLength:actualStart:actualLength:

maxTransfer

− (unsigned)maxTransfer

Returns the maximum number of bytes per DMA transfer. This is the maximum
transfer that can be requested in a call to executeRequest:buffer:client:.

releaseTarget:lun:forOwner:

− (void)releaseTarget:(unsigned char)target
lun: (unsigned char)lun
forOwner: owner

Releases the specified target/lun pair. If owner hasn’t reserved the pair, this method
uses IOLog to print an error message.

See also: − reserveTarget:lun:forOwner:

reserveTarget:lun:forOwner:

− (int)reserveTarget:(unsigned char)target
lun: (unsigned char)lun
forOwner: owner

Reserves the specified target/lun pair, if it isn’t already reserved. This method is
invoked by a client (for example, a SCSIDisk instance) to mark a particular target/lun
as being in use by that client. Usually, this happens at probe: time; however, the
SCSIGeneric driver uses this method at other times.

This method returns a nonzero value if the target/lun pair is already reserved.
Otherwise, it returns zero.

See also: − releaseTarget:lun:forOwner:

resetSCSIBus

− (sc_status_t)resetSCSIBus

Resets the SCSI bus. Subclasses of IOSCSIController must implement this method so
that it resets the SCSI bus. The sc_status_t enumerated type is defined and described
in the header file bsd/dev/scsireg.h.

returnFromScStatus:

− (IOReturn)returnFromScStatus:(sc_status_t)sc_status

Returns the IOReturn value corresponding to the specified sc_status_t value. The
sc_status_t enumerated type is defined and described in the header file
bsd/dev/scsireg.h.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOScreenEvents

Adopted By: IODisplay

Declared In: driverkit/eventProtocols.h

Protocol Description

The methods in this protocol are invoked by the event system, at the request of the
Window Server or of pointer management software.

Method Types

Manipulating the cursor − hideCursor:

− moveCursor:frame:token:

− showCursor:frame:token:

Get the device port − devicePort

Set screen brightness − setBrightness:token:

Instance Methods

devicePort

− (port_t)devicePort

Returns the device port, which should be obtained from this instance’s
IODeviceDescription.

hideCursor:

− hideCursor:(int)token

Removes the cursor from the screen.

moveCursor:frame:token:

− moveCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Removes the cursor from the screen, moves it, and displays the cursor in its new
position.

setBrightness:token:

− setBrightness:(int)level token:(int)token

Sets the brightness of the screen. Many devices (and thus many drivers) don’t permit
this operation.

See also: − setBrightness:token: (IOFrameBufferDisplay class)

showCursor:frame:token:

− showCursor:(Point *)cursorLocation
frame:(int)frame
token:(int)token

Displays the cursor at cursorLocation.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOScreenRegistration

Adopted By: The event system

Declared In: driverkit/eventProtocols.h

Protocol Description

Display drivers use the messages in the IOScreenRegistration protocol to register and
unregister themselves with the event system. These methods are called by IODisplay
in response to an getIntValues:forParameter:count: call that specifies the
“IO_Framebuffer_Register” parameter.

You shouldn’t need to invoke the methods in this protocol, because they’re already
invoked automatically by IOFrameBufferDisplay and IOSVGADisplay.

Instance Methods

registerScreen:bounds:shmem:size:

− (int)registerScreen:(id)instance
bounds:(Bounds *)bounds
shmem:(void **)address
size:(int *)num

Registers instance as a display driver. Returns a token that’s used to refer to the
display in other calls to the event system.

unregisterScreen:

− (void)unregisterScreen:(int)token

Unregisters the instance associated with token as a display driver.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Types and Constants

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Defined Types

IOAddressRange

DECLARED IN

driverkit/IODeviceInspector.h

SYNOPSIS

typedef struct IOAddressRange {
 unsigned start;

unsigned length;
} IOAddressRange

DESCRIPTION

Used to describe address ranges.

IOCache

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef enum {
IO_CacheOff,

IO_WriteThrough ,
IO_CopyBack

} IOCache

Used <<where?>> to specify caching. IO_CacheOff inhibits the cache.
IOChannelCommand

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned int IOChannelCommand

DESCRIPTION

IOChannelDequeueOption

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned int IOChannelDequeueOption

DESCRIPTION

IOChannelEnqueueOption

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned int IOChannelEnqueueOption

DESCRIPTION

IOCharParameter

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef char IOCharParameter[IO_MAX_PARAMETER_ARRAY_LENGTH]

DESCRIPTION

Standard type for a character parameter value, used by the get/set parameter
functionality provided by IODevice and IODeviceMaster.

IODDMMsg

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

typedef struct {
msg_header_t header;
msg_type_t argType;
unsigned index;
unsigned maskValue;
unsigned status;
unsigned timestampHighInt ;
unsigned timestampLowInt ;
int cpuNumber;
msg_type_t stringType;
char string[IO_DDM_STRING_LENGTH];

} IODDMMsg

DESCRIPTION

The message format understood by the Driver Debugging Module. You don’t usually
have to use this message, as long as DDMViewer <<check>> is sufficient for your
needs.

IODescriptorCommand

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned char IODescriptorCommand

DESCRIPTION

IODeviceNumber

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned int IODeviceNumber

DESCRIPTION

IODeviceStyle

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef enum {
IO_DirectDevice,
IO_IndirectDevice,
IO_PseudoDevice

} IODeviceStyle

DESCRIPTION

Returned by the deviceStyle method to specify whether the driver is a direct device
driver (one that directly controls hardware), an indirect device driver (one that
controls hardware using a direct device driver), or a pseudodriver (one that controls
no hardware). The driver style determines how it’s configured into the system, as
described <<somewhere>>.

IODisplayInfo

DECLARED IN

bsd/dev/i386/displayDefs.h <<to be moved to driverkit/>>

SYNOPSIS

typedef struct{
int width ;
int height;
int totalWidth ;
int rowBytes;
int refreshRate;
void *frameBuffer ;
IOBitsPerPixel bitsPerPixel;
IOColorSpace colorSpace;
unsigned int flags;
void *parameters;

} IODisplayInfo ;

DESCRIPTION

This structure describes a video display. Each linear mode supported by an
IOFrameBufferDisplay has a corresponding IODisplayInfo. <<Tell when it’s
used.>> The structure’s fields are

width Width, in pixels

height Height, in pixels

totalWidth Width including undisplayed pixels

rowBytes The number of bytes to get from one scanline to next. To
determine this value, determine how many 8-bit bytes each
pixel occupies (rounding up to an integer) and multiply this
by the value of totalWidth . For example, a color display
mode that uses 15 bits per pixel and has a totalWidth of
1024 has a rowBytes value of 2048.

refreshRate Monitor refresh setting, in Hz <<how do you decide
this?>>

frameBuffer Pointer to origin of screen; untyped to force actual screen
writes to be dependent on bitsPerPixel. The driver’s
initFromDeviceDescription: method should set this field
to the value returned by
mapFrameBufferAtPhysicalAddress:length:.

bitsPerPixel The memory space occupied by one pixel. 8-bit black and

white display modes use the value IO_8BitsPerPixel, and
“16-bit” color display modes that use 5 bits each for red,
green, and blue use the value IO_15BitsPerPixel. See the
documentation of the IOBitsPerPixel type for other values.

colorSpace Specifies the sample-encoding format.<<what does that
mean?>> Typically, this value is either
IO_DISPLAY_ONEISWHITECOLORSPACE (for
monochrome modes) or
IO_DISPLAY_RGBCOLORSPACE (for color modes). See
the documentation of the IOColorSpace type for other
values.

flags Flags used to indicate special requirements or conditions to
DPS. Currently, this should always be zero. <<true? Or is
it ignored?>>

parameters Driver-specific parameters.

Here’s an array of IODisplayInfo structures for a driver that supports several
monochrome and color modes:

static const IODisplayInfo MyModes[MY_NUM_MODES] = {
 { 1024, 768, 1024, 1024, 66, 0,
 IO_8BitsPerPixel, IO_DISPLAY_ONEISWHITECOLORSPACE, 0, 0 },
 { 1280, 1024, 2048, 2048, 68, 0,
 IO_8BitsPerPixel, IO_DISPLAY_ONEISWHITECOLORSPACE, 0, 0 },
 { 800, 600, 800, 1600, 72, 0,
 IO_15BitsPerPixel, IO_DISPLAY_RGBCOLORSPACE, 0, 0 },
 { 1024, 768, 1024, 2048, 72, 0,
 IO_15BitsPerPixel, IO_DISPLAY_RGBCOLORSPACE, 0, 0 }
};

These structures correspond to the display modes specified in the device
configuration bundle’s Localizable.strings file:

"DisplayModes" = "Height:768 Width:1024 Refresh:66Hz ColorSpace:
BW:8;

 Height:1024 Width:1280 Refresh: 68Hz ColorSpace: BW:8;
 Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16;
 Height: 600 Width: 800 Refresh: 72Hz ColorSpace: RGB:555/16";

IODMAAlignment

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef struct {

unsigned readStart;
unsigned writeStart ;
unsigned readLength;
unsigned writeLength ;

} IODMAAlignment

DESCRIPTION

Used <<by whom?>> to specify DMA alignment. A field value of 0 means that
alignment isn’t restricted for values corresponding to the field.

IODMABuffer

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef void *IODMABuffer

DESCRIPTION

Used as a machine-independent type for a machine-dependent DMA buffer.

SEE ALSO

IOEISADMABuffer

IODMADirection

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef enum {
IO_DMARead,
IO_DMAWrite

} IODMADirection

DESCRIPTION

Used <<where?>> to specify the direction of DMA. IO_DMARead indicates a

transfer from the device into system memory; IO_DMAWrite indicates a transfer
from system memory to the device.

IODMAStatus

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef enum {
IO_None,
IO_Complete,
IO_Running,
IO_Underrun ,
IO_BusError ,
IO_BufferError ,

} IODMAStatus

DESCRIPTION

Used <<where?>> to specify machine-independent DMA channel status.

IO_None No appropriate status
IO_Complete DMA channel idle
IO_Running DMA channel running
IO_Underrun Underrun or overrun
IO_BusError Bus error
IO_BufferError DMA buffer error

IODMATransferMode

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS

typedef enum {
 IO_Demand,
 IO_Single,
 IO_Block,
 IO_Cascade,
} IODMATransferMode

DESCRIPTION

Used only in the setTransferMode:forChannel: method of the EISA/ISA category
of IODirectDevice.

IOEISADMABuffer

DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS

typedef void *IOEISADMABuffer

DESCRIPTION

Used as a machine-dependent type for a DMA buffer.

IOEISADMATiming

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS

typedef enum {
 IO_Compatible,
 IO_TypeA,
 IO_TypeB,
 IO_Burst ,
} IOEISADMATiming

DESCRIPTION

Used only in the setDMATiming:forChannel: method of the EISA/ISA category of
IODirectDevice.

IOEISADMATransferWidth

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS

typedef enum {
 IO_8Bit ,
 IO_16BitWordCount ,
 IO_16BitByteCount,
 IO_32Bit,
} IOEISADMATransferWidth

DESCRIPTION

Used only in the setDMATransferWidth:forChannel: method of the EISA/ISA
category of IODirectDevice.

IOEISAInterruptHandler

DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS

typedef void (*IOEISAInterruptHandler)
(void *identity,

void *state,
unsigned int arg)

DESCRIPTION

IOEISAPortAddress

DECLARED IN

driverkit/i386/driverTypes.h

SYNOPSIS

typedef unsigned short IOEISAPortAddress

DESCRIPTION

IOEISAStopRegisterMode

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS

typedef enum {
 IO_StopRegisterEnable,
 IO_StopRegisterDisable,
} IOEISAStopRegisterMode

DESCRIPTION

Used only in the setStopRegisterMode:forChannel: method of the EISA/ISA
category of IODirectDevice.

IOIncrementMode

DECLARED IN

driverkit/i386/directDevice.h

SYNOPSIS

typedef enum {
 IO_Increment,
 IO_Decrement,
} IOIncrementMode

DESCRIPTION

Used only in the setIncrementMode:forChannel: method of the EISA/ISA category
of IODirectDevice.

IOInterruptHandler

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef void (*IOInterruptHandler)
(void *identity,

void *state,
unsigned int arg)

DESCRIPTION

IOInterruptMsg

DECLARED IN

driverkit/interruptMsg.h

SYNOPSIS

typedef struct {
msg_header_t
header;

} IOInterruptMsg

DESCRIPTION

The format of the message sent by the kernel to a driver’s interrupt handler.

IOIntParameter

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef int IOIntParameter [IO_MAX_PARAMETER_ARRAY_LENGTH]

DESCRIPTION

Standard type for an integer parameter value, used by the get/set parameter
functionality provided by IODevice and IODeviceMaster.

IOIPCSpace

DECLARED IN

driverkit/kernelDriver.h

SYNOPSIS

typedef enum {
IO_Kernel ,
IO_KernelIOTask ,
IO_CurrentTask

} IOIPCSpace

DESCRIPTION

Used only by the IOConvertPort() function to specify which space to convert the
port from and to.

IONamedValue

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef struct {
int value;
const char *name;

} IONamedValue

DESCRIPTION

Map between constants or enumerations and text description.

IOObjectNumber

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef unsigned int IOObjectNumber

DESCRIPTION

IOParameterName

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef char IOParameterName[IO_MAX_PARAMETER_NAME_LENGTH]

DESCRIPTION

Standard type for a parameter name, used by the get/set parameter functionality
provided by IODevice and IODeviceMaster.

IORange

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef struct range {
unsigned int start;
unsigned int size;

} IORange

DESCRIPTION

Indicates a range of values. Used for memory regions, port regions, and so on.

IOReturn

DECLARED IN

driverkit/return.h

SYNOPSIS

typedef int IOReturn

DESCRIPTION

IOReturn values are returned by many Driver Kit classes.

IOSCSIRequest

DECLARED IN

driverkit/scsiTypes.h

SYNOPSIS

typedef struct {
unsigned char target;
unsigned char lun;
cdb_t cdb;
BOOL read;
int maxTransfer;
int timeoutLength;
unsigned disconnect:1;
unsigned pad:31;
sc_status_t driverStatus;
unsigned char scsiStatus;
int bytesTransferred;
ns_time_t totalTime;
ns_time_t latentTime;
esense_reply_t senseData;

} IOSCSIRequest

DESCRIPTION

Used in the IOSCSIController protocol’s executeRequest:buffer:client: method.

IOString

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

typedef char IOString [IO_STRING_LENGTH]

DESCRIPTION

Standard type for an ASCII name, such as a device’s name or type.

IOSwitchFunc

DECLARED IN

driverkit/devsw.h

SYNOPSIS

typedef int (*IOSwitchFunc)()

DESCRIPTION

Used by IOAddToBdevsw() and IOAddToCdevsw() to specify UNIX-style entry
points into a driver.

IOThread

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

typedef void *IOThread

DESCRIPTION

An opaque type used by the general-purpose functions to represent a thread.

IOThreadFunc

DECLARED IN

driverkit/generalFuncs.h

SYNOPSIS

typedef void (*IOThreadFunc)
(void *arg)

DESCRIPTION

Used by the general-purpose functions to specify the function that a thread should
execute.

Symbolic Constants

Length Constants

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

IO_STRING_LENGTH
IO_MAX_PARAMETER_NAME_LENGTH
IO_MAX_PARAMETER_ARRAY_LENGTH

DESCRIPTION

These constants are used to determine the maximum length of the following types:

IO_STRING_LENGTH IOString

IO_MAX_PARAMETER_NAME_LENGTH IOParameterName

IO_MAX_PARAMETER_ARRAY_LENGTH IOIntParameter
IOCharParameter

Debugging String Length

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

IO_DDM_STRING_LENGTH

DESCRIPTION

The length of the string field in an IODebuggingMsg.

Debugging Messages

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

Constant Meaning

IO_DDM_MSG_BASE The lowest ID an IODebuggingMsg can have
IO_LOCK_DDM_MSG Lock the Driver Debugging Module (DDM)
IO_UNLOCK_DDM_MSG Unlock the DDM
IO_GET_DDM_ENTRY_MSG Get an entry from the DDM
IO_SET_DDM_MASK_MSG Set the debugging mask for the DDM
IO_CLEAR_DDM_MSG Clear all entries from the DDM

DESCRIPTION

Values for the header.msg_id field of an IODebuggingMsg. See the discussion of the
DDM in Chapter 2 for more information on these messages. <<check>>

Return Values from the DDM

DECLARED IN

driverkit/debuggingMsg.h

SYNOPSIS

Constant Meaning

IO_DDM_SUCCESS The message was received and understood
IO_NO_DDM_BUFFER The DDM has no entry at the specified offset
IO_BAD_DDM_INDEX The specified index isn’t valid

DESCRIPTION

Values for the status field of an IODebuggingMsg.

DDM Masks

DECLARED IN

driverkit/debugging.h

SYNOPSIS

IO_NUM_DDM_MASKS

DESCRIPTION

This constant specifies the number of masks used by the Driver Debugging Module.

Interrupt Messages

DECLARED IN

driverkit/interruptMsg.h

SYNOPSIS

Constant Meaning

IO_INTERRUPT_MSG_ID_BASE The lowest ID an IOInterruptMsg can have
IO_TIMEOUT_MSG
IO_COMMAND_MSG
IO_DEVICE_INTERRUPT_MSG Sent by the kernel when an interrupt occurs
IO_DMA_INTERRUPT_MSG
IO_FIRST_UNRESERVED_INTERRUPT_MSG

DESCRIPTION

Values for the header.msg_id field of an IOInterruptMsg. See the discussion of
interrupts in Chapter 2 for more information on interrupt messages. <<check. WHO
USES everything except IO_DEVICE_INTERRUPT_MSG, and how?>>

IOReturn Constants

DECLARED IN

driverkit/return.h

SYNOPSIS

Constant Meaning

IO_R_SUCCESS No error occurred

IO_R_NO_MEMORY Couldn’t allocate memory
IO_R_RESOURCE Resource shortage
IO_R_VM_FAILURE Miscellaneous virtual memory failure
IO_R_INTERNAL Internal library error

IO_R_RLD Error in loading a relocatable file
IO_R_IPC_FAILURE Error during IPC
IO_R_NO_CHANNELS No DMA channels are available
IO_R_NO_SPACE No address space is available for mapping
IO_R_NO_DEVICE No such device
IO_R_PRIVILEGE Privilege/access violation
IO_R_INVALID_ARG Invalid argument

IO_R_BAD_MSG_ID ???
IO_R_UNSUPPORTED Unsupported function
IO_R_INVALID Should never be seen

IO_R_LOCKED_READ Device is read locked
IO_R_LOCKED_WRITE Device is write locked
IO_R_EXCLUSIVE_ACCESS Device is exclusive access and is already open
IO_R_CANT_LOCK Can’t acquire requested lock
IO_R_NOT_OPEN Device not open
IO_R_OPEN Device is still open
IO_R_NOT_READABLE Reading not supported
IO_R_NOT_WRITABLE Writing not supported

IO_R_IO General I/O error
IO_R_BUSY Device is busy
IO_R_NOT_READY Device isn’t ready
IO_R_OFFLINE Device is off line
IO_R_ALIGN DMA alignment error
IO_R_MEDIA Media error
IO_R_DMA DMA failure
IO_R_TIMEOUT I/O timeout
IO_R_NOT_ATTACHED The device or channel isn’t attached

IO_R_PORT_EXISTS The device port already exists
IO_R_CANT_WIRE Can’t wire down physical memory <<ever used?
can you ever wire down physical memory?>>
IO_R_NO_INTERRUPT No interrupt port is attached
IO_R_NO_FRAMES No DMA is enqueued

DESCRIPTION

Values for IOReturns.

IODevice Parameter Names

DECLARED IN

driverkit/IODevice.h

SYNOPSIS

Constant Meaning

IO_CLASS_NAME The value returned by + name
IO_DEVICE_NAME The value returned by − name
IO_DEVICE_KIND The value returned by − deviceKind
IO_UNIT The value returned by − unit

DESCRIPTION

Null Constants

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

#define NULL 0
#define IO_NULL_VM_TASK ((vm_task_t)0)

DESCRIPTION

Standard null values, used in various places.

Unused Constants

DECLARED IN

driverkit/driverTypes.h

IO_CC_START_READ
IO_CC_START_WRITE
IO_CC_ABORT
IO_CC_ENABLE_DEVICE_INTERRUPTS
IO_CC_DISABLE_DEVICE_INTERRUPTS
IO_CC_ENABLE_INTERRUPTS
IO_CC_DISABLE_INTERRUPTS

IO_CC_CONNECT_FRAME_LOOP

IO_CC_DISCONNECT_FRAME_LOOP
IO_CDO_DONE

IO_CDO_ALL
IO_CDO_ENABLE_INTERRUPTS
IO_CDO_ENABLE_INTERRUPTS_IF_EMPTY
IO_CEO_END_OF_RECORD
IO_CEO_DESCRIPTOR_INTERRUPT
IO_CEO_ENABLE_INTERRUPTS
IO_CEO_DESCRIPTOR_COMMAND
IO_CEO_ENABLE_CHANNEL
IO_MAX_BOARD_SIZE
IO_MAX_NRW_SLOT_SIZE
IO_MAX_SLOT_SIZE
IO_NATIVE_SLOT_ID
IO_NO_CHANNEL
IO_NULL_SLOT_ID
IO_NULL_DEVICE_TYPE
IO_NULL_DEVICE_INDEX
IO_NULL_DMA_ID
IO_SLOT_DEVICE_TYPE

DESCRIPTION

These constants aren’t used by drivers for Intel-based computers.

Note:

Global Variables

IODDMMasks

DECLARED IN

driverkit/debugging.h

SYNOPSIS

unsigned int IODDMMasks [IO_NUM_DDM_MASKS]

DESCRIPTION

The bitmask used to filter storing of debugging events. See the discussion of the
Driver Debugging Module in Chapter 2 for more information.

IODMAStatusStrings

DECLARED IN

driverkit/driverTypes.h

SYNOPSIS

const IONamedValue IODMAStatusStrings[]

DECLARED IN

Used as an argument to IOFindNameForValue() to convert an IODMAStatus value
into an error string.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Classes

The Driver Kit has two main groups of classes—those that user-level nondriver
programs can use, and those used by drivers.

IODeviceMaster

IOAddressRanger

IODeviceInspector

IODevice (class methods only)

IOConfigTable

Object

Figure 5-1 . Classes Used by User-level Nondriver Programs

The classes used by drivers are further divided into those that are device-independent
and those that are only used for specific kinds of devices.

IODevice

IODeviceDescription

IODirectDevice

IOEISADeviceDescription

IOConfigTableObject

Figure 5-2 . Device-independent Classes Used by Drivers

See Chapter 3 for information on the classes used for specific kinds of devices.

Some of the methods in the Driver Kit classes are stubs: they simply return without
doing anything. Their method description says that they do nothing. They’re typically
hardware dependent, so you can implement them based on how your hardware
operates and what interface you have available to the hardware. However, these
methods provide a framework for you to build your driver on.

Note: The disk driver classes (IODisk, IOLogicalDisk, and IODiskPartition) are

public but haven’t been documented yet.

Other Classes Available to Drivers
Besides the Object class and the classes documented here, four more classes are
available for drivers’ use. Three of these classes—NXLock, NXConditionLock, and
NXSpinLock—are part of the Mach Kit, and are implemented at both user and kernel
level. NXRecursiveLock, also part of the Mach Kit, is not available at kernel level.
See the “Mach Kit” chapter in NEXTSTEP General Reference for more information.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOAddressRanger

Inherits From: Object

Declared In: driverkit/IOAddressRanger.h

Class Description

The IOAddressRanger class provides user interface and type checking to be used in
device inspecting modules for the Configure application. IOAddressRangers are used
in IODeviceInspector for choosing values for I/O port ranges and ranges of memory.

An IOAddressRanger limits the range to a constant length that you specify with
setRangeLength:. The range is also limited to be between the addresses you specify
with setAddressLimits::. Whenever an address limit or range length is changed or
the selected address range is changed, the IOAddressRanger adjusts the address
range as follows:

• If the start address is less than the lower address limit, the start address is changed
to be equal to the lower limit.

• If the range contains addresses above the higher limit, the start address is adjusted
downward so that the range’s last address is equal to the higher limit.

Instance Variables

None declared in this class.

Method Types

Checking address ranges − checkRangesForConflicts:num:

− checkText:

Setting and getting the start address
− setStartAddress:

− startAddress

Action methods − minus:

− plus:

Setting and getting the range length
− rangeLength

− setRangeLength:

Limiting the address range − setAddressLimits::

Assigning a delegate − setDelegate:

− delegate

Delegate methods − rangeDidChange:

Instance Methods

checkRangesForConflicts:num:

− (BOOL)checkRangesForConflicts:(IOAddressRanger *)ranges
num:(unsigned int)numRanges

A configuration inspector invokes this method to check whether this
IOAddressRanger uses any addresses already used by the specified
IOAddressRangers. If so, this method changes the color of the text in the text field to
gray and sets the status button on. If no conflicts exist, this method sets the status
button off and changes the color of the text to black. Returns NO if no conflicts exist
and YES if conflicts exist.

checkText:

− checkText:sender

Checks whether sender’s string value is an address and, if so, sets the range’s start
address (adjusted as described in the class description), updates the display, and
sends the delegate a rangeDidChange: message. If the string isn’t an address, the
system beeps and updates the range’s display. Returns self if the string is an address;
otherwise, returns nil .

delegate

− delegate

Returns the IOAddressRanger’s delegate, or nil if it doesn’t have one.

minus:

− minus:sender

This method is the target of the minus button in the IOAddressRanger. It moves the
range down by the amount of the range’s length (but no lower than the lower limit),
updates the display, and sends the delegate a rangeDidChange: message. As an
example, if the range is currently from 0x000e00 to 0x000eff, this method changes the
range to be from 0x000d00 to 0x000dff. Returns self.

plus:

− plus:sender

This method is the target of the plus button in the IOAddressRanger. It moves the
range higher by the amount of the range’s length (but not above the higher limit),
updates the display, and sends the delegate a rangeDidChange: message. As an
example, if the range is currently from 0x000e00 to 0x000eff, this method changes the
range to be from 0x000f00 to 0x000fff. Returns self.

rangeLength

− (unsigned long)rangeLength

Returns the length of the range. This length should be set at initialization using
setRangeLength:.

setAddressLimits::

− setAddressLimits:(unsigned long)low :(unsigned long)high

Limits the address range to values between low (inclusive) and high (inclusive) and
adjusts the start address, as described in the class description. Returns self.

setDelegate:

− setDelegate:anObject

Makes anObject the IOAddressRanger’s delegate, and returns self. The delegate is
sent a rangeDidChange: message whenever the address range changes.

setRangeLength:

− setRangeLength:(unsigned long)length

Sets the length of the range and returns self. The new length is displayed and the start
address is adjusted as described in the class description.

setStartAddress:

− setStartAddress:(unsigned long)address

Sets the start address of the range (adjusted as described in the class description) and
returns self.

startAddress

− (unsigned long)startAddress

Returns the start of the range. This length should be set at initialization using
setStartAddress:.

Delegate Methods

rangeDidChange:

− rangeDidChange:sender

Informs the delegate that the range changed.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOAudio

Inherits From: IODirectDevice : IODevice : Object

Declared In: driverkit/IOAudio.h

Class Description

IOAudio is an abstract class for controlling sound cards. It works closely with the
Sound Kit, interpreting messages from user-level programs into method invocations in
the driver. IOAudio has three threads—one that listens for messages from user-level
programs, one that waits for sound-related keyboard events such as Insert (which
raises the volume), and one that serves as the I/O thread. Only the I/O thread is used
to invoke subclass methods that might need access to the hardware.

Audio drivers have some restrictions. Because they’re closely tied to the Window
Server, for security reasons, you can’t start up an audio driver at just any time.
Instead, it’s easiest to reboot to load a new version of an audio driver. Because the
Sound Kit currently has no way to choose between audio drivers, only one IOAudio
driver instance at a time can run.

To play (output) sound data, IOAudio mixes together the data (obtained from
NXPlayStreams) into a circular DMA buffer. If a DMA transfer isn’t already in
progress, IOAudio invokes
startDMAForChannel:read:buffer:bufferSizeForInterrupts: (a
hardware-specific method). After the number of bytes specified by
bufferSizeForInterrupts has been transferred, the hardware interrupts; IOAudio
zeros out the just-transferred part of the buffer and puts more data into it, if possible.
In this way, DMA proceeds continuously until no more data is left to be transferred.
When no more data is left (all the NXPlayStreams have completed), IOAudio invokes
stopDMAForChannel:read:.

Note: The word “channel” has two meanings in sound-related API. It can refer to a
DMA channel, or to a sound channel. A sound channel is a transmission path for
sound. IOAudio currently supports either 1 (mono) or 2 (stereo) sound channels for
each DMA transfer.

The sample rate, data encoding, and number of sound channels used for a DMA
transfer remain the same from the time startDMA... is invoked until the time
stopDMA... is invoked. Their values are taken from the first NXPlayStream
associated with the DMA transfer.

Recording sound data is similar to playing it. One DMA buffer exists for playing
sound, and one for recording it. The buffers can share a DMA channel, or they can
each have their own. Either way, IOAudio currently schedules transfers on only one
channel at a time; that is, simultaneous playback and recording isn’t allowed. In the
future, support may be added for using both channels simultaneously.

Warning: Currently, the DMA buffer size is 64KB for ISA-based systems and 128K for
EISA-based systems, and the interrupt interval is 8KB. You should not depend on
either the size or number of these buffers—they will change in future releases.

Implementing a Subclass

Your subclass of IOAudio must implement the following methods:

• probe: (IODevice class method)
• reset
• startDMAForChannel:read:buffer:bufferSizeForInterrupts:
• stopDMAForChannel:read:
• interruptClearFunc (and its associated function)
• interruptOccurredForInput:forOutput:
• channelCountLimit
• getDataEncodings:count:
• getSamplingRatesLow:high:
• getSamplingRates:count:

Your subclass should implement the following methods if the hardware supports the
associated feature. For example, if your hardware supports loudness enhancement,
you should implement updateLoudnessEnhanced.

• updateLoudnessEnhanced
• updateInputGainLeft
• updateInputGainRight
• updateOutputMute
• updateOutputAttenuationLeft
• updateOutputAttenuationRight

Besides implementing the methods listed above, you might also need to implement the
following:

• acceptsContinuousSamplingRates
• timeoutOccurred

Note: In the future, subclasses may be able to override methods that interpret
NXSoundParameterTags passed from user-level programs. This mechanism will
allow your subclass to interpret device-specific parameters.

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances − initFromDeviceDescription:

− free

− reset

Starting and stopping DMA − startDMAForChannel:read:buffer:
bufferSizeForInterru

pts:
− stopDMAForChannel:read:

Getting DMA buffer address and size
− getInputChannelBuffer:size:

− getOutputChannelBuffer:size:

Handling interrupts − interruptOccurredForInput:forOutput:

− interruptClearFunc

Getting notification of I/O thread difficulties
− timeoutOccurred

Getting and setting information about sound channels
− channelCountLimit

− isInputActive

− isOutputActive

Getting supported sampling rates
− acceptsContinuousSamplingRates

− getSamplingRates:count:

− getSamplingRatesLow:high:

Getting supported data encodings
− getDataEncodings:count:

Getting device settings − channelCount

− dataEncoding

− sampleRate

Determining what hardware settings are or should be
− inputGainLeft

− inputGainRight

− isOutputMuted

− isLoudnessEnhanced

− outputAttenuationLeft

− outputAttenuationRight

Setting hardware state − updateInputGainLeft

− updateInputGainRight

− updateOutputMute

− updateLoudnessEnhanced

− updateOutputAttenuationLeft

− updateOutputAttenuationRight

Instance Methods

acceptsContinuousSamplingRates

− (BOOL)acceptsContinuousSamplingRates

Returns NO. Drivers that accept continuous sampling rates, as opposed to accepting a
few, discrete sampling rates, should implement this method so that it returns YES. For
example, if a device has a low rate of 2000 Hz and a high rate of 44100 Hz and
supports every sampling rate in between, its implementation of this method should
return YES.

See also: − getSamplingRates:, − getSamplingRatesLow:High:

channelCount

− (unsigned int)channelCount

Returns the number of sound channels to be used for the audio data that’s about to be
played or recorded. This value, which can be either 1 (for mono) or 2 (for stereo), is
determined during mixing and is set before startDMAForChannel:... is invoked.

Note: The number of sound channels has nothing to do with the number of DMA
channels used by the device.

See also: − dataEncoding, − sampleRate

channelCountLimit

− (unsigned int)channelCountLimit

Returns zero. Drivers must implement this method so that it returns either 1 (if only
mono is supported) or 2 (if both mono and stereo are supported).

See also: − channelCount

dataEncoding

− (NXSoundParameterTag)dataEncoding

Returns the data encoding to be used for the audio data that’s about to be played or
recorded. This value is determined during mixing and is set before
startDMAForChannel:... is invoked. Possible values (defined in the header file
soundkit/NXSoundParameterTags.h) are currently
NX_SoundStreamDataEncoding_Linear16, NX_SoundStreamDataEncoding_Linear8,
NX_SoundStreamDataEncoding_Mulaw8, and
NX_SoundStreamDataEncoding_Alaw8.

See also: − channelCount, − sampleRate

free

− free

Frees the instance and returns nil .

getDataEncodings:count:

− (void)getDataEncodings:(NXSoundParameterTag *)encodings
count:(unsigned int *)numEncodings

Returns zero in numEncodings. Subclasses must override this method to supply an
array of supported data encodings. Possible values (defined in the header file
soundkit/NXSoundParameterTags.h) are currently
NX_SoundStreamDataEncoding_Linear16, NX_SoundStreamDataEncoding_Linear8,
NX_SoundStreamDataEncoding_Mulaw8, and
NX_SoundStreamDataEncoding_Alaw8. Below is an example of implementing this
method. Note that you don’t have to allocate memory for encodings; it already has
enough space to hold all possible encodings.

- (void)getDataEncodings: (NXSoundParameterTag *)encodings
 count:(unsigned int *)numEncodings
{
 encodings[0] = NX_SoundStreamDataEncoding_Linear16;
 encodings[1] = NX_SoundStreamDataEncoding_Linear8;
 *numEncodings = 2;
}

getInputChannelBuffer:size:

− (void)getInputChannelBuffer: (void *)address size:(unsigned int *)byteCount

Gets the starting address and size of the (already allocated) DMA buffer for the input
channel. This method allows the driver to access data in the audio buffer directly.

See also: − getOutputChannelBuffer:size:

getOutputChannelBuffer:size:

− (void)getOutputChannelBuffer:(void *)address size:(unsigned int *)byteCount

Gets the starting address and size of the (already allocated) DMA buffer for the
output channel. This method allows the driver to access data in the audio buffer
directly.

See also: − getInputChannelBuffer:size:

getSamplingRates:count:

− (void)getSamplingRates:(int *)rates count:(unsigned int *)numRates

Returns zero in numRates. Subclasses must override this method to supply the
supported sampling rates in rates array, which has room for up to 256 entries. If the
driver supports continuous sampling rates, this method should return some common
sampling rates, as shown below.

- (void)getSamplingRates:(int *)rates
 count:(unsigned int *)numRates
{
 /* Return a few common rates */
 rates[0] = 2000;
 rates[1] = 8000;
 rates[2] = 11025;
 rates[3] = 16000;
 rates[4] = 22050;
 rates[5] = 32000;
 rates[6] = 44100;
 *numRates = 7;
}

See also: − acceptsContinuousSamplingRates, − getSamplingRatesLow:High:

getSamplingRatesLow:high:

− (void)getSamplingRatesLow:(int *) lowRate high:(int *)highRate

Returns zero in lowRate and highRate. Subclasses must override this method to supply
their highest and lowest supported sampling rates. Here’s an example of
implementing this method.

- (void)getSamplingRatesLow:(int *)lowRate
 high:(int *)highRate

{
 *lowRate = 2000;
 *highRate = 44100;
}

See also: − acceptsContinuousSamplingRates, − getSamplingRates:

initFromDeviceDescription:

− initFromDeviceDescription:description

Initializes a newly allocated IOAudio instance. Subclasses don’t generally override
this method; they merely invoke it in their probe: method. Subclasses perform
device-specific initialization in their implementation of the reset method.

IOAudio’s implementation of initFromDeviceDescription: invokes super’s version
of initFromDeviceDescription:, invokes attachInterruptPort , sets the interrupt
port to have a maximum backlog, and then performs the reset method. Next, it creates
and initializes the private objects that perform much of the driver’s work, creates
private ports, and forks threads to listen to requests on the ports. Finally, it invokes
registerDevice. Returns nil if initialization was unsuccessful; otherwise, returns the
IOAudio instance.

inputGainLeft

− (unsigned int)inputGainLeft

Returns the general scaling factor that’s applied to the left channel of the incoming
sound. This value can be anywhere from 0 to 32768, where 0 is no gain and 32768 is
maximum gain. User-level programs specify the gain using the Sound Kit. To support
input gain, you must implement updateInputGainLeft and updateInputGainRight .

See also: − inputGainRight

inputGainRight

− (unsigned int)inputGainRight

Returns the general scaling factor that’s applied to the right channel of the incoming
sound. This value can be anywhere from 0 to 32768, where 0 is no gain and 32768 is
maximum gain. User-level programs specify the gain using the Sound Kit. To support
input gain, you must implement updateInputGainLeft and updateInputGainRight .

See also: − inputGainLeft

interruptClearFunc

− (IOAudioInterruptClearFunc)interruptClearFunc

Does nothing and returns zero. Subclasses must implement this method so that it
returns the address of a function that clears interrupts on the card. The function is
called only when the audio system needs to guarantee that your card has no pending
interrupts. If you don’t implement this method and function, your card is likely to
suffer from poor performance with some applications. The function runs at interrupt
level, so it must not block.

Here’s an example of implementing this method.

static void clearInterrupts(void)
{
 /* Driver-specific code that clears the card’s interrupt
 * register(s) goes here. */
}

- (IOAudioInterruptClearFunc) interruptClearFunc
{
 return clearInterrupts;
}

interruptOccurredForInput:forOutput:

− (void)interruptOccurredForInput: (BOOL *)serviceInput
forOutput: (BOOL *)serviceOutput

Notifies the instance that an interrupt occurred for its hardware. The IOAudio version
of this method generates an error message; each subclass must implement this
method.

The subclass implementation of this method should try to determine whether the
hardware really has interrupted. If so, this method should clear the card’s interrupt
state, set serviceInput to YES if the interrupt was for input, and set serviceOutput to
YES if the interrupt was for output. (The values of serviceInput and serviceOutput are
initialized to NO.)

After invoking this method, IOAudio checks whether any more data is available for
DMA on the channels that require service. If none is available,
stopDMAForChannel:read: is invoked. IOAudio always invokes this method from
the I/O thread.

isInputActive

− (BOOL)isInputActive

Returns YES if data is being read from the hardware using DMA; otherwise, returns
NO.

See also: − isOutputActive

isLoudnessEnhanced

− (BOOL)isLoudnessEnhanced

Returns YES if loudness is enhanced; otherwise, returns NO. Loudness enhancement
refers to the ability of some hardware to help compensate for the decreased
sensitivity of the human ear by boosting the gain at low and high frequencies as the
volume is decreased. User-level programs specify whether to use loudness
enhancement with the NX_SoundDeviceOutputLoudness parameter. To support
loudness enhancement, you must implement updateLoudnessEnhanced.

isOutputActive

− (BOOL)isOutputActive

Returns YES if data is being sent to the hardware using DMA; otherwise, returns NO.

See also: − isInputActive

isOutputMuted

− (BOOL)isOutputMuted

Returns YES if output is muted; otherwise, returns NO. The user can mute audio
output by holding down the Command key and pressing the Delete key. User-level
programs can mute output using the Sound Kit.

See also: − updateOutputMute

outputAttenuationLeft

− (int)outputAttenuationLeft

Returns the attenuation setting of the left channel of the device. The user modifies the
left and right attenuation simultaneously using the Volume slider in the Preferences
application or with the Insert and Delete keys on the keyboard. User-level programs
can specify the attenuation using the Sound Kit. The range is -84 decibels (inaudible)
to 0 decibels (no attenuation).

See also: − updateOutputAttenuationLeft , − outputAttenuationRight

outputAttenuationRight

− (int)outputAttenuationRight

Returns the attenuation setting of the right channel of the device. The user modifies
the left and right attenuation simultaneously using the Volume slider in the
Preferences application or with the Insert and Delete keys on the keyboard.
User-level programs can specify the attenuation using the Sound Kit. The range is -84
decibels (inaudible) to 0 decibels (no attenuation).

See also: − updateOutputAttenuationRight , − outputAttenuationLeft

reset

− (BOOL)reset

Generates an error message and returns NO. Subclasses must implement this method
so that it resets and initializes the hardware. This method is invoked from
initFromDeviceDescription:, as described above.

This method should initialize basic information by invoking setName: and
setDeviceKind:. It should then check whether its interrupt (IRQ) and DMA channels
(all obtained from its IODeviceDescription) have valid values. After initializing the
hardware, this method should disable its DMA channels and then set any DMA
parameters necessary, such as the transfer width.

This method should return YES on success; otherwise, it should return NO, which will
cause initFromDeviceDescription: to return nil .

See also: − initFromDeviceDescription:, − setName: (IODevice), −
setDeviceKind: (IODevice)

sampleRate

− (unsigned int)sampleRate

Returns the sample rate to be used for the audio data that’s about to be played or
recorded. This value is determined during mixing and is set before
startDMAForChannel:... is invoked.

See also: − channelCount, − dataEncoding

startDMAForChannel:read:buffer:bufferSizeForInterrupts:

− (BOOL)startDMAForChannel: (unsigned int)localChannel
read:(BOOL)isRead
buffer: (IODMABuffer)buffer
bufferSizeForInterrupts: (unsigned int)bufferSize

Generates an error message and returns NO. Subclasses must override this method.

This method should perform DMA after configuring the hardware to reflect the values
returned by sampleRate, dataEncoding, and channelCount. The DMA should be set
up so that it generates an interrupt after every bufferSize byte interval. If isRead is
YES, then the DMA is from the card to memory; otherwise, DMA is from memory to
the card. See the example IOAudio driver for an implementation of this method.

IOAudio invokes this method from the I/O thread. You should never invoke this
method in an IOAudio subclass implementation.

This method should return YES if it started DMA successfully; otherwise, it should
return NO.

See also: − startDMAForBuffer:channel (IODirectDevice architecture-specific

category), − enableChannel (IODirectDevice architecture-specific category), −
enableAllInterrupts (IODirectDevice architecture-specific category)

stopDMAForChannel:read:

− (void)stopDMAForChannel:(unsigned int)localChannel read:(BOOL)isRead

Generates an error message. Subclasses must override this method.

This method should disable the specified DMA channel, disable interrupts, and do
anything else necessary to stop the DMA in progress on localChannel. See the
example IOAudio driver for an implementation of this method.

IOAudio invokes this method from the I/O thread. You should never invoke this
method in an IOAudio subclass implementation.

This method is invoked when an interrupt occurs and no more data is available to be
transferred. It’s also invoked any time that startDMAForChannel:... returns NO.

See also: − startDMAForChannel:read:buffer:bufferSizeForInterrupts: , −
disableChannel (IODirectDevice architecture-specific category), −
disableAllInterrupts (IODirectDevice architecture-specific category)

timeoutOccurred

− (void)timeoutOccurred

Notifies the instance that although a DMA transaction is in progress, no interrupts
have been detected for a long time (currently one second). The IOAudio version of
this method does nothing; each subclass can implement it or not.

The subclass implementation of this method might reset the hardware. IOAudio
invokes this method from the I/O thread.

updateInputGainLeft

− (void)updateInputGainLeft

Does nothing. Subclasses should implement this method so that it updates the
hardware to the value returned by inputGainLeft . You generally have to convert the
device-independent value returned by inputGainLeft to the appropriate value for
your device.

- (void) updateInputGainLeft
{
 /* Convert gain (0 - 32768) into attenuation (0 - 31). */
 unsigned int gain = [self inputGainLeft] / 1057;

 setInputAttenuation(MICROPHONE, LEFT_CHANNEL,
 (unsigned char) gain);
 setInputAttenuation(EXTERNAL_LINE_IN, LEFT_CHANNEL,
 (unsigned char) gain);
}

IOAudio invokes this method from the I/O thread.

See also: − updateInputGainRight

updateInputGainRight

− (void)updateInputGainRight

Does nothing. Subclasses should implement this method so that it updates the
hardware to match the value returned by inputGainRight . You generally have to
convert the device-independent value returned by inputGainRight to the appropriate
value for your device. IOAudio invokes this method from the I/O thread.

See also: − updateInputGainLeft

updateLoudnessEnhanced

− (void)updateLoudnessEnhanced

Does nothing. Subclasses that support loudness enhancement should implement this
method so that it updates the hardware to match the value returned by
isLoudnessEnhanced. IOAudio invokes this method from the I/O thread.

updateOutputAttenuationLeft

− (void)updateOutputAttenuationLeft

Does nothing. Subclasses should implement this method so that it updates the

hardware to match the value returned by outputAttenuationLeft . You generally have
to convert the device-independent value returned by outputAttenuationLeft to the
appropriate value for your device. Here’s an example of implementing this method.

- (void) updateOutputAttenuationLeft
{
 /* Get the software value and convert it from the software
range
 * (0 - -84) to the device range (0 - 31, for this card). */
 unsigned int attenuation = [self outputAttenuationLeft] + 84;
 attenuation = ((attenuation * 10)/27);

 /* Device-specific code sets the output attention of the left
 * sound channel to the value of the attenuation variable. */
}

IOAudio invokes this method from the I/O thread.

See also: − updateOutputAttenuationRight

updateOutputAttenuationRight

− (void)updateOutputAttenuationRight

Does nothing. Subclasses should implement this method so that it updates the
hardware to match the value returned by outputAttenuationRight . You generally
have to convert the device-independent value returned by outputAttenuationRight to
the appropriate value for your device. IOAudio invokes this method from the I/O
thread.

See also: − updateOutputAttenuationLeft

updateOutputMute

− (void)updateOutputMute

Does nothing. Subclasses should implement this method so that it mutes the output if
isOutputMuted returns YES and unmutes the output if isOutputMuted returns NO.
IOAudio invokes this method from the I/O thread.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOConfigTable

Inherits From: Object

Declared In: driverkit/IOConfigTable.h

Class Description

IOConfigTable is used at both kernel and user level to get configuration information
about particular devices and the system as a whole. Which IOConfigTables a
software module can obtain, as well as the way it obtains them, depends on whether
the module is a driver and whether it’s at user or kernel level.

IODevices inside and outside the kernel can get their own IOConfigTables using
IODeviceDescription’s configTable method. User-level programs can use the
methods newForDriver:unit: , newDefaultTableForDriver: ,
tablesForBootDrivers, and tablesForInstalledDrivers to get IOConfigTables for
specific drivers. Both user-level and kernel-level modules can use
newFromSystemConfig to get an IOConfigTable that describes the system-wide
configuration.

Each IOConfigTable describes one hardware device. Thus, each IOConfigTable
(except the system-wide one) corresponds to one IODevice object, which may or may
not exist at the time the IOConfigTable is created. At least one IOConfigTable can be
created for each driver that’s listed in the system-wide IOConfigTable as an active or
boot driver. Specifically, each IOConfigTable corresponds to an Instancen.table file
in the driver’s bundle. See Chapter 4, “Configuring Drivers,” for more information on
driver bundles.

Note: From an IODevice’s viewpoint, its IOConfigTable doesn’t change. The
IOConfigTable keeps the values that were in the corresponding Instancen.table
when the driver was loaded. To see changes in Instancen.table, the driver must be
reloaded. However, the user-level version of driver IOConfigTables can be
synchronized with the corresponding Instancen.table at any time. This means that a
user-level program might see different values in a driver’s IOConfigTable than the
driver sees.

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances + newForDriver:unit:
+ newDefaultTableForDriver:
+ newFromSystemConfig
+ tablesForBootDrivers
+ tablesForInstalledDrivers
− free

Getting information − valueForStringKey:

Getting the driver bundle − driverBundle

Class Methods

newDefaultTableForDriver:unit:

+ newDefaultTableForDriver: (const char *)driverName

Creates, if necessary, and returns the default IOConfigTable for the specified driver.
The driverName corresponds to the value returned by IODevice’s name class
method.

Note: This method can be used only by user-level programs.

newForDriver:unit:

+ newForDriver: (const char *)driverName unit: (int)unit

Creates, if necessary, and returns the IOConfigTable for the specified driver and unit.
The driverName and unit values correspond to the values returned by IODevice’s
name class method and unit instance method, respectively.

Note: This method can be used only by user-level programs.

newFromSystemConfig

+ newFromSystemConfig

Creates, if necessary, and returns the IOConfigTable describing the system-wide
configuration. This IOConfigTable’s values are initialized at boot time, and don’t
change until the system is rebooted.

tablesForBootDrivers

+ (List *)tablesForBootDrivers

Creates, if necessary, and returns IOConfigTables, one for each device that was
loaded into the system at boot time. This method might return some IOConfigTables
that aren’t returned by tablesForInstalledDrivers, since this method detects drivers
that were loaded due to user action at boot time.

Note: This method can be used only by user-level programs.

tablesForInstalledDrivers

+ (List *)tablesForInstalledDrivers

Creates, if necessary, and returns IOConfigTables, one for each device that has been
loaded into the system. This method knows only about those devices that are specified
with the system configuration table’s “Active Drivers” and “Boot Drivers” keys. It
does not detect drivers that were loaded due to user action at boot time. To get the
IOConfigTables for those drivers, you can use tablesForBootDrivers.

Note: This method can be used only by user-level programs.

Instance Methods

driverBundle

− (NXBundle *)driverBundle

Creates, if necessary, and returns the NXBundle corresponding to the driver this
IOConfigTable describes. The bundle corresponds to the driver’s .config directory
under /usr/Devices.

Note: This method can be used only by user-level programs.

free

− free

Frees the object and returns nil .

valueForStringKey:

− (const char *)valueForStringKey:(const char *)key

Returns the string value associated with the specified key. Kernel-level drivers should
free this string when it’s no longer needed, using freeString:. User-level programs

should not free this string.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODevice

Inherits From: Object

Declared In: driverkit/IODevice.h

Class Description

IODevice is an abstract class that is the superclass of all device driver classes.
Functionality provided by IODevice includes:

• Standard driver startup and connection to driver objects
• Standard ways of getting and setting driver parameters
• Getting and setting standard information such as the instance’s unit number
• Mapping IOReturn values to strings and to UNIX error numbers
• Adding and removing drivers from UNIX device switch tables
• Getting the Driver Kit version that the IODevice was compiled under

Getting and Setting Parameters

The IODevice methods getCharValues:forParameter:count:,
getIntValues:forParameter:count:, setIntValues:forParameter:count:, and
setCharValues:forParameter:count: provide a general, extensible means for
user-level programs to get and set device-specific parameters for drivers that reside
in the kernel. The general scheme is as follows:

• A parameter’s value is either an array of ints or an array of chars. The maximum
number of elements in a parameter array is
IO_MAX_PARAMETER_ARRAY_LENGTH, a system constant (currently 512
though you shouldn’t count on this value).

• Parameters are specified with human-readable strings. For example, the
parameter for getting an IODevice’s unit number is named “IOUnit” and defined
as the constant IO_UNIT.

• Any subclass of IODevice can define any parameters it wishes. Any class that
does so must implement the appropriate methods by which the parameters can be
accessed (getIntValues:..., for example). If such a method is invoked with a
parameter name that the class does not recognize, the method invocation should be
passed up to super. If no classes recognize the parameter name, IODevice returns
IO_R_UNSUPPORTED.

• By sending messages to an IODeviceMaster object, a user program can find the
desired instance of a device driver and get or set device-specific parameters.

Implementing a Subclass

Subclasses of IODevice that are indirect or direct device drivers must implement the
following methods:

+ deviceStyle
+ probe:
− initFromDeviceDescription:

Indirect device drivers also need to implement the requiredProtocols class method.

Note: If your class’s direct superclass isn’t IODevice, check the documentation for
the superclass—it may implement some or all of these methods for you.

During initialization, indirect and direct drivers must invoke the following methods:

− registerDevice
− setDeviceKind:
− setLocation:
− setName:

The registerDevice method should be invoked at the end of initialization. Generally,
indirect and direct drivers also invoke setUnit:.

Instance Variables

None declared in this class.

Method Types

Creating, initializing, and freeing instances
+ probe:
− init

− initFromDeviceDescription:

− free

Registering the class + deviceStyle
+ registerClass:
+ unregisterClass:
+ requiredProtocols

Registering the instance − registerDevice

− unregisterDevice

Getting and setting standard information
− setDeviceKind:

− deviceKind

− setLocation:

− location

− setName:

− name

− setUnit:

− unit

Converting an IOReturn value + stringFromReturn:
− stringFromReturn:

− errnoFromReturn:

Adding and removing the driver from UNIX device switch tables
+

addToBdevswFromDescription:open:close:stra
tegy: dump:psize:isTape:

+
addToCdevswFromDescription:open:close:rea
d:write:
ioctl:stop:reset:select:mmap:getc:putc:

+ blockMajor
+ characterMajor
+ removeFromBdevsw
+ removeFromCdevsw
+ setBlockMajor:
+ setCharacterMajor:

Getting the Driver Kit version of the IODevice
+ driverKitVersion
+ driverKitVersionForDriverNamed:

Getting and setting parameter values
− setCharValues:forParameter:count:

− getCharValues:forParameter:count:

− setIntValues:forParameter:count:

− getIntValues:forParameter:count:

Class Methods

addToBdevswFromDescription:open:close:strategy:dump:psize:isTape:

+ (BOOL)addToBdevswFromDescription:(id)deviceDescription
open:(IOSwitchFunc)openFunc
close:(IOSwitchFunc)closeFunc
strategy:(IOSwitchFunc)strategyFunc
dump:(IOSwitchFunc)dumpFunc
psize:(IOSwitchFunc)psizeFunc
isTape:(BOOL)isTape

Adds the specified values to the bdevsw table. Drivers that have UNIX block entry
points should use this method during initialization.

The major number to use is taken from the value of the “Block Major” key in the
class’s configuration table. If “Block Major” isn’t specified, the first available major
number is used. If the entry is successfully added, this method invokes
setBlockMajor: .

If the entry was successfully added, this method returns YES; otherwise, it logs an
error message and returns NO.

See also: + blockMajor , +
addToCdevswFromDescription:open:close:read:write:
ioctl:stop:reset:select:mmap:getc:putc:

addToCdevswFromDescription:open:close:read:write:ioctl:stop:reset:s
elect:mmap:getc:putc:

+ (BOOL)addToCdevswFromDescription:(id)deviceDescription
open:(IOSwitchFunc)openFunc
close:(IOSwitchFunc)closeFunc
read:(IOSwitchFunc)readFunc
write: (IOSwitchFunc)writeFunc
ioctl: (IOSwitchFunc)ioctlFunc
stop:(IOSwitchFunc)stopFunc
reset:(IOSwitchFunc)resetFunc
select:(IOSwitchFunc)selectFunc
mmap:(IOSwitchFunc)mmapFunc
getc:(IOSwitchFunc)getcFunc
putc:(IOSwitchFunc)putcFunc

Adds the specified values to the cdevsw table. Drivers that have UNIX character
entry points should use this method during initialization.

The major number to use is taken from the value of the “Character Major” key in the
class’s configuration table. If “Character Major” isn’t specified, the first available
major number is used. If the entry is successfully added, this method invokes
setCharacterMajor: .

If the entry was successfully added, this method returns YES; otherwise, it logs an
error message and returns NO.

See also: + characterMajor , +
addToBdevswFromDescription:open:close:strategy:
dump:psize:isTape:

blockMajor

+ (int)blockMajor

Returns the block major number associated with this driver, or −1 if this driver has no
block major number. The block major number is set using setBlockMajor: , which is
invoked by addToBdevswFromDescription....

characterMajor

+ (int)characterMajor

Returns the character major number associated with this driver, or −1 if this driver
has no character major number. The character major number is set using
setCharacterMajor: , which is invoked by addToCdevswFromDescription....

deviceStyle

+ (IODeviceStyle)deviceStyle

Implemented by subclasses to return the basic style of driver (IO_DirectDevice,
IO_IndirectDevice, or IO_PseudoDevice). The meaning of direct, indirect, and pseudo
device drivers is discussed in Chapters 1 and 2.

See also: + deviceStyle (IODirectDevice)

driverKitVersion

+ (int)driverKitVersion

Returns the version of the currently running DriverKit objects. The Driver Kit
compares this value to the value returned by driverKitVersionForDriverNamed: to
determine whether the driver is compatible with the driver environment.

driverKitVersionForDriverNamed:

+ (int)driverKitVersionForDriverNamed: (char *)driverName

Returns the version of the Driver Kit that the specified driver was compiled for. The
Driver Kit compares this value to the value returned by driverKitVersion to
determine whether the driver is compatible with the driver environment.

probe:

+ (BOOL)probe:(id)deviceDescription

Does nothing and returns NO. This method is invoked by the kernel (in the context of
the kernel I/O task) to conditionally instantiate an instance of an IODevice subclass.

This method should be implemented by every direct and indirect driver. It should
determine whether it needs to instantiate itself, examining the hardware if
appropriate. It should then allocate and initialize all the necessary instances for the
specified deviceDescription. Should return YES if any IODevice objects were
created; otherwise, this method should return NO.

See Chapter 1 for information on when probe: is invoked.

See also: − initFromDeviceDescription:

registerClass:

+ (void)registerClass:aClass

Adds the specified class to the kernel list of device driver classes.

See also: + unregisterClass:

removeFromBdevsw

+ (BOOL)removeFromBdevsw

Removes the driver’s entry from the bdevsw table. This method finds the driver’s
entry in the table by invoking blockMajor . If blockMajor is −1, this method does

nothing and returns NO. Otherwise, this method sets the block major number to −1
(using setBlockMajor:) and returns YES.

removeFromCdevsw

+ (BOOL)removeFromCdevsw

Removes the driver’s entry from the cdevsw table. This method finds the driver’s
entry in the table by invoking characterMajor . If characterMajor is −1, this method
does nothing and returns NO. Otherwise, this method sets the character major number
to −1 (using setCharacterMajor:) and returns YES.

requiredProtocols

+ (Protocol **)requiredProtocols

Returns NULL. Indirect device drivers should implement this method to return a
NULL-terminated list of the protocols to which associated drivers must conform.
Kernel-level indirect devices must implement this.

setBlockMajor:

+ (void)setBlockMajor: (int)bmajor

Sets the driver’s block major number. You usually don’t have to invoke this, since it’s
invoked by addToBdevswFromDescription:....

setCharacterMajor:

+ (void)setCharacterMajor: (int)cmajor

Sets the driver’s character major number. You usually don’t have to invoke this, since
it’s invoked by addToCdevswFromDescription:....

stringFromReturn:

+ (const char *)stringFromReturn: (IOReturn)returnValue

Returns a text string that describes the specified IOReturn value.

See also: − stringFromReturn:

unregisterClass:

+ (void)unregisterClass:classId

Removes the specified class from the kernel list of device driver classes. This method
is invoked when a class is being removed from the address space of a program such
as the kernel.

See also: + registerClass:

Instance Methods

deviceKind

− (const char *)deviceKind

Returns a string that identifies the object in general terms. For example, IOSCSIDisk
objects return “SCSIDisk”. See the description of setDeviceKind: for more
information.

See also: − setDeviceKind:

errnoFromReturn:

− (int)errnoFromReturn: (IOReturn)returnValue

Returns a UNIX error number that corresponds to the specified IOReturn value.
Subclasses that add additional IOReturn values should override this method and send
an errnoFromReturn: to super for IOReturn values that the subclass doesn’t handle.

free

− free

Frees resources used by the IODevice and returns nil .

getCharValues:forParameter:count:

− (IOReturn)getCharValues:(unsigned char *)array
forParameter:(IOParameterName)parameter
count:(unsigned int *)count

Gets the array of character values associated with parameter. IODevice accepts the
following character parameters: IO_CLASS_NAME (which returns [[self class]
name]), IO_DEVICE_NAME (which returns [self name]), and IO_DEVICE_KIND
(which returns [self deviceKind]).

Subclasses should override this method if they support parameters not understood by
the superclass. Here’s an example of overriding this method:

- (IOReturn)getCharValues : (unsigned char *)parameterArray
 forParameter : (IOParameterName)parameterName
 count : (unsigned int *)count
{
 const char *param;
 unsigned int length;
 unsigned int maxCount = *count;

 if(strcmp(parameterName, my_PARAMETER_NAME) == 0){
 param = _myParameter; /* _myParameter is an instance var
*/
 length = strlen(param);
 if(length >= maxCount) {

 length = maxCount - 1;
 }
 *count = length + 1;
 strncpy(parameterArray, param, length);
 parameterArray[length] = ’\0’;
 return IO_R_SUCCESS;
 }
 else {
 /* Pass parameters we don’t recognize to our superclass. */
 return [super getCharValues:parameterArray
 forParameter:parameterName count:count];
 }
}

Returns IO_R_SUCCESS if parameter is a valid parameter with character values that
can be read; otherwise, returns IO_R_UNSUPPORTED.

See also: − getIntValues:forParameter:count:, −
setCharValues:forParameter:count:

getIntValues:forParameter:count:

− (IOReturn)getIntValues:(unsigned int *)array
forParameter:(IOParameterName)parameter
count:(unsigned int *)count

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to return (in array) the array of integer values associated with parameter.
See getCharValues:forParameter:count: for an example of implementing this kind
of method. This method should return IO_R_SUCCESS if parameter is a valid
parameter with integer values that can be read; otherwise, it should return
IO_R_UNSUPPORTED.

See also: − getCharValues:forParameter:count:, −
setIntValues:forParameter:count:

init

− init

Initializes and returns a newly allocated IODevice. Returns self if successful;
otherwise, returns nil .

Note: Direct and indirect drivers should use initFromDeviceDescription: instead
of this method.

initFromDeviceDescription:

− initFromDeviceDescription:deviceDescription

Does nothing and returns self. Subclasses that implement this method should have it
initialize and return a newly allocated instance of the subclass, using the information
from deviceDescription. This method should return nil on error.

See also: − initFromDeviceDescription: (IODirectDevice)

location

− (const char *)location

Returns the device-specific location of the IODevice—for example, “0xf7f04000”.
See the description of setLocation: for information on how this location is used.

See also: − setLocation:

name

− (const char *)name

Returns the device-specific name of the IODevice—for example, “sd0a”. See the
description of setName: for information on how the name is used.

See also: − setName:

registerDevice

− registerDevice

Registers the IODevice in the current name space and adds a string to the system log
that announces the device’s registration. The IODevice must be ready to perform I/O,
its name must have been set already using setName:, and its location (set with
setLocation:) must be either valid or NULL.

This method also probes all indirect IODevices that require this object’s protocols,
giving them a chance to connect to this object.

Each IODevice should invoke this method at the end of its initialization. Returns self.

Note: I/O can begin before this method returns.

See also: − unregisterDevice

setCharValues:forParameter:count:

− (IOReturn)setCharValues:(unsigned char *)array
forParameter:(IOParameterName)parameter

count:(unsigned int)count

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to set (from array) the array of character values associated with
parameter. See getCharValues:forParameter:count: for an example of
implementing this kind of method. This method should return IO_R_SUCCESS if
parameter is a valid parameter with character values that can be written; otherwise,
it should return IO_R_UNSUPPORTED.

See also: − setIntValues:forParameter:count:, −
getCharValues:forParameter:count:

setDeviceKind:

− (void)setDeviceKind:(const char *)type

Sets a string that identifies the object in general terms. For example,
IOFrameBufferDisplay objects have a device kind of “Linear Framebuffer”. The
string should be no longer than IO_STRING_LENGTH − 1 characters. The standard
parameter name IO_DEVICE_KIND refers to this string.

See also: − deviceKind

setIntValues:forParameter:count:

− (IOReturn)setIntValues:(unsigned int *)array
forParameter:(IOParameterName)parameter
count:(unsigned int)count

Returns IO_R_UNSUPPORTED. Subclasses should implement this method if
necessary to set (from array) the array of character values associated with
parameter. See getCharValues:forParameter:count: for an example of
implementing this kind of method. This method should return IO_R_SUCCESS if
parameter is a valid parameter with integer values that can be written; otherwise, it
should return IO_R_UNSUPPORTED.

See also: − setCharValues:forParameter:count:, −
getIntValues:forParameter:count:

setLocation:

− (void)setLocation:(const char *)location

Sets the device-specific location of the IODevice—for example, “0xf7f04000”. If the
location is irrelevant, its value should be set to NULL. The location is used in the
system log when this object is registered and unregistered.

See also: − location

setName:

− (void)setName:(const char *)name

Sets the device-specific name of the IODevice—for example, “sd0a”. The name
should be no longer than IO_STRING_LENGTH − 1 characters.

The specified name is used to identify this instance. For example, it’s used in the
system log when this object is registered and unregistered, and it’s used by the UNIX
command iostat. The name is also used by user-level programs to find this object,
using the IODeviceMaster method
lookUpByDeviceName:objectNumber:deviceKind:. The standard parameter name
IO_DEVICE_NAME refers to this string.

See also: − name

setUnit:

− (void)setUnit:(unsigned int)unit

Sets the IODevice’s unit number, a device-specific number that can be used like a
UNIX minor number.

See also: − unit

stringFromReturn:

− (const char *)stringFromReturn: (IOReturn)returnValue

Returns the text string that corresponds to the specified IOReturn value. Subclasses
that add additional IOReturn values should override this method and invoke
stringFromReturn: against the superclass for IOReturn values that the subclass
doesn’t handle.

See also: + stringFromReturn:

unit

− (unsigned int)unit

Returns the IODevice’s unit number, a device-specific number that can be used like a
UNIX minor number.

See also: − setUnit:

unregisterDevice

− (void)unregisterDevice

Removes the IODevice from the current name space.

See also: − registerDevice

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODeviceDescription

Inherits From: Object

Declared In: driverkit/IODeviceDescription.h

Class Description

IODeviceDescription objects are used to encapsulate information about an IODevice
object. Usually, you need only to pass around IODeviceDescription objects, without
creating them, subclassing them, or sending messages to them. The main purpose of
an IODeviceDescription object is to describe an IODirectDevice. However,
IODeviceDescriptions are also used at probe: time to describe indirect drivers
(specifically, to specify the IODirectDevice that the indirect driver might want to
work with).

Each architecture has its own subclass of IODeviceDescription that contains
architecture-specific information:

Architecture IODeviceDescription Subclass

ISA and EISA Intel-based IOEISADeviceDescription

PCI IOPCIDeviceDescription

PCMCIA IOPCMCIADeviceDescription

Instance Variables

None declared in this class.

Method Types

Getting and setting the list of interrupts
− interrupt

− interruptList

− numInterrupts

− setInterruptList:num:

Getting and setting the list of memory ranges

− memoryRangeList

− numMemoryRanges

− setMemoryRangeList:num:

Getting and setting the port − devicePort

− setDevicePort:

Getting and setting the direct device
− directDevice

− setDirectDevice:

Getting and setting the configuration table
− configTable

− setConfigTable:

Instance Methods

configTable

− (IOConfigTable *)configTable

Returns the table of configuration information for this driver instance.

See also: − setConfigTable:

devicePort

− (port_t)devicePort

Returns the device port associated with the device. This port is used by the Driver Kit.
You shouldn’t need to invoke this method if your driver uses only supported Driver Kit
API.

Holding send rights to the device port gives a task rights to access a device’s
registers, to program its DMA channel, and receive interrupt notification. The kernel
responds to requests sent on this port to provide these services to the requesting task.
Device ports are created early in system initialization and passed out to the
appropriate device drivers at configuration time.

See also: − setDevicePort:

directDevice

− directDevice

If the driver instance described by IODeviceDescription is an indirect device driver,

this method returns the IODevice object to which this driver instance is connected.
Usually, the returned object is an IODirectDevice; however, this isn’t required. If this
IODeviceDescription’s object is a direct or pseudo device driver, this method returns
nil .

See also: − setDirectDevice:

interrupt

− (unsigned int)interrupt

Returns the first interrupt (IRQ) associated with this device. The return value is
undefined if this device has no interrupts associated with it.

See also: − interruptList , − numInterrupts , − setInterruptList:num:

interruptList

− (unsigned int *)interruptList

Returns all the interrupts (IRQs) associated with this device. You can get the number
of items in the returned array by invoking numInterrupts . You should never free the
data returned by this method.

See also: − interrupt , − numInterrupts , − setInterruptList:num:

memoryRangeList

− (IORange *)memoryRangeList

Returns all the memory ranges associated with this device. You can get the number of
items in the returned array by invoking numMemoryRanges. You should never free
the data returned by this method.

See also: − numMemoryRanges, − setMemoryRangeList:num:

numInterrupts

− (unsigned int)numInterrupts

Returns the total number of interrupts (IRQs) associated with this device.

See also: − interrupt , − interruptList , − setInterruptList:num:

numMemoryRanges

− (unsigned int)numMemoryRanges

Returns the total number of memory ranges associated with this device.

See also: − memoryRangeList, − setMemoryRangeList:num:

setConfigTable:

− (void)setConfigTable:(IOConfigTable *)configTable

Sets the table of configuration information for this driver instance. In normal use of
the Driver Kit, you should never invoke this method.

See also: − configTable

setDevicePort:

− (void)setDevicePort:(port_t)devicePort

Sets the device port for this driver instance. In normal use of the Driver Kit, you
should never invoke this method.

See also: − devicePort

setDirectDevice:

− (void)setDirectDevice:directDevice

Records directDevice as the IODevice object that is connected to the driver instance
that this IODeviceDescription describes. In normal use of the Driver Kit, you should
never invoke this method.

See also: − directDevice

setInterruptList:num:

− (IOReturn)setInterruptList: (unsigned int *)aList num:(unsigned
int)numInterrupts

Sets the array and number of interrupts (IRQs) associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: − interrupt , − interruptList , − numInterrupts

setMemoryRangeList:num:

− (IOReturn)setMemoryRangeList:(IORange *)aList num:(unsigned
int)numMemoryRanges

Sets the array and number of memory ranges associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: − memoryRangeList, − numMemoryRanges

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODeviceInspector

Inherits From: Object

Conforms To: IOConfigurationInspector

Declared In: driverkit/IODeviceInspector.h

Class Description

This class provides the default Configure inspector used for devices.
IODeviceInspector lets the user select which resources—DMA channels, interrupts,
I/O ports, and memory ranges—a device should use. IODeviceInspector also provides
an accessory View, in which you can put additional controls.

You shouldn’t need to use this class unless you’re providing an accessory View. To
provide an accessory View, you should first create the View in Interface Builder and
then subclass IODeviceInspector so that it displays the View.

Note: When creating an accessory View, try to keep it no more than 80 pixels high.
Configure’s window is already about 400 pixels high; adding more than 80 pixels to it
means that the window won’t fit on the smallest supported screens (which are 640
pixels wide by 480 high).

Implementing a Subclass

To provide an accessory View, you should create an IODeviceInspector subclass that
does the following:

• Overrides Object’s init method so that it loads the nib file that contains the
accessory View by invoking loadMainNibFile and initializing (but not displaying)
the interrupt and DMA matrices.

• Implement the setTable: method so that it invokes [super setTable:], invokes
setAccessoryView: to specify its accessory View, and initializes the accessory
View

• Modifies the configuration table as necessary, in response to the user’s actions in
the accessory View. For example, you might need to insert a key in the
configuration table.

Here’s an example of changing the configuration table when the user operates a

control. In this case, the control sends a connectorChanged: message to its target
(which is the IODeviceInspector subclass). The table instance variable is the
NXStringTable corresponding to the configuration table.

- connectorChanged:sender
{
 [table insertKey:CONNECTOR
 value:connectorType[sender selectedTag]];
 return self;
}

If you have localizable strings displayed in your accessory View, be careful to use the
strings from the driver’s configuration bundle, not from the Configure application’s
bundle. Here’s an example taken from an IODeviceInspector subclass’s init method.

#define LOCAL_CONNECTOR_STRING(bundle)
NXLocalStringFromTableInBundle(NULL, bundle, "Connector", NULL,
"The interface connector on the EtherExpress16 adaptor which will
be used to access the network.")
.
.
.
char buffer[MAXPATHLEN];
NXBundle *myBundle = [NXBundle bundleForClass:[self class]];

[super init];

if (![myBundle getPath:buffer forResource:MYNAME ofType:NIB_TYPE])
{
 [self free];
 return nil;
}
if (![NXApp loadNibFile:buffer owner:self withNames:NO]) {
 [self free];
 return nil;
}
[connectorBox setTitle:LOCAL_CONNECTOR_STRING(myBundle)];

Instance Variables

id accessoryHolder;

id statusTitle;

id origWindow ;

id dmaBox;

id dmaMatrix ;

id irqBox ;

id irqMatrix ;

id memoryBox;

id memoryController ;

id portsBox;

id portsController ;

id inspectionView;

id infoButton ;

id infoPanel;

id infoText;

NXStringTable *table;

int numInterrupts ;

int numChannels;

int portRangeLength;

int memoryRangeLength;

BOOL infoTextLoaded;

BOOL knowsDetails;

IOConfigurationConflict portConflict ;

IOConfigurationConflict memoryConflict;

IOConfigurationConflict totalConflict ;

accessoryHolder View where the accessory View is placed

statusTitle At top of window

origWindow For getting contentView

dmaMatrix Buttons for DMA channels

dmaBox In case no DMA channels

irqMatrix Buttons for IRQ levels

irqBox In case no IRQ levels

memoryController Handles ranges

memoryBox In case no mapped memory

portsController Handles ranges

portsBox In case no port addresses

inspectionView The inspection View

infoButton Brings up device info panel

infoPanel Contains text about the device

infoText Text object for info file

table The NXStringTable we’re editing

numInterrupts How many IRQs to configure

numChannels How many DMA channels to configure

portRangeLength Number of I/O ports in the range

memoryRangeLength Length of the memory map

infoTextLoaded YES if the info panel has been loaded

knowsDetails YES if we already know the device’s requirements

portConflict I/O port conflict state

memoryConflict Memory range conflict state

totalConflict Overall conflict state

Adopted Protocols

IOConfigurationInspector − inspectionView

− resourcesChanged:

− setTable:

Method Types

Displaying the IODeviceInspector
− loadMainNibFile

− showInfo:

Setting initial resource values −
setNumInterrupts:numChannels:portRangeLength:

memoryRangeLengt
h:

Notification of resource changes − channelOrInterruptPicked:

− rangeDidChange:

Customizing the IODeviceInspector
− setAccessoryView:

Instance Methods

channelOrInterruptPicked:

− channelOrInterruptPicked: sender

Notifies the receiver that a DMA channel or interrupt has been picked.
IODeviceInspector changes the appearance the associated button and updates the
configuration table, if appropriate. Returns self.

loadMainNibFile

− loadMainNibFile

Loads the nib file for the IODeviceInspector. This method should be invoked by init .
Returns nil on failure; otherwise, returns self.

rangeDidChange:

− rangeDidChange:sender

Notifies the receiver that a range of I/O ports or memory has been changed. This
method updates the configuration table. Returns self.

setAccessoryView:

− setAccessoryView:aView

Adds aView to the IODeviceInspector’s View hierarchy. The inspector is
automatically resized to accommodate aView. Returns self.

setNumInterrupts:numChannels:portRangeLength:
memoryRangeLength:

− setNumInterrupts: (int)numInterrupts
numChannels:(int)numChannels
portRangeLength:(int)numPorts
memoryRangeLength:(int)numMaps

Invoked once by setTable: to initialize the number of each kind of resource that the
device uses.

showInfo:

− showInfo:sender

Brings up a panel containing information about the device.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODeviceMaster

Inherits From: Object

Declared In: driverkit/IODeviceMaster.h

Class Description

IODeviceMaster is a class used by user-level programs to gain access to device
driver instances. To use IODeviceMaster, the program uses the alloc and init
methods to obtain and initialize an IODeviceMaster instance. It then attempts to get
the object number of the device driver instance using one of the lookUp... methods. If
successful, it can use this object number to get and set parameters associated with the
driver instance.

Programs don’t need superuser privileges to get information from IODeviceMaster.
However, they do need superuser privileges to be able to set device information (with
the setCharValues:... and setIntValues: methods).

Here’s an example of using IODeviceMaster. It’s taken from the DriverInspector
directory located in /NextLibrary/Documentation/NextDev/Examples/DriverKit .

IOReturn ret;
IOObjectNumber objectNumber;
IOString kind;
IOCharParameter value;
unsigned int count = IO_MAX_PARAMETER_ARRAY_LENGTH, unit = 0;
char name[80];
IODeviceMaster *devMaster;

/* Look up the test driver, using IODeviceMaster. */
devMaster = [IODeviceMaster new];
sprintf(name, "%s%d", my_DEVICE_NAME, unit);
ret = [devMaster lookUpByDeviceName:name objectNumber:&objectNumber
 deviceKind:&kind];
if (ret != IO_R_SUCCESS) { /* handle the error */
 fprintf(stderr, "Lookup failed: %s\n",
 [IODevice stringFromReturn:ret]);
 exit(-1);
} else { /* Successfully got the object number */

 /* Get the value of the test driver’s parameter. */
 ret = [devMaster getCharValues:value
 forParameter:my_PARAMETER_NAME objectNumber:objectNumber
 count:&count];
 if (ret != IO_R_SUCCESS) { /* handle the error */
 fprintf(stderr, "Failed to get parameter value: %s\n",
 [IODevice stringFromReturn:ret]);

 exit(-1);
 } else /* Successfully got the parameter value */
 printf("Parameter value: %s; count = %d\n", value, count);

Instance Variables

None declared in this class.

Method Types

Creating and freeing instances + new
− free

Finding IODevice objects −
lookUpByDeviceName:objectNumber:deviceKind:
−

lookUpByObjectNumber:deviceKind:deviceN
ame:

Getting and setting parameter values
−

getCharValues:forParameter:objectNumber:co
unt:

− getIntValues:forParameter:objectNumber:count:

−
setCharValues:forParameter:objectNumber:co
unt:

− setIntValues:forParameter:objectNumber:count:

Class Methods

new

+ new

Returns an IODeviceMaster object. An application has no more than one
IODeviceManager object, so this method either returns the previously created object
(if it exists) or creates a new one.

Instead of new, use alloc and init to create and initialize an instance:

[[IODeviceMaster alloc] init];

Instance Methods

free

− free

Does nothing; an IODeviceMaster should never be freed.

getCharValues:forParameter:objectNumber:count:

− (IOReturn)getCharValues:(unsigned char *)array
forParameter:(IOParameterName)parameter
objectNumber:(IOObjectNumber)objectNumber
count:(unsigned int *)count

Gets the array of values associated with parameter for the IODevice object specified
by objectNumber; returns IO_R_SUCCESS. Unless count is specified to be 0, the
returned array contains no more than count characters. On return, count is set to the
number of characters in the array. You can obtain values for objectNumber using the
method lookUpByDeviceName:objectNumber:deviceKind:.

If objectNumber is larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. If objectNumber refers to an object number for a device driver
that’s no longer registered, this method returns IO_R_OFFLINE. If parameter is
invalid (it isn’t recognized by the IODevice instance to have character values that can
be read), this method returns IO_R_UNSUPPORTED.

See also: − getIntValues:forParameter:objectNumber:count:, −
setCharValues:forParameter:objectNumber:count:

getIntValues:forParameter:objectNumber:count:

− (IOReturn)getIntValues:(unsigned int *)array
forParameter:(IOParameterName)parameter
objectNumber:(IOObjectNumber)objectNumber
count:(unsigned int *)count

Gets the array of values associated with parameter for the IODevice object specified
by objectNumber; returns IO_R_SUCCESS. Unless count is specified to be 0, the
returned array contains no more than count characters. On return, count is set to the
number of characters in the array. You can obtain values for objectNumber using the
method lookUpByDeviceName:objectNumber:deviceKind:.

If objectNumber is larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. If objectNumber refers to an object number for a device driver
that’s no longer registered, this method returns IO_R_OFFLINE. If parameter is
invalid (it isn’t recognized by the IODevice instance to have integer values that can

be read), this method returns IO_R_UNSUPPORTED.

See also: − getCharValues:forParameter:objectNumber:count:, −
setIntValues:forParameter:objectNumber:count:

lookUpByDeviceName:objectNumber:deviceKind:

− (IOReturn)lookUpByDeviceName:(IOString)deviceName
objectNumber:(IOObjectNumber *)objectNumber
deviceKind:(IOString *)deviceKind

Gets the object number and descriptive string associated with the specified device
name. The name is device-specific; it’s the same as the value the driver sets using
setName:. Returns IO_R_SUCCESS if the lookup was successful. Otherwise, returns
IO_R_NO_DEVICE.

See also: − lookUpByObjectNumber:deviceKind:deviceName:

lookUpByObjectNumber:deviceKind:deviceName:

− (IOReturn)lookUpByObjectNumber:(IOObjectNumber)objectNumber
deviceKind:(IOString *)deviceKind
deviceName:(IOString *)deviceName

Gets the descriptive strings associated with the IODevice specified by objectNumber.
Returns IO_R_SUCCESS if the lookup was successful. If objectNumber is larger than
the highest existing object number, returns IO_R_NO_DEVICE. If objectNumber
refers to an object number for a device driver that’s no longer registered, returns
IO_R_OFFLINE.

See also: − lookUpByDeviceName:objectNumber:deviceKind:

setCharValues:forParameter:objectNumber:count:

− (IOReturn)setCharValues:(unsigned char *)array
forParameter:(IOParameterName)parameter
objectNumber:(IOObjectNumber)objectNumber
count:(unsigned int)count

Sets the array of values associated with parameter for the IODevice object specified
by objectNumber; returns IO_R_SUCCESS. The count argument specifies the
number of elements in the array. You can obtain values for objectNumber using the
method lookUpByDeviceName:objectNumber:deviceKind:.

If objectNumber is larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. If objectNumber refers to an object number for a device driver

that’s no longer registered, this method returns IO_R_OFFLINE. If parameter is
invalid (it isn’t recognized by the IODevice instance to have character values that can
be written), this method returns IO_R_UNSUPPORTED.

See also: − setIntValues:forParameter:objectNumber:count:, −
getCharValues:forParameter:objectNumber:count:

setIntValues:forParameter:objectNumber:count:

− (IOReturn)setIntValues:(unsigned int *)array
forParameter:(IOParameterName)parameter
objectNumber:(IOObjectNumber)objectNumber
count:(unsigned int)count

Sets the array of values associated with parameter for the IODevice object specified
by objectNumber; returns IO_R_SUCCESS. The count argument specifies the
number of elements in the array. You can obtain values for objectNumber using the
method lookUpByDeviceName:objectNumber:deviceKind:.

If objectNumber is larger than the highest existing object number, this method returns
IO_R_NO_DEVICE. If objectNumber refers to an object number for a device driver
that’s no longer registered, this method returns IO_R_OFFLINE. If parameter is
invalid (it isn’t recognized by the IODevice instance to have integer values that can
be written), this method returns IO_R_UNSUPPORTED.

See also: − setCharValues:forParameter:objectNumber:count:, −
getIntValues:forParameter:objectNumber:count:

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODirectDevice

Inherits From: IODevice : Object

Declared In: driverkit/IODirectDevice.h
driverkit/architecture/directDevice.h
driverkit/architecture/IOPCIDirectDevice.h
driverkit/architecture/IOPCMCIADirectDevice.h

Class Description

IODirectDevice is a device-independent abstract class that is the superclass of all
direct device driver classes. Most of the functionality of IODirectDevice is provided
by device-dependent categories, which are described in detail below. IODirectDevice
provides:

• An implementation of the deviceStyle IODevice class method, so IODirectDevice
subclasses don’t have to override it

• Methods for getting and setting IODirectDevice information, such as the interrupt
port and the IODeviceDescription

• A default I/O thread that listens for messages to the interrupt port

• An efficient way to receive messages, to be used by drivers that provide their own
I/O thread (see the waitForInterrupt: method description)

To use the default I/O thread, subclasses invoke one of the startIOThread... methods
and implement one or more of the following methods:

• interruptOccurred or interruptOccurredAt:
• timeoutOccurred
• commandRequestOccurred
• otherOccurred:
• receiveMsg

Each of these methods is invoked when the I/O thread receives a corresponding Mach
message on its interrupt port. For example, when the kernel sends an
IO_DEVICE_INTERRUPT_MSG Mach message to the interrupt port, the I/O thread
receives it and invokes interruptOccurred . The documentation for startIOThread
describes in detail how the I/O thread listens for Mach messages and which methods
it invokes in response to which Mach messages.

Interrupt messages are the only Mach messages that the kernel automatically sends.

If you want to receive other types of Mach messages, your driver or some other
module it works with must explicitly send them. For example, if you want your
driver’s timeoutOccurred method to be invoked by the I/O thread, you must ensure
that your driver sends an IO_TIMEOUT_MSG at some point. Some classes, such as
IOEthernet, have this functionality built in. Others, such as IOSCSIController, don’t.
See the IOSCSIController class description for an example of how to send a message.

ISA and EISA IODirectDevices
The IOEISADirectDevice category of IODirectDevice defined in the header file
driverkit/i386/directDevice.h provides the following additional functionality for
IODirectDevices that control hardware on ISA or EISA Intel-based computers:

• Reserving and releasing ranges of I/O ports
• Reserving, releasing, enabling, and disabling interrupts (also known as IRQs)
• A way of providing an interrupt handler, if interrupt messages aren’t sufficient
• Mapping device memory into virtual memory
• Reserving and releasing DMA channels
• Starting DMA and dealing with DMA buffers
• Determining whether the computer has EISA slots

Note: The ISA/EISA category works for all hardware attached to ISA and EISA
computers—ISA slots, EISA slots, VL-Bus, and so on. Remember that EISA
computers can have ISA slots, but ISA computers don’t have EISA slots.

I/O ports, interrupts, device memory ranges, and DMA channels are collectively
known as resources.

PCI IODirectDevices
The IOPCIDirectDevice category of IODirectDevice defined in the header file
driverkit/i386/IOPCIDirectDevice.h provides the following additional functionality
for IODirectDevices that control hardware on PCI Intel-based computers:

• Indicating whether the PCI bus is enabled or not
• Reading and writing the device’s configuration space

The PCI configuration space is memory available for configuation information for
each device. A 256-byte portion is available for each device, addressed by the PCI
anchor, which consists of three fields:

• Device number between 0 and 31
• Function number between 0 and 7
• Bus number between 0 and 255

Methods can either read or write the entire configuraion space or access individual
32-bit pieces, accessing it by a register address—a byte address into the 256-byte
portion.

PCMCIA IODirectDevices
The IOPCMCIADirectDevice category of IODirectDevice defined in the header file
driverkit/i386/IOPCMCIADirectDevice.h provides the following additional
functionality for IODirectDevices that control hardware on PCMCIA Intel-based
computers:

• Mapping and unmapping attribute memory

Attribute memory resides on the PCMCIA card and contains tuples, i.e., configuration
information that’s stored on the card. To access attribute memory, you must map the
memory using the mapping method; when you’ve completed your access, you must
unmap it with the method provided. If you attempt to map the memory and it’s already
mapped, the mapping method returns failure status.

Local Equivalents of Resources

The ISA/EISA category refers to resources not by their actual numbers or addresses,
but by their local equivalent. The local equivalent of a resource is the position
(starting at 0) of that resource in the configuration list of all resources of that type.

For example, if a device is configured to have one DMA channel (DMA channel 6,
for example), the local equivalent of that channel is 0. If a device is configured to
have two DMA channels (specified in order as 4 and 6, for example), then channel 4
has the local equivalent of 0, and channel 6 has the local equivalent of 1.

Similarly, the first range of I/O ports in a device’s configuration has the local
equivalent of 0, the second range is 1, and so on.

The local equivalent is used in all ISA/EISA methods that refer to DMA channels,
specific interrupts, I/O ports, and memory ranges. For example, to enable the first
DMA channel in a device’s configuration, a driver sends an enableChannel:
message to self, specifying 0 as the channel.

See Chapter 4 and Chapter 5, “Configuation Keys” in “Other Features” for
information on configuration files.

Implementing a Subclass

The IODirectDevice methods you must implement in a subclass depend on your
driver’s capabilities. To start with, you must implement all the methods that IODevice

requires, except for deviceStyle, which is implemented by IODirectDevice. You
must also implement initFromDeviceDescription: to perform any driver- or
device-specific initialization.

If your device performs DMA, you must implement startDMAForBuffer:channel: .

If your device can interrupt, you generally need to implement either
interruptOccurred (if your device uses only one interrupt) or
interruptOccurredAt: . If your driver needs to handle some interrupts directly,
instead of receiving interrupt notification by Mach messages, you must implement
getHandler:level:argument:forInterrupt: .

If your driver uses other Mach messages, you might also need to implement
timeoutOccurred, commandRequestOccurred, otherOccurred:, or receiveMsg.

Most drivers need an I/O thread, as discussed in Chapter 1. All Driver Kit subclasses
of IODirectDevice (such as IOEthernet) provide an I/O thread for you, if necessary.
However, if your class is a direct subclass of IODirectDevice, you need to provide
your own I/O thread. You can do so by invoking one of the startIOThread... methods.

Instance Variables

None declared in this class.

Method Types (Architecture-Independent)

Freeing instances
− free

Registering the class + deviceStyle

Getting and setting the interrupt port
− attachInterruptPort

− interruptPort

Handling messages to the interrupt port
− commandRequestOccurred

− interruptOccurred

− interruptOccurredAt:

− receiveMsg

− timeoutOccurred

− waitForInterrupt:

Running an I/O thread − startIOThread

− startIOThreadWithPriority:

− startIOThreadWithFixedPriority:

Getting and setting the IODeviceDescription
− deviceDescription

− setDeviceDescription:

Method Types (ISA/EISA Architecture)

Initializing instances − initFromDeviceDescription:

Reserving I/O ports − reservePortRange:

− releasePortRange:

Dealing with interrupts − enableAllInterrupts

− disableAllInterrupts

− reserveInterrupt:

− releaseInterrupt:

− enableInterrupt:

− disableInterrupt:

− getHandler:level:argument:forInterrupt:

Mapping memory − mapMemoryRange:to:findSpace:cache:

− unmapMemoryRange:from:

Dealing with DMA channels − enableChannel:

− disableChannel:

− reserveChannel:

− releaseChannel:

Dealing with DMA buffers − startDMAForBuffer:channel:

−
createDMABufferFor:length:read:needsLowM
emory:
limitSize:

− freeDMABuffer:

− abortDMABuffer:

Setting the DMA mode − setTransferMode:forChannel:

− setAutoinitialize:forChannel:

− setIncrementMode:forChannel:

Using the EISA extended mode register
− setDMATransferWidth:forChannel:

− setDMATiming:forChannel:

− setEOPAsOutput:forChannel:

− setStopRegisterMode:forChannel:

Getting a DMA channel’s status − currentAddressForChannel:

− currentCountForChannel:

− getDMATransferWidth:forChannel:

− isDMADone:

Optional DMA locking − reserveDMALock

− releaseDMALock

Getting information about EISA slots
− isEISAPresent

− getEISAId:forSlot:

Method Types (PCI Architecture)

Determining if PCI bus support is enabled
+ isPCIPresent
− isPCIPresent

Reading and writing the entire configuration space
+ getPCIConfigSpace:withDeviceDescription:
+ setPCIConfigSpace:withDeviceDescription:
− getPCIConfigSpace:withDeviceDescription:

− setPCIConfigSpace:withDeviceDescription:

Reading and writing the configuration space
+

getPCIConfigData:atRegister:withDeviceDesc
ription:

+
setPCIConfigData:atRegister:withDeviceDesc
ription:

−
getPCIConfigData:atRegister:withDeviceDesc
ription:

−
setPCIConfigData:atRegister:withDeviceDesc
ription:

Method Types (PCMCIA Architecture)

Managing attribute memory − mapAttributeMemoryTo:findSpace:

− unmapAttributeMemory:

Class Methods (Architecture-Independent)

deviceStyle

+ (IODeviceStyle)deviceStyle

Reports the basic style of driver as IO_DirectDevice. Because IODirectDevice
implements this method, its subclasses don’t have to.

See also: + deviceStyle (IODevice)

Instance Methods (Architecture-Independent)

attachInterruptPort

− (IOReturn)attachInterruptPort

Creates the interrupt port, if none exists already, and requests that the interrupt port
receive all interrupt messages for the device’s reserved interrupts. This method is
invoked whenever an interrupt is enabled. Returns IO_R_SUCCESS if successful;
otherwise, returns IO_R_NOT_ATTACHED.

See also: − interruptPort , − enableAllInterrupts (“Instance Methods (ISA/EISA
Architecture)”)

commandRequestOccurred

− (void)commandRequestOccurred

Does nothing; subclasses can implement this method if desired. This method is
invoked by the default I/O thread (implemented by startIOThread...) whenever it
receives a bodyless message with ID IO_COMMAND_MSG. The part of a driver
that handles user requests can use this message to notify the I/O thread that it should
execute a command that’s been placed in global data.

See also: − startIOThread

deviceDescription

− deviceDescription

Returns the IODeviceDescription associated with this instance.

See also: − setDeviceDescription:

free

− free

Deallocates the IODirectDevice’s memory and its interrupt port, if one exists. Returns
nil .

interruptOccurred

− (void)interruptOccurred

Invokes interruptOccurredAt: with an argument of zero. This method is invoked by
the default I/O thread (implemented by startIOThread...) whenever it receives a
bodyless Mach message with the ID IO_DEVICE_INTERRUPT_MSG. Subclasses
that support only one interrupt should implement this method so that it processes the
hardware interrupt, as described in Chapter 1 and 2.

See also: − interruptOccurredAt:, − startIOThread

interruptOccurredAt:

− (void)interruptOccurredAt: (int)localInterrupt

Does nothing; subclasses that need to handle interrupts should implement this method
so that it processes the hardware interrupt, as described in Chapter 1. This method is
invoked by the default I/O thread (implemented by startIOThread...) whenever it
receives a bodyless Mach message with an ID between
IO_DEVICE_INTERRUPT_MSG_FIRST and
IO_DEVICE_INTERRUPT_MSG_LAST (excluding
IO_DEVICE_INTERRUPT_MSG).

See also: − interruptOccurred, − startIOThread

interruptPort

− (port_t)interruptPort

Returns the Mach port on which the IODirectDevice should receive interrupt
messages. The returned port_t is in the context of the kernel I/O task.

See also: − attachInterruptPort:

otherOccurred:

− (void)otherOccurred:(int)msgID

Does nothing; subclasses can implement this method if desired. This method is
invoked by the default I/O thread (implemented by startIOThread...) whenever it
receives a bodyless message with an unrecognized ID. The ID is given in msgID.

See also: − receiveMsg, − startIOThread

receiveMsg

− (void)receiveMsg

Dequeues the next Mach message from the interrupt port and throws it away;
subclasses can implement this method if desired to handle custom messages. This
method is invoked by the default I/O thread (implemented by startIOThread...)
whenever it tries to receive a message that has a body. To implement this message,
you need to call msg_receive() on the interrupt port. In this sample implementation,
fill in the italicized text between angle brackets, that is << >>, with device-specific
code:

- (void)receiveMsg
{
 IOReturn result;
 port_t inPort;
 MyMsg myMsg;
 kern_return_t result;

 inPort = [self interruptPort];
 if (inPort == PORT_NULL) {
 << React to having no interrupt port. >>
 return;
 }

 myMsg.header.msg_size = sizeof (myMsg);
 myMsg.header.msg_local_port = inPort;

 result = msg_receive(&myMsg.header, (msg_option_t)RCV_TIMEOUT,
0);

 if (result != RCV_SUCCESS) {
 IOLog("%s receiveMsg: msg_receive returns %d\n", result);
 return;
 }
 else {
 switch (myMsg.header.msg_id) {
 case MyMsg1:
 [self handleMsg1];
 break;

 case MyMsg2:
 [self handleMsg2];
 break;
 .
 .

 .
 }
 }
}

See also: − otherOccurred:, − startIOThread

setDeviceDescription:

− (void)setDeviceDescription:deviceDescription

Records deviceDescription as the IODeviceDescription associated with this instance.
ISA/EISA-architecture devices don’t need to invoke this method because
initFromDeviceDescription: already does so.

See also: − deviceDescription

startIOThread

− (IOReturn)startIOThread

Invokes attachInterruptPort and, if attaching the interrupt port was successful, forks
a thread to serve as the instance’s I/O thread. This thread, which is appropriate for
most drivers, sits in an endless loop that does the following:

• Waits for a Mach message on the interrupt port by invoking waitForInterrupt:

• If the message couldn’t be dequeued because it was too large, invokes
receiveMsg so that the subclass can dequeue and handle the message itself

• If the message is dequeued successfully, invokes one of five methods, depending
on the message ID:

Message ID Method Invoked

IO_TIMEOUT_MSG timeoutOccurred

IO_COMMAND_MSG commandRequestOccurred

IO_DEVICE_INTERRUPT_MSG interruptOccurred

IO_DEVICE_INTERRUPT_MSG_FIRST interruptOccurredAt:
to IO_DEVICE_INTERRUPT_MSG_LAST

(anything else) otherOccurred:

Returns the value returned by attachInterruptPort .

See also: − startIOThreadWithFixedPriority: , − startIOThreadWithPriority:

startIOThreadWithFixedPriority:

− (IOReturn)startIOThreadWithFixedPriority: (int)priority

The same as startIOThreadWithPriority: , except that the I/O thread’s priority
never lessens due to aging. This method lets you do performance tuning by disabling
priority aging.

For more information about scheduling policies and priorities, see Chapter 1 of the
NEXTSTEP Operating System Software manual.

See also: − startIOThread , − startIOThreadWithPriority:

startIOThreadWithPriority:

− (IOReturn)startIOThreadWithPriority: (int)priority

The same as startIOThread , except that the I/O thread runs at the specified priority.
This method lets you do performance tuning by raising or lowering the thread’s
scheduling priority. By default, kernel I/O threads start with a priority equal to the
maximum user priority (currently 18).

For more information about priorities, see Chapter 1 of the NEXTSTEP Operating
System Software manual.

See also: − startIOThread , − startIOThreadWithFixedPriority:

timeoutOccurred

− (void)timeoutOccurred

Does nothing; subclasses that support timeouts can implement this method. See the
IOEthernet class for an example of implementing this method as part of timeout
support. This method is invoked by the default I/O thread (implemented by
startIOThread...) whenever it receives a bodyless Mach message with an ID of
IO_TIMEOUT_MSG. See the IOSCSIController class for an example of sending
Mach messages.

See also: − startIOThread

waitForInterrupt:

− (IOReturn)waitForInterrupt: (int *)msgID

Listens to the interrupt port until it detects a Mach message; dequeues the message if
possible. This method should be invoked by the I/O thread whenever the thread needs
to listen to the interrupt port. The default I/O thread provided by IODirectDevice

invokes this message as described under startIOThread .

If the interrupt port hasn’t been set, this message returns IO_R_NO_INTERRUPT. If
the message has a body, this method leaves the message on the queue and returns
IO_R_MSG_TOO_LARGE. If the message couldn’t be dequeued due to another
reason, this method returns IO_R_IPC_FAILURE and logs an error message.

If a message is already on the queue when this method is invoked, this method
dequeues the message and then attempts to give up the processor before returning.
Without this precaution, a thread with many messages queued could prevent other
kernel threads from being executed.

If this method successfully detects and dequeues a message, it sets msgId to the
message’s ID and returns IO_R_SUCCESS.

See also: − startIOThread

Instance Methods (ISA/EISA Architecture)

abortDMABuffer:

− (void)abortDMABuffer: (IOEISADMABuffer)buffer

Frees the memory allocated to buffer. If a read transfer is in progress, the data read is
lost.

See also: − freeDMABuffer:

createDMABufferFor:length:read:needsLowMemory:limitSize:

− (IOEISADMABuffer)createDMABufferFor: (unsigned int *)physicalAddress
length:(unsigned int)numBytes
read:(BOOL)isRead
needsLowMemory:(BOOL)lowerMem
limitSize:(BOOL)limitSize

Returns a DMA buffer for the contents of physical memory starting at
physicalAddress and continuing for numBytes bytes. You should specify YES for
isRead if the data will be read from the device; if the data will be written to the
device, specify NO. lowerMem should be YES if the transfer must be from or to the
first 16MB of physical memory (as required by some ISA devices); otherwise, it
should be NO. To limit the size of the transfer to 64KB, specify limitSize as YES;
otherwise, limitSize should be NO.

This method changes the physical address if necessary to accommodate the ISA bus.
When the physical address is changed, the data is copied to the new physical address
(if the transfer is a write), and the new physical address is returned in

physicalAddress.

Returns NULL if kernel memory for the buffer couldn’t be allocated.

See also: − freeDMABuffer:

currentAddressForChannel:

− (unsigned int)currentAddressForChannel:(unsigned int)localChannel

Returns the physical address currently in the address register of the specified DMA
channel. This method can be invoked at any time—even when DMA is in progress.
This method is often used along with autoinitialize mode. It’s also used to help
diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − currentCountForChannel: , − setAutoinitialize:forChannel:

currentCountForChannel:

− (unsigned int)currentCountForChannel: (unsigned int)localChannel

Returns the number of bytes remaining to be transferred on the specified channel. The
maximum number returned is equal to the length of the DMA buffer currently being
handled by the channel. This method is often used along with autoinitialize mode. It’s
also used to help diagnose errors when a device or channel aborts a DMA transfer.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − currentAddressForChannel:, − setAutoinitialize:forChannel:

disableAllInterrupts

− (void)disableAllInterrupts

Disables all interrupts associated with this IODirectDevice, so that no interrupts can
be generated by the hardware. Returns IO_R_NO_INTERRUPT if no interrupt port is
attached; otherwise, returns IO_R_SUCCESS.

Note: Even after invoking disableAllInterrupts: successfully, your driver may still
receive interrupt messages for interrupts that occurred before they were disabled.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − enableAllInterrupts , − disableInterrupt:

disableChannel:

− (void)disableChannel:(unsigned int)localChannel

If the DMA channel corresponding to localChannel is reserved by this device, this
method disables the channel. You typically disable the channel just before changing
its setting. You need to invoke enableChannel: once the channel is set up so that
transfers can occur.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − enableChannel:

disableInterrupt:

− (void)disableInterrupt: (unsigned int)localInterrupt

Disables the interrupt corresponding to localInterrupt.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − disableAllInterrupts , − enableInterrupt:

enableAllInterrupts

− (IOReturn)enableAllInterrupts

Creates and attaches an interrupt port, if one isn’t already attached, and enables all
interrupts associated with this IODirectDevice. Returns IO_R_NO_INTERRUPT if
the interrupt port couldn’t be attached; otherwise, returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − attachInterruptPort , − disableAllInterrupts , − enableInterrupt:

enableChannel:

− (IOReturn)enableChannel:(unsigned int)localChannel

Enables transfers on the DMA channel corresponding to localChannel. Returns
IO_R_NOT_ATTACHED if localChannel doesn’t correspond to a DMA channel or if

the DMA channel isn’t reserved by this device. Otherwise, returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − disableChannel:, − startDMAForBuffer:channel:

enableInterrupt:

− (IOReturn)enableInterrupt: (unsigned int)localInterrupt

Invokes attachInterruptPort and, if attachInterruptPort succeeds, enables the
interrupt corresponding to localInterrupt and returns IO_R_SUCCESS. If
attachInterruptPort doesn’t succeed, returns IO_R_NOT_ATTACHED.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − disableInterrupt: , − enableAllInterrupts

freeDMABuffer:

− (void)freeDMABuffer: (IOEISADMABuffer)buffer

Completes the transfer associated with buffer and frees the buffer. buffer should be a
value returned by createDMABufferFor:... . If createDMABufferFor:... changed
the physical address and the transfer is a read, this method moves the data from the
new physical address to the old one. In other words, any data that’s read appears at
the address passed to createDMABufferFor:... in the physicalAddress argument, not
at the address returned in physicalAddress.

See also: − abortDMABuffer: , −
createDMABufferFor:length:read:needsLowMemory:limitSize:

getDMATransferWidth:forChannel:

− (IOReturn)getDMATransferWidth: (IOEISADMATransferWidth *)width
forChannel:(unsigned int)localChannel

Returns in width the width currently used for DMA transfers on the specified channel.
The width can be 8-bit (IO_8Bit), 16-bit (IO_16BitByteCount), or 32-bit (IO_32Bit).
On EISA systems, you can set the width using
setDMATransferWidth:forChannel: .

If localChannel doesn’t correspond to a DMA channel, this method does nothing and
returns IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method

returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − setDMATransferWidth:forChannel:

getEISAId:forSlot:

− (BOOL)getEISAId: (unsigned int *)id forSlot:(int)slotNumber

Returns in id the EISA id for the specified slot. Returns YES if the slot is a valid EISA
slot; otherwise, returns NO. You can use this method to loop through the computer’s
slots, testing each slot for whether it contains a particular card. For example, the
following code is executed in the QVision display driver’s
initFromDeviceDescription: method to determine whether QVision hardware is
present in the system.

adapter = UnknownAdapter;
for (slot = 1; slot <= 0xF; slot++) {
 if ([self getEISAId:&product_id forSlot:slot] == YES) {
 switch (product_id) {
 case QVISION_EISA_ID:
 adapter = QVisionAdapter;
 break;
 case ORION_EISA_ID:
 adapter = OrionAdapter;
 break;
 case ORION12_EISA_ID:
 adapter = Orion12Adapter;
 break;
 case QVISION_ISA_ID:
 case ORION_ISA_ID:
 case ORION12_ISA_ID:
 IOLog("%s: Sorry, ISA cards are not supported.\n",
 [self name]);
 break;
 }
 break;
 }
}

See also: − isEISAPresent

getHandler:level:argument:forInterrupt:

− (BOOL)getHandler:(IOInterruptHandler *)handler
level:(unsigned int *)ipl
argument:(unsigned int *)arg
forInterrupt: (unsigned int)localInterrupt

Does nothing and returns NO. Subclasses can implement this method to specify a

function to directly handle the interrupt specified by localInterrupt. This method is
invoked every time an interrupt is enabled.

If this method returns YES, interrupts from the device result directly in a call to
handler, with the driver-dependent argument arg, at interrupt level ipl. Otherwise,
interrupts result in a Mach message to the instance’s interrupt port.

If you implement this method, you should use interrupt level 3 (IPLDEVICE, as
defined in kernserv/i386/spl.h) unless a higher interrupt level is absolutely
necessary. Using interrupt levels greater than 3 requires great care and a good grasp
of NeXT kernel internals.

Note: The interrupt level is different from the interrupt number (which is also known
as the IRQ). The kernel handles interrupts on each of the 15 IRQs at an interrupt level
between 0 and 7; the default is 3. The interrupt level determines which devices can
interrupt; specifically, only devices with an interrupt level higher than the current
interrupt level can interrupt. For example, a device that interrupts using IRQ 9 might
have a direct interrupt handler that runs at interrupt level 3. While this interrupt
handler is running, other devices with handlers that run at interrupt level 3 can’t
interrupt the CPU.

Here’s a typical implementation of this method:

- (BOOL) getHandler:(IOEISAInterruptHandler *)handler
 level:(unsigned int *) ipl
 argument:(unsigned int *) arg
 forInterrupt:(unsigned int) localInterrupt
{
 *handler = myIntHandler;
 *ipl = IPLDEVICE;
 *arg = 0;
 return YES;
}

In the example above, myIntHandler is the function that handles the interrupt. It
might be implemented as follows (fill in the italicized text between angle brackets,
that is << >>, with device-specific code):

static void myIntHandler(void *identity, void *state,
 unsigned int arg)
{
 << . . . Do what we must at interrupt level . . . >>
 if (<< I/O thread doesn’t need to know about this interrupt >>)
 return;

 /* Forward this to the I/O thread for further handling. */
 IOSendInterrupt(identity, state, IO_DEVICE_INTERRUPT_MSG);
}

See also: IOSendInterrupt()

initFromDeviceDescription:

− initFromDeviceDescription:deviceDescription

Initializes and returns the IODirectDevice instance. Records deviceDescription as the
IODeviceDescription corresponding to this IODirectDevice. Reserves all the
interrupts, DMA channels, and I/O ports specified in deviceDescription. If any
resources can’t be reserved, releases all resources and returns nil .

This method must be invoked before any methods that require local equivalents of
resources can be used. For example, mapMemoryRange:... requires that you specify
the local equivalent of a memory range. However, IODirectDevices don’t know what
memory ranges they can use until initFromDeviceDescription: has been invoked.
This means, for example, that subclass implementations of
initFromDeviceDescription: must invoke the superclass’s implementation of
initFromDeviceDescription: before they can map any memory ranges or do
anything else that requires access to resources.

isDMADone:

− (BOOL)isDMADone:(unsigned int)localChannel

Returns YES if DMA has completed on the specified channel; otherwise, returns NO.
If localChannel doesn’t correspond to a DMA channel, this method does nothing and
returns IO_R_INVALID_ARG.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

isEISAPresent

− (BOOL)isEISAPresent

Returns YES if the computer conforms to the EISA specification; otherwise, returns
NO.

See also: − getEISAId:forSlot:

mapMemoryRange:to:findSpace:cache:

− (IOReturn)mapMemoryRange:(unsigned int)localMemoryRange
to:(vm_address_t *)destinationAddress
findSpace:(BOOL)findSpace
cache:(IOCache)caching

Maps the device memory corresponding to localMemoryRange into the calling task’s
address space. localMemoryRange is the local range number in the device
description.

If findSpace is TRUE, this method ignores the destinationAddress and determines
where the mapped memory should go, returning the value in destinationAddress. If
findSpace is FALSE, this method truncates destinationAddress to the nearest page
boundary, maps the memory to the truncated address, and returns the truncated
address.

The caching argument determines how the memory is cached. Usually, it should be
IO_WriteThrough. However, if caching seems to be causing problems, try using
IO_CacheOff instead.

If localMemoryRange doesn’t correspond to one of this device’s memory ranges,
IO_R_INVALID_ARG is returned. There must also be more than one I/O port range
associated with the device (i.e. [deviceDescription numPortRanges] > 1); otherwise
IO_R_INVALID_ARG is returned. If the mapping couldn’t be performed for another
reason, IO_R_NO_SPACE is returned. If the mapping was successful, returns
IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − unmapMemoryRange:from:

releaseChannel:

− (void)releaseChannel:(unsigned int)localChannel

Releases the DMA channel corresponding to localChannel so that another device can
use the channel.

See also: − reserveChannel:

releaseDMALock

− (void)releaseDMALock

Releases the lock associated with DMA. This method panics if this IODirectDevice
doesn’t hold the DMA lock.

Most drivers don’t need to use DMA locking. However, the floppy drive (and possibly
other devices) tends to have DMA underruns when the bus is saturated. As a result,
the floppy driver and drivers for devices that tend to saturate the bus use DMA
locking to avoid performing I/O at the same time. DMA locking is ignored by all other
device drivers.

You don’t have to use DMA locking unless your device is having DMA underruns or

is causing another device to have underruns. Sometimes these underruns occur on
ISA computers, but not EISA ones. If your device is causing the floppy drive to have
underruns, you’ll see the following error on the console while your device is
performing I/O:

fd0: DMA Over/underrun

See also: − reserveDMALock

releaseInterrupt:

− (void)releaseInterrupt:(unsigned int)localInterrupt

Releases the interrupt corresponding to localInterrupt so that another device can use
the interrupt.

See also: − reserveInterrupt:

releasePortRange:

− (void)releasePortRange:(unsigned int)localPortRange

Releases the range of I/O ports corresponding to localPortRange.

See also: − reservePortRange:

reserveChannel:

− (IOReturn)reserveChannel:(unsigned int)localChannel

Reserves the DMA channel corresponding to localChannel so that no other device can
use the channel. Returns IO_R_NOT_ATTACHED if localChannel doesn’t
correspond to a DMA channel or if the DMA channel is reserved by another device.
Otherwise, returns IO_R_SUCCESS.

You don’t normally have to invoke this method, since initFromDeviceDescription:
reserves all the device’s DMA channels.

See also: − releaseChannel:

reserveDMALock

− (void)reserveDMALock

Reserves the lock associated with DMA. See releaseDMALock for information on
DMA locking.

reserveInterrupt:

− (IOReturn)reserveInterrupt: (unsigned int)localInterrupt

Reserves the interrupt corresponding to localInterrupt so that no other device can use
it. Returns IO_R_NOT_ATTACHED if localInterrupt doesn’t correspond to an
interrupt or if another device has already reserved the interrupt. Otherwise, returns
IO_R_SUCCESS.

You don’t normally have to invoke this method, since initFromDeviceDescription:
reserves all the device’s interrupts.

See also: − releaseInterrupt:

reservePortRange:

− (IOReturn)reservePortRange:(unsigned int)localPortRange

Releases the range of I/O ports corresponding to localPortRange and returns
IO_R_SUCCESS.

You don’t normally have to invoke this method, since initFromDeviceDescription:
reserves all the device’s I/O ports.

See also: − releasePortRange:

setAutoinitialize:forChannel:

− (IOReturn)setAutoinitialize:(BOOL)flag forChannel:(unsigned
int)localChannel

Sets the specified channel’s autoinitialize DMA mode to on if flag is YES; otherwise,
sets it off. The new autoinitialize mode stays in effect until this method is invoked
again or the computer is rebooted. By default, autoinitialize mode is disabled.

If localChannel doesn’t correspond to a DMA channel, this method does nothing and
returns IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − setIncrementMode:forChannel:, − setTransferMode:forChannel:

setDMATiming:forChannel:

− (IOReturn)setDMATiming: (IOEISADMATiming)timing
forChannel:(unsigned int)localChannel

Makes the specified channel use the specified DMA bus cycle—ISA-compatible
(IO_Compatible), Type A (IO_TypeA), Type B (IO_TypeB), or burst (IO_Burst),
which is also known as Type C. This method is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. If localChannel doesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns
IO_R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

setDMATransferWidth:forChannel:

− (IOReturn)setDMATransferWidth: (IOEISADMATransferWidth)width
forChannel:(unsigned int)localChannel

Makes the specified channel use the specified width for DMA transfers. The width
can be 8-bit (IO_8Bit), 16-bit (IO_16BitByteCount), or 32-bit (IO_32Bit). The 16-bit
mode requires byte counting, not word counting (which is unsupported). This method
is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. If localChannel doesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns
IO_R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

setEOPAsOutput:forChannel:

− (IOReturn)setEOPAsOutput:(BOOL)flag forChannel:(unsigned
int)localChannel

Selects whether the specified channel’s EOP pin is an output signal (the default) or an
input signal. This method is valid only on EISA systems.

If the system is ISA-based, this method does nothing and returns
IO_R_UNSUPPORTED. If localChannel doesn’t correspond to a DMA channel, this
method does nothing and returns IO_R_INVALID_ARG. If the DMA channel isn’t
reserved by this device, this method does nothing and returns

IO_R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

setIncrementMode:forChannel:

− (IOReturn)setIncrementMode:(IOIncrementMode)mode
forChannel:(unsigned int)localChannel

This method lets the driver specify how the start address and length of its DMA
buffers should be interpreted. By default, the increment mode is IO_Increment, so
each DMA buffer is interpreted so that if the start address is n and the length is m, the
data in addresses n through n + m − 1 are transferred. By setting the increment mode
to IO_Decrement, however, the driver specifies that the affected addresses should be
n through n − m + 1. The new increment mode is in effect until this method is invoked
again or until the computer is rebooted.

If localChannel doesn’t correspond to a DMA channel, this method does nothing and
returns IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns IO_R_SUCCESS.

Note: IO_Decrement mode is not currently supported.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − setAutoinitialize:forChannel: , − setTransferMode:forChannel:

setStopRegisterMode:forChannel:

− (IOReturn)setStopRegisterMode:(IOEISAStopRegisterMode)mode
forChannel:(unsigned int)localChannel

Enables or disables the specified channel’s Stop register. By default, the Stop register
is disabled. You can enable it by specifying mode to be IO_StopRegisterEnable. This
method is valid only on EISA systems.

Note: Enabling the Stop register isn’t currently supported.

If the system is ISA-based or mode is IO_StopRegisterEnable, this method does
nothing and returns IO_R_UNSUPPORTED. If localChannel doesn’t correspond to a
DMA channel, this method does nothing and returns IO_R_INVALID_ARG. If the
DMA channel isn’t reserved by this device, this method does nothing and returns
IO_R_NOT_ATTACHED. Otherwise, this method returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until

after this category’s implementation of initFromDeviceDescription: is invoked.

setTransferMode:forChannel:

− (IOReturn)setTransferMode:(IODMATransferMode)mode
forChannel:(unsigned int)localChannel

Sets the specified channel’s transfer mode to mode. The new transfer mode stays in
effect until this method is invoked again or the computer is rebooted.

If localChannel doesn’t correspond to a DMA channel, this method does nothing and
returns IO_R_INVALID_ARG. If the DMA channel isn’t reserved by this device, this
method does nothing and returns IO_R_NOT_ATTACHED. Otherwise, this method
returns IO_R_SUCCESS.

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

See also: − setAutoinitialize:forChannel: , − setIncrementMode:forChannel:

startDMAForBuffer:channel:

− (IOReturn)startDMAForBuffer: (IOEISADMABuffer)buffer
channel:(unsigned int)localChannel

Begins DMA with buffer on the DMA channel specified by localChannel, and returns
IO_R_SUCCESS. DMA isn’t started if localChannel doesn’t correspond to a DMA
channel (in which case IO_R_INVALID_ARG is returned), if the DMA channel isn’t
assigned, or if no DMA frames could be allocated (IO_R_NO_FRAMES is returned).

Because this method uses a local equivalent of a resource, it can’t be invoked until
after this category’s implementation of initFromDeviceDescription: is invoked.

unmapMemoryRange:from:

− (void)unmapMemoryRange:(unsigned int)localMemoryRange
from: (vm_address_t)address

Unmaps the device memory corresponding to localMemoryRange from the calling
task’s address space. The value of address must be the same as the value returned by
the destinationAddress argument of mapMemoryRange:to:findSpace:cache: for the
same localMemoryRange.

See also: − mapMemoryRange:to:findSpace:cache:

Class Methods (PCI Architecture)

getPCIConfigData:atRegister:withDeviceDescription:

+ (IOReturn)getPCIConfigData:(unsigned long *)data
atRegister:(unsigned char)address
withDeviceDescription:description

Reads from the device’s configuration space at the byte address address using the
IOPCIDeviceDescription description. All accesses are 32 bits wide and address must
be aligned as such.

getPCIConfigSpace:withDeviceDescription:

+ (IOReturn)getPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace
withDeviceDescription:description

Reads the device’s entire configuration space using the IOPCIDeviceDescription
description. Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the data returned in the
IOPCIConfigSpace struct.

isPCIPresent

+ (BOOL)isPCIPresent

Returns YES if PCI Bus support is enabled. Returns NO otherwise.

setPCIConfigData:atRegister:withDeviceDescription:

+ (IOReturn)setPCIConfigData:(unsigned long)data
atRegister:(unsigned char)address
withDeviceDescription:description

Writes to the device’s configuration space at the byte address address using the
IOPCIDeviceDescription description. All accesses are 32 bits wide and address must
be aligned as such.

setPCIConfigSpace:withDeviceDescription:

+ (IOReturn)setPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace
withDeviceDescription:description

Writes the device’s entire configuration space using the IOPCIDeviceDescription
description. Returns IO_R_SUCCESS if successful. If this method fails, the driver
should make no assumptions about the state of the device’s configuration space.

Instance Methods (PCI Architecture)

getPCIConfigData:atRegister:

− (IOReturn)getPCIConfigData:(unsigned long *)data
atRegister:(unsigned char)address

Reads from the device’s configuration space at the byte address address. All
accesses are 32 bits wide and address must be aligned as such.

getPCIConfigSpace:

− (IOReturn)getPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace

Reads the device’s entire configuration space. Returns IO_R_SUCCESS if
successful. If this method fails, the driver should make no assumptions about the state
of the data returned in the IOPCIConfigSpace struct.

isPCIPresent

− (BOOL)isPCIPresent

Returns YES if PCI Bus support is enabled. Returns NO otherwise.

setPCIConfigData:atRegister:

− (IOReturn)setPCIConfigData:(unsigned long)data
atRegister:(unsigned char)address

Writes to the device’s configuration space at the byte address address. All accesses
are 32 bits wide and address must be aligned as such.

setPCIConfigSpace:

− (IOReturn)setPCIConfigSpace:(IOPCIConfigSpace *)configurationSpace

Writes the device’s entire configuration space. Returns IO_R_SUCCESS if
successful. If this method fails, the driver should make no assumptions about the state
of the device’s configuration space.

Instance Methods (PCMCIA Architecture)

mapAttributeMemoryTo:findSpace:

− (IOReturn)mapAttributeMemoryTo: (vm_address_t *)destinationAddress
findSpace:(BOOL)findSpace

Maps attribute memory to destinationAddress in findSpace.

See also: − unmapAttributeMemory:

unmapAttributeMemory:

− (void)unmapAttributeMemory

Unmaps attribute memory.

See also: − mapAttributeMemoryTo:findSpace:

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODisplay

Inherits From: IODirectDevice : IODevice : Object

Conforms To: IOScreenEvents

Declared In: driverkit/IODisplay.h

Class Description

IODisplay is an abstract class for controlling video displays. To write a display driver,
you need to create a subclass of one of NeXT’s IODisplay
subclasses—IOFrameBufferDisplay and IOSVGADisplay. IOFrameBufferDisplay is
the preferred basis for display drivers, but it can only be used for video cards that
linearly map the entire frame buffer into memory. Other video cards require
IOSVGADisplay subclasses.

Note: All VGA cards work even without special drivers. However, they have a
small display area (640×480) and are 2-bit grayscale.

Most of what you need to create a display driver is described in the
IOFrameBufferDisplay and IOSVGADisplay class specifications. In addition, both
kinds of display drivers need to specify certain display-specific configuration keys
and provide IODisplayInfo structures.

Display Configuration Keys

Your driver’s configuration table must have values for the “VGA Memory Maps” and
“Display Mode” keys. “VGA Memory Maps” must be equal to “0xa0000-0xbffff
0xc0000-0xcffff”; those addresses must also be specified for the “Memory Maps”
key.

An IOFrameBufferDisplay might specify the following in its default configuration
table.

"Memory Maps" = "0x7e00000-0x7ffffff 0xa0000-0xbffff
0xc0000-0xcffff";
"VGA Memory Maps" = "0xa0000-0xbffff 0xc0000-0xcffff";

An IOSVGADisplay would have the following:

"Memory Maps" = "0xa0000-0xbffff 0xc0000-0xcffff";
"VGA Memory Maps" = "0xa0000-0xbffff 0xc0000-0xcffff";

Note: The first range for the “Memory Maps” key must be the range that the

window server will use for access to the screen. For example, for
IOFrameBufferDisplays, the first range must be that of the linear frame buffer.

A default display mode is usually specified with the “Display Mode” key in the
default configuration table. The mode can also be set by the user, with Configure’s
display inspector. You specify the modes your driver supports with the “Display
Modes” key in the Localizable.strings file in the Language.lproj directories of your
driver’s bundle. (Driver bundles are discussed in Chapter 4.) An example of
specifying display modes is below.

"Display Modes" = "
 Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:555/16;
 Height: 768 Width:1024 Refresh: 60Hz ColorSpace: BW:8;
 Height: 768 Width:1024 Refresh: 70Hz ColorSpace: BW:8;
 Height: 768 Width:1024 Refresh: 72Hz ColorSpace: BW:8;
 Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:555/16;
 Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:555/16;
 Height:1024 Width:1280 Refresh: 60Hz ColorSpace: BW:8;
 Height:1024 Width:1280 Refresh: 60Hz ColorSpace: RGB:555/16;
 Height: 600 Width: 800 Refresh: 60Hz ColorSpace: RGB:888/32;
 Height: 768 Width:1024 Refresh: 60Hz ColorSpace: RGB:888/32;
 Height: 768 Width:1024 Refresh: 72Hz ColorSpace: RGB:888/32";

See the “Configuration Keys” section of this chapter for more information on
configuration keys.

IODisplayInfo

Display drivers need to have an IODisplayInfo structure for each mode the driver
supports. Drivers that support multiple modes use one of the selectMode:... methods
(provided by IOFrameBufferDisplay and IOSVGADisplay) to find the IODisplayInfo
that corresponds to the value of the “Display Mode” key. Once the driver has
determined which mode it will be in, it needs to set the value returned by displayInfo
so that it points to the appropriate IODisplayInfo structure. The display subsystem, as
well as the driver, uses the IODisplayInfo to get information about the driver’s mode.

The IODisplayInfo type is defined in the driverkit/displayDefs.h header file as the
following:

typedef struct {
 int width ;
 int height;
 int totalWidth ;
 int rowBytes;
 int refreshRate;
 void *frameBuffer ;
 IOBitsPerPixel bitsPerPixel;
 IOColorSpace colorSpace;
 IOPixelEncoding pixelEncoding;
 unsigned int flags;

 void *parameters;
} IODisplayInfo ;

The width and height fields hold the width and height in pixels of the display area.
Generally, the width should be at least 640, and the height at least 480. The
totalWidth is the width including any undisplayed pixels that might be included for
efficiency reasons; often, it’s equal to width . The value of rowBytes is equal to
totalWidth multiplied by the number of bytes used to address each pixel, as shown in
the following table.

Color Mode Value of rowBytes

SVGA 2-bit grayscale totalWidth /4
8-bit grayscale totalWidth
8-bit color totalWidth
16-bit RGB (either 12 or 15 bits per pixel) totalWidth x 2
24-bit RGB (24 bits per pixel) totalWidth x 4

The refreshRate field holds the monitor refresh rate, in Hz.

The frameBuffer field should contain the first virtual address that screen memory is
mapped to. You get this address during initialization by invoking
mapFrameBufferAtPhysicalAddress:length:, as documented in the
IOFrameBufferDisplay and IOSVGADisplay specifications.

The next three fields specify how the display subsystem should interpret the screen
memory. The value of bitsPerPixel should be IO_2BitsPerPixel, IO_8BitsPerPixel,
IO_12BitsPerPixel, IO_15BitsPerPixel, or IO_24BitsPerPixel. You shouldn’t specify
IO_VGA, since it’s used only by NeXT-supplied VGA support. For
IOFrameBufferDisplays, the value of colorSpace is IO_OneIsWhiteColorSpace for
black-and-white modes and IO_RGBColorSpace for RGB modes. For
IOSVGADisplays, colorSpace is always IO_OneIsBlackColorSpace. The value of
pixelEncoding is a string that specifies how each bit of a pixel should be interpreted.
Some common values of pixelEncoding are shown below.

Value of pixelEncoding Description

“--------RRRRRRRRGGGGGGGGBBBBBBBB” 24-bit RGB, 8 bits per
component; ignore the most
significant byte

“-RRRRRGGGGGBBBBB” 16-bit RGB, 5 bits per
component; ignore the most
significant bit

“RRRRGGGGBBBB----” 16-bit RGB, 4 bits per
component; ignore the 4
least significant bits

“WWWWWWWW” 8-bit grayscale

“WW” 2-bit grayscale; used by
IOSVGADisplays

The flags field contains caching instructions and optionally some flags, combined
using the bitwise OR operator. The value you specify for caching depends on whether
your hardware supports burst reads. If your hardware supports burst reads (as most
’486 hardware does), you should specify IO_DISPLAY_CACHE_WRITETHROUGH
to specify that screen memory be cached write-through. Write-through caching
means that each write—even to memory that is in the cache—is immediately written
to the device. If your hardware doesn’t support burst reads, you should use
IO_DISPLAY_CACHE_OFF to turn the cache off for screen memory. The third
caching option, IO_DISPLAY_CACHE_COPYBACK, isn’t currently supported; it
specifies that writes have to be explicitly flushed, instead of being passed through the
cache immediately. If flags contains no caching instructions, write-through caching is
used.

IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION and
IO_DISPLAY_HAS_TRANSFER_TABLE are the two optional flags.
IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION should be specified
if the display is in a 16-bit RGB mode with 5 bits per component and the hardware
does not support gamma correction in this mode. It tells the display subsystem to use a
default gamma correction table when converting the 4 bits used internally into the 5
bits required by the hardware.

IO_DISPLAY_HAS_TRANSFER_TABLE should be specified if the hardware
supports gamma correction in this mode. Generally, drivers that support gamma
correction should implement the setTransferTable:... method, which is described in
IOFrameBufferDisplay.

The following example shows how a driver specifies flags when its hardware
supports gamma correction only for 8-bit modes.

/* displayMode points to the IODisplayInfo for this mode */
displayMode->flags = IO_DISPLAY_CACHE_WRITETHROUGH;
if (displayMode->bitsPerPixel == IO_15BitsPerPixel)
 displayMode->flags |=
IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION;
else if (displayMode->bitsPerPixel == IO_8BitsPerPixel)
 displayMode->flags |= IO_DISPLAY_HAS_TRANSFER_TABLE;

The parameters field is ignored by the display system. You can use it for whatever
you want.

The following code example shows some typical IODisplayInfo structures, taken from
a driver based on IOFrameBufferDisplay. See the description of displayInfo for an
example for an IOSVGADisplay.

/* The frameBuffer field is initialized to 0, since it’s determined
 * at runtime. The flags field is also determined at runtime. The
 * parameters field in this driver points to a mode-specific
 * structure that specifies values for the hardware registers.*/

const IODisplayInfo S3_928_ModeTable[] = {

 { /* 800 x 600, 15bpp, 60Hz. */
 800, 600, 1024, 2048, 60, 0, IO_15BitsPerPixel,
 IO_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
 (void *)&S3_928_800x600x15,
 },
 { /* 800 x 600, 24bpp, 60Hz. */
 800, 600, 1024, 4096, 60, 0, IO_24BitsPerPixel,
 IO_RGBColorSpace, "--------RRRRRRRRGGGGGGGGBBBBBBBB",
 0, (void *)&S3_928_800x600x24,
 },
 { /* 1024 x 768, 8bpp, 60Hz. */
 1024, 768, 1024, 1024, 60, 0, IO_8BitsPerPixel,
 IO_OneIsWhiteColorSpace, "WWWWWWWW", 0,
 (void *)&S3_928_1024x768x8,
 },
 { /* 1024 x 768, 8bpp, 70Hz. */
 1024, 768, 1024, 1024, 70, 0, IO_8BitsPerPixel,
 IO_OneIsWhiteColorSpace, "WWWWWWWW", 0,
 (void *)&S3_928_1024x768x8,
 },
 { /* 1024 x 768, 8bpp, 72Hz. */
 1024, 768, 1024, 1024, 72, 0, IO_8BitsPerPixel,
 IO_OneIsWhiteColorSpace, "WWWWWWWW", 0,
 (void *)&S3_928_1024x768x8,
 },
 { /* 1024 x 768 x 15bpp, 60Hz. */
 1024, 768, 1024, 2048, 60, 0, IO_15BitsPerPixel,
 IO_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
 (void *)&S3_928_1024x768x15,
 },
 { /* 1024 x 768 x 15bpp, 72Hz. */
 1024, 768, 1024, 2048, 72, 0, IO_15BitsPerPixel,
 IO_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
 (void *)&S3_928_1024x768x15,
 },
 { /* 1024 x 768 x 24bpp, 60Hz. */
 1024, 768, 1024, 4096, 60, 0, IO_24BitsPerPixel,
 IO_RGBColorSpace, "--------RRRRRRRRGGGGGGGGBBBBBBBB",
 0, (void *)&S3_928_1024x768x24,
 },
 { /* 1024 x 768 x 24bpp, 72Hz. */
 1024, 768, 1024, 4096, 72, 0, IO_24BitsPerPixel,
 IO_RGBColorSpace, "--------RRRRRRRRGGGGGGGGBBBBBBBB",
 0, (void *)&S3_928_1024x768x24,
 },
 { /* 1280 x 1024, 8bpp, 60Hz. */
 1280, 1024, 1280, 1280, 60, 0, IO_8BitsPerPixel,
 IO_OneIsWhiteColorSpace, "WWWWWWWW", 0,
 (void *)&S3_928_1280x1024x8,
 },
 { /* 1280 x 1024, 15bpp, 60Hz. */
 1280, 1024, 2048, 4096, 60, 0, IO_15BitsPerPixel,
 IO_RGBColorSpace, "-RRRRRGGGGGBBBBB", 0,
 (void *)&S3_928_1280x1024x15,
 },
};

Instance Variables

None declared in this class.

Adopted Protocols

IOScreenEvents − devicePort

− hideCursor:

− moveCursor:frame:token:

− setBrightness:token:

− showCursor:frame:token:

Method Types

Getting information about this display
− displayInfo

Getting and setting the registration token for this display
− setToken:

− token

Getting parameters − getIntValues:forParameter:count:

Getting the device port − devicePort

Note: The IOScreenEvents protocol method devicePort is reimplemented in this
class.

Instance Methods

devicePort

− (port_t)devicePort

Returns the device port, which should be obtained from this instance’s
IODeviceDescription. This method in the IOScreenEvents protocol is reimplemented
in this class.

displayInfo

− (IODisplayInfo *)displayInfo

Returns the IODisplayInfo that describes this display. Each display driver instance

must use this method to obtain its IODisplayInfo structure. The driver must then set
the fields in the structure so that they describe the display’s configuration. For
example, the following code initializes the IODisplayInfo associated with this
instance. See the class description for information on IODisplayInfo structures.

static const IODisplayInfo modeTable[] = {
 {1024, 768, 1024, 256, 60, 0, IO_2BitsPerPixel,
 IO_OneIsBlackColorSpace, "WW", 0, 0,
 },
 /* Add more modes here. */
};
#define modeTableCount (sizeof(modeTable) / sizeof(IODisplayInfo))
#define defaultMode 0

- initFromDeviceDescription:deviceDescription
{
 IODisplayInfo *displayInfo;
 const IORange *range;

 if ([super initFromDeviceDescription:deviceDescription] == nil)
 return [super free];

 /* selectedMode is a driver-defined instance variable */
 selectedMode = [self selectMode:modeTable count:modeTableCount
 valid:NULL];
 if (selectedMode < 0) {
 IOLog("%s: Sorry, cannot use requested display mode.\n",
 [self name]);
 selectedMode = defaultMode;
 }

 displayInfo = [self displayInfo];
 *displayInfo = modeTable[selectedMode];

 displayInfo->frameBuffer = (void *)
 [self mapFrameBufferAtPhysicalAddress:0 length:0];
 if (displayInfo->frameBuffer == 0)
 return [super free];

 IOLog("%s: Initialized @ %d Hz.\n", [self name],
 displayInfo->refreshRate);
 return self;
}

getIntValues:forParameter:count:

− (IOReturn)getIntValues:(unsigned int *)array
forParameter:(IOParameterName)parameter
count:(unsigned int *)count

Handles NeXT-internal parameters specific to IODisplays; forwards the handling of
all other parameters to super.

setToken:

− (void)setToken:(int)token

Sets the registration token for this display.

See also: − token

token

− (int)token

Gets the registration token for this display.

See also: − setToken

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IODisplayInspector

Inherits From: IODeviceInspector : Object

Conforms To: IOConfigurationInspector

Declared In: driverkit/IODisplayInspector.h

Class Description

This class provides inspectors used by the Configure application for all displays. It
provides an accessory View to IODeviceInspector that displays the current display
mode and has a button. When the button is clicked, the IODisplayInspector puts up a
panel that lets the user select the display mode for the device.

The panel shows all display modes specified for the “DisplayModes” key in the driver
bundle’s Language.lproj/Localizable.strings file. The mode that’s selected is placed
in the device’s Instancen.table file as the value of the “Display Mode” key.

Instance Variables

id displayAccessoryHolder;

id displayMode;

id panel;

id modes;

id okButton;

id selectButton;

id modeText;

IODisplayMode *modeRecs;

unsigned int modeCount;

displayAccessoryHolder The View where the display inspector’s own
accessory View (as opposed to the
IODeviceInspector’s accessory View) is placed

displayMode The accessory View provided to the
IODeviceInspector

panel The Select Display Mode panel

modes The DBTableView where valid display modes are
listed and can be selected

okButton The OK button in panel

selectButton The Select button in displayMode

modeText The text in displayMode that shows the current
display mode

modeRecs An array of IODisplayModes, initialized during
setTable: with the modes specified in the device’s
Default.table

modeCount The number of IODisplayModes in modeRecs

Method Types

Initializing the IODisplayInspector
− init

Setting attributes − setAccessoryView:

− setTable:

Displaying the Select Display Mode panel
− runPanel:

− panelDone:

Target and Action methods − cancel:

− doubleClicked:

Instance Methods

cancel:

− cancel:sender

Exits the Select Display Modes panel without changing the current display mode.
Returns self.

See also: − runPanel:

doubleClicked:

− doubleClicked:sender

Clicks the OK button in the Select Display Modes panel. This method is invoked when
the user double-clicks an item in the display modes DBTableView. Returns self.

See also: − panelDone:

init

− init

Initializes and returns a newly allocated IODisplayInspector. Returns nil and frees
itself if an error occurs.

panelDone:

− panelDone:sender

Dismisses the Select Display Modes panel. This method is invoked when the user
clicks the panel’s OK button. Returns self.

See also: − runPanel:

runPanel:

− runPanel:sender

Runs the Select Display Modes panel in a modal loop. Before displaying the panel,
this method reads the supported display modes from the driver bundle’s
Localizable.strings file, puts the modes in the panel’s DBTableView, and selects the
current mode. When the user clicks the Cancel or OK button the loop is broken, the
panel is hidden, and, if the button was OK, the new display mode is written to the
driver’s configuration table. Returns self.

See also: − cancel:, − panelDone:

setAccessoryView:

− setAccessoryView:aView

Sets the IODisplayInspector’s accessory View to aView. Because
IODisplayInspector’s inspector View is implemented as IODeviceInspector’s
accessory View, aView is an accessory View within an accessory View. Use this
method to add a device-specific View to the inspector. Returns self.

setTable:

− setTable:(NXStringTable *)instanceTable

Specifies instanceTable as the configuration table associated with this device and
uses the value of instanceTable’s “Display Mode” key to initialize the display modes
for this device. The data in instanceTable is written out to its corresponding file
(Instancen.table) when the user saves the configuration.

The Configure application invokes this method whenever the user selects this device
for inspection. Returns self.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOEISADeviceDescription

Inherits From: IODeviceDescription : Object

Declared In: driverkit/i386/IOEISADeviceDescription.h

Class Description

IOEISADeviceDescriptions encapsulate information about IODirectDevices that run
on ISA- and EISA-compliant computers. Usually, you need only to pass around
IOEISADeviceDescription objects, without creating them, subclassing them, or
sending messages to them. IOEISADeviceDescriptions are created by the system and
initialized from IOConfigTables. They are then passed to the probe: method to
instantiate the driver, using the device description.

Instance Variables

None declared in this class.

Method Types

Getting and setting the list of DMA channels
− channel

− channelList

− numChannels

− setChannelList:num:

Getting and setting the list of I/O port ranges
− portRangeList

− numPortRanges

− setPortRangeList:num:

Getting the EISA slot number and ID
− getEISASlotNumber

− getEISASlotID

Instance Methods

channel

− (unsigned int)channel

Returns the first DMA channel associated with this device. The return value is
undefined if this device has no DMA channels associated with it.

See also: − channelList, − numChannels, − setChannelList:num:

channelList

− (unsigned int *)channelList

Returns all the DMA channels associated with this device. You can get the number of
items in the returned array by invoking numChannels. You should never free the data
returned by this method.

See also: − channel, − numChannels, − setChannelList:num:

getEISASlotID

− (IOReturn)getEISASlotID:(unsigned long *)slotID

Returns the EISA slot identifier for the device. In this identifier, the device ID is in
the lower 16 bits, and the vendor ID is in the upper 16 bits.

getEISASlotNumber

− (IOReturn)getEISASlotNumber:(unsigned int *)slotNumber

Returns the EISA slot number for the device.

numChannels

− (unsigned int)numChannels

Returns the total number of DMA channels associated with this device. This number
is determined from the IOConfigTable from which this IOEISADeviceDescription is
initialized.

See also: − channel, − channelList, − setChannelList:num:

numPortRanges

− (unsigned int)numPortRanges

Returns the total number of I/O port ranges associated with this device.

portRangeList

− (IORange *)portRangeList

Returns all the I/O port ranges associated with this device. You can get the number of
items in the returned array by invoking numPortRanges. You should never free the
data returned by this method.

See also: − numPortRanges, − setPortRangeList:num:

setChannelList:num:

− (IOReturn)setChannelList:(unsigned int *)aList num:(unsigned
int)numChannels

Sets the array and number of DMA channels associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: − channel, − channelList, − numChannels

setPortRangeList:num:

− (IOReturn)setPortRangeList:(IORange *)aList num:(unsigned
int)numPortRanges

Sets the array and number of I/O port ranges associated with this device. You
shouldn’t normally invoke this method, since it overrides the normal configuration
scheme (which is documented in Chapter 4).

See also: − numPortRanges, − portRangeList

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOEthernet

Inherits From: IODirectDevice : IODevice : Object

Conforms To: IONetworkDeviceMethods

Declared In: driverkit/IOEthernet.h

Class Description

IOEthernet is an abstract class for controlling Ethernet devices. It provides a
framework for sending and receiving packets, handling interrupts, and setting and
detecting transmission timeouts. It also provides an IONetwork instance that connects
the driver with the kernel networking subsystem, as well as an I/O thread from which
most of the IOEthernet instance methods are invoked.

IOEthernet includes support for multicast mode and promiscuous mode. It doesn’t
currently provide gdb support for non-NeXT drivers. (gdb support enables the kernel
running the IOEthernet driver to be debugged over the network.)

IOEthernet’s multicast support consists mainly of keeping a list of the multicast
addresses at which multicast packets should be received and providing methods for
configuring multicast addresses. Depending on the hardware’s capability, you can
either implement enableMulticastMode and disableMulticastMode to allow and
disallow receptions of all multicast packets or implement addMulticastAddress: and
removeMulticastAddress: to configure the hardware for individual addresses.

Most hardware implementations don’t guarantee filtering based on individual
addresses. For this reason, the isUnwantedMulticastPacket: method exists to
indicate packets that aren’t bound for an address in the list of valid multicast
addresses. A subclass of IOEthernet written for hardware that implements partial or
no filtering based upon individual addresses should invoke this method each time it
receives a multicast packet to determine whether it should be discarded or not.

To write an Ethernet driver, you create a subclass of IOEthernet.

Implementing a Subclass

Your subclass of IOEthernet must do the following:

• Implement probe: and initFromDeviceDescription:. The implementation of
probe: should allocate an instance and invoke initFromDeviceDescription:. See

the IODevice specification for more information on implementing probe:.

• Implement transmit: , resetAndEnable:, interruptOccurred , and
timeoutOccurred. These methods perform the real work of the driver.
interruptOccurred is invoked from the I/O thread whenever the Ethernet
hardware interrupts. See the EISA/ISA method descriptions in the IODirectDevice
specification for more information on interruptOccurred and timeoutOccurred.

If your subclass supports multicast mode, you must implement either
enableMulticastMode and disableMulticastMode or addMulticastAddress: and
removeMulticastAddress:.

If your subclass supports promiscuous mode, you must implement
enablePromiscuousMode and disablePromiscuousMode.

IONetworkDeviceMethods Protocol Implementation

In IOEthernet’s implementation, finishInitialization invokes resetAndEnable:YES
if [self isRunning] == YES.

Instance Variables

None declared in this class.

Adopted Protocols

IONetworkDeviceMethods − allocateNetbuf

− finishInitialization

− outputPacket:address:

− performCommand:data:

Method Types

Creating and destroying IOEthernet instances
− free

− initFromDeviceDescription:

− attachToNetworkWithAddress:

Handling interrupts − interruptOccurred (IODirectDevice)

Transmitting packets − transmit:

− performLoopback:

Setting and handling hardware timeouts
− setRelativeTimeout:

− relativeTimeout

− clearTimeout

− timeoutOccurred (IODirectDevice)

Setting and getting the state of the hardware
− isRunning

− resetAndEnable

Supporting multicast − enableMulticastMode

− disableMulticastMode

− addMulticastAddress:

− removeMulticastAddress:

− isUnwantedMulticastPacket:

Supporting promiscuity − disablePromiscuousMode

− enablePromiscuousMode

Instance Methods

addMulticastAddress:

− (void)addMulticastAddress:(enet_addr_t *)address

Does nothing. Subclasses that support multicast mode can implement this method so
that it notifies the hardware that it should receive packets sent to address. Some
subclasses that support multicast don’t implement this method because their hardware
doesn’t provide filtering based upon individual multicast addresses. Instead, they
inspect all multicast packets, using isUnwantedMulticastPacket: to weed out
packets to unwanted multicast addresses. This method, followed by
enableMulticastMode, is invoked in the I/O thread every time a new multicast
address is added to the list that IOEthernet maintains.

See also: − enableMulticastMode, − isUnwantedMulticastPacket:, −
removeMulticastAddress:

attachToNetworkWithAddress:

− (IONetwork *)attachToNetworkWithAddress:(enet_addr_t)address

Creates an IONetwork instance and attaches to the network subsystem by sending the
IONetwork an initForNetworkDevice:... message. Before returning, this method
logs a message including the ethernet address. Returns the IONetwork instance just
created.

You invoke this method at the end of your implementation of
initFromDeviceDescription:. You must invoke resetAndEnable:NO before
invoking this method, as described under initFromDeviceDescription:.

clearTimeout

− (void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is
normally invoked from a subclass’s implementation of interruptOccurred .

See also: setRelativeTimeout:, relativeTimeout, timeoutOccurred

disableMulticastMode

− (void)disableMulticastMode

Does nothing. Subclasses that support multicast mode and implement
enableMulticastMode should implement this method so that it disables the
hardware’s support for multicast mode. This method is invoked in the I/O thread when
the last multicast address has been removed from the list that IOEthernet maintains.

See also: − enableMulticastMode

disablePromiscuousMode

− (void)disablePromiscuousMode

Does nothing. Subclasses that support promiscuous mode must implement this method
so that it disables the hardware’s support for promiscuous mode. This method is
invoked in the I/O thread by the networking subsystem.

See also: − enablePromiscuousMode

enableMulticastMode

− (BOOL)enableMulticastMode

Does nothing and returns YES. Subclasses that support multicast mode can implement
this method so that it enables the hardware’s support for multicast mode. Every time a
new multicast address is added to the list that IOEthernet maintains,
addMulticastAddress: and this method are invoked in the I/O thread.

See also: − disableMulticastMode

enablePromiscuousMode

− (BOOL)enablePromiscuousMode

Does nothing and returns YES. Subclasses that support promiscuous mode must
implement this method so that it enables the hardware’s support for promiscuous
mode. This method is invoked in the I/O thread by the networking subsystem.

See also: − enablePromiscuousMode

free

− free

Frees the IOEthernet instance and returns nil .

initFromDeviceDescription:

− initFromDeviceDescription:(IODeviceDescription *)deviceDescription

Initializes a newly allocated IOEthernet instance. This includes invoking
initFromDeviceDescription: on super; invoking startIOThread ; setting the name,
kind, and unit of this instance; and invoking registerDevice.

Subclasses of IOEthernet should implement this method so that it invokes [super
initFromDeviceDescription:] and then performs any device-specific initialization.
The subclass implementation should invoke resetAndEnable:NO and should finish
by invoking attachToNetworkWithAddress:. An example of a subclass
implementation of this method is below. Italicized text delineated in angle brackets,
that is << >>, is to be filled in with device-specific code.

- initFromDeviceDescription:(IODeviceDescription *)devDesc
{
 IOEISADeviceDescription *deviceDescription =
 (IOEISADeviceDescription *)devDesc;
 IORange *io;

 if ([super initFromDeviceDescription:devDesc] == nil)
 return nil;

 << Perform any 1-time hardware initialization. >>

 /* NOTE: This implementation of resetAndEnable: sets myAddress.
*/
 [self resetAndEnable:NO]; // Finish initializing the hardware

 << Perform any additional software initialization. >>

 network = [self attachToNetworkWithAddress:myAddress];
 return self;

}

Returns self if the instance was successfully initialized; otherwise, frees itself and
returns nil .

isRunning

− (BOOL)isRunning

Returns YES if the hardware is currently capable of communication with other
stations in the network; otherwise, returns NO.

See also: − setRunning:

isUnwantedMulticastPacket:

− (BOOL)isUnwantedMulticastPacket:(ether_header_t *)header

Determines whether the specified packet is to a multicast address that this device
shouldn’t listen to. Returns YES if the packet should be dropped; otherwise, returns
NO.

See also: − addMulticastAddress:

performLoopback:

− (void)performLoopback: (netbuf_t)packet

Determines whether the outgoing packet should be received by this device (because
it’s a broadcast packet, for example, or a multicast packet for an enabled address). If
so, simulates reception by sending a copy of packet to the protocol stack. You should
invoke this method in your transmit: method if your hardware device can’t receive its
own packets.

relativeTimeout

− (unsigned int)relativeTimeout

Returns the number of milliseconds until a transmission timeout will occur. If no
transmission timeout is currently scheduled, this method returns zero.

See also: clearTimeout, setRelativeTimeout:, timeoutOccurred

removeMulticastAddress:

− (void)removeMulticastAddress:(enet_addr_t *)address

Does nothing. Subclasses that support multicast mode can implement this method so
that it notifies the hardware that it should stop listening for packets sent to address.

See also: − addMulticastAddress:, − disableMulticastMode

resetAndEnable:

− (BOOL)resetAndEnable:(BOOL)enable

Does nothing and returns YES. Subclasses of IOEthernet must implement this method
so that it resets and initializes the hardware. Interrupts should be enabled if enable is
YES; otherwise, they should be left disabled. In either case, this method should invoke
setRunning: to record the basic state of the device.

This method should return YES if it encounters no errors (no matter what the value of
enable is); if it encounters errors, it should return NO. For example, the result from
resetAndEnable:NO should be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your
IOEthernet subclass implementation, is during initialization. Specifically,
resetAndEnable:YES is invoked once in the I/O thread after
attachToNetworkWithAddress: is invoked.

See also: − setRunning:

setRelativeTimeout:

− (void)setRelativeTimeout:(unsigned int)timeout

Schedules a timeout to occur in timeout milliseconds. This method is generally
invoked by the IOEthernet’s transmit: method. When timeout milliseconds pass
without the timeout being cleared (with clearTimeout), the method
timeoutOccurred is invoked.

See also: clearTimeout, relativeTimeout, timeoutOccurred

setRunning:

− (void)setRunning:(BOOL)running

Sets whether the hardware is on line. The value of running should be YES to indicate
that the hardware is on line; otherwise, it should be NO. This method is invoked only
by methods in IOEthernet subclasses—not by IOEthernet’s own method
implementations. You should invoke this method in your implementation of
resetAndEnable:.

See also: − isRunning

transmit:

− (void)transmit: (netbuf_t)packet

Does nothing except free packet, using the nb_free() function. This method is invoked
by the kernel networking subsystem when the hardware should transmit a packet.

Subclasses of IOEthernet must implement this method. To determine the number of
bytes of data to be transmitted, use the nb_size() function. To get a pointer to the data,
use nb_map(). After getting the information you need from packet, you must free it
with nb_free(). Just before transmitting the packet, you can set a timeout with
setRelativeTimeout:. If your hardware can’t receive packets it transmits, you must
invoke performLoopback: in your implementation of this method.

This method can be invoked in many contexts, not just from the I/O thread (or from
the I/O task). For example, transmit: and interruptOccurred can run at the same
time, so any common structures they both use must be protected with locks.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOFrameBufferDisplay

Inherits From: IODisplay : IODirectDevice : IODevice : Object

Conforms To: IOScreenEvents

Declared In: driverkit/IOFrameBufferDisplay.h

Class Description

IOFrameBufferDisplay is an abstract class for managing display cards that support
linear-mode frame buffers. IOFrameBufferDisplay’s close interaction with the
window server and event system means that your driver needs to do very little.

Note: If your display adapter doesn’t allow you to linearly address the entire frame
buffer at once, use the IOSVGADisplay class instead.

IOFrameBufferDisplay currently supports the following bit depths:

• 2-bit grayscale
• 8-bit grayscale
• 8-bit color
• 16-bit RGB (5-5-5 or 4-4-4—both with 4096 colors)
• 24-bit RGB (8-8-8)

Most of the work in writing a IOFrameBufferDisplay driver is determining how to put
the hardware into an advanced mode in which the frame buffer is linearly
addressable. Some drivers support several advanced modes, which the user chooses
between using the Configure application. The IODisplayInfo specification describes
how to specify the modes your driver supports.

When specifying your driver’s memory ranges in its default configuration table, you
must first specify the addresses of the linear frame buffer, and then the addresses
0xa0000-0xbffff and 0xc0000-0xcffff.

"Memory Maps" = "0x7e00000-0x7ffffff 0xa0000-0xbffff
0xc0000-0xcffff";

See the IODisplayInfo specification for information on display-specific configuration
keys.

Implementing a Subclass

In your subclass of IOFrameBufferDisplay, you must implement the following

methods:

• initFromDeviceDescription:
• enterLinearMode
• revertToVGAMode

You might also need to implement two more methods:

• If the hardware supports setting brightness, you must implement setBrightness:.

• To support multiple gamma correction tables, implement
setTransferTable:count:.

Instance Variables

None declared in this class.

Method Types

Creating and initializing IOFrameBufferDisplays
+ probe:
− initFromDeviceDescription:

Getting and setting parameters − getIntValues:forParameter:count:

− setCharValues:forParameter:count:

− setIntValues:forParameter:count:

Handling the cursor − hideCursor:

− moveCursor:frame:token:

− showCursor:frame:token:

Setting screen brightness − setBrightness:token:

Setting the gamma correction table
− setTransferTable:count:

Mapping the frame buffer − mapFrameBufferAtPhysicalAddress:length:

Choosing display modes − enterLinearMode

− revertToVGAMode

− selectMode:count:

− selectMode:count:valid:

Class Methods

probe:

+ (BOOL)probe:deviceDescription

Without checking for the presence of hardware, allocates and initializes an
IOFrameBufferDisplay. You shouldn’t reimplement this method.

If the initialization (done with initFromDeviceDescription:) is unsuccessful, this
method returns NO. Otherwise, this method sets the device kind to “Linear
Framebuffer”, invokes registerDevice, and returns YES.

See also: − initFromDeviceDescription:

Instance Methods

enterLinearMode

− (void)enterLinearMode

Implemented by subclasses to put the display into linear frame buffer mode. This
method is invoked by the system when appropriate, such as when the window server
starts running.

See also: − revertToVGAMode

getIntValues:forParameter:count:

− (IOReturn)getIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int *)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parameters to super.

See also: − getIntValues:forParameter:count: (IODevice)

hideCursor:

− hideCursor:(int)token

Implements this method, as described in the IOScreenEvents protocol specification.
You should never need to invoke or implement this method.

initFromDeviceDescription:

− initFromDeviceDescription:deviceDescription

Invokes initFromDeviceDescription: on super. If successful, sets the unit number
and the name (to “Display” followed by the unit number). Frees itself if initialization
was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary
to set up the device and the driver. This includes setting the IODisplayInfo structure
(as described in the IODisplay class description) and invoking
mapFrameBufferAtPhysicalAddress:length:. If possible, this method should also
check the hardware to see if it matches the IOConfigTable. If the hardware doesn’t
match, the driver should do what it can to ensure that the display is still usable.

See also: + probe:

mapFrameBufferAtPhysicalAddress:length:

− (vm_address_t)mapFrameBufferAtPhysicalAddress:(unsigned int)address
length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device
driver. If address is 0, this method maps the physical memory corresponding to local
memory range 0, and numBytes is ignored. If address is not 0, the reserved resources
are overridden—address is used as the physical memory address and numBytes is
used as the length. The mapped memory range is cached as specified in the
IODisplayInfo for this instance.

Note: When overriding reserved resources, you can’t map memory outside of the
memory range reserved for the device. However, you can map a subset of the
memory range.

You should invoke this method during initialization.

Returns the virtual address that corresponds to address. If the memory mapping failed,
this method logs an error message and returns NULL.

See also: − initFromDeviceDescription:

moveCursor:frame:token:

− moveCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification.
You should never need to invoke or implement this method.

revertToVGAMode

− (void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it’s
in and enter a mode in which it can be used as a standard VGA device.

See also: − enterLinearMode

selectMode:count:

− (int)selectMode:(const IODisplayInfo *)modeList count:(int)count

Invokes selectMode:count:valid:, specifying 0 for the last argument.

selectMode:count:valid:

− (int)selectMode:(const IODisplayInfo *)modeList
count:(int)count
valid: (const BOOL *)isValid

Determines which IODisplayInfo in the driver-supplied modeList matches the value
of the “Display Mode” key in the device’s IOConfigTable. Drivers that support
multiple advanced modes should invoke this method during initialization. When the
driver receives a enterLinearMode message, it should enter the mode selected by
this method. If this method doesn’t find a valid mode, the driver should determine a
mode that will work.

The “Display Mode” key is a configuration key that can be used by drivers to support
multiple modes—for example, both 8-bit gray and 16-bit RGB. IODisplayInfo is
defined in the header file driverkit/displayDefs.h.

The modeList argument should contain a IODisplayInfo for each advanced mode the
driver supports. The count argument should specify the number of IODisplayInfos in
modeList. isValid should either be 0 (in which case it’s ignored) or an array that
corresponds to the modeList. If isValid[1] is NO, for example, then this method
ignores the IODisplayInfo pointed to by modeList[1].

If this method finds a match, it returns the index of the matching IODisplayInfo in
modeList. If the “Display Mode” key is missing or its value is improperly formatted,
or if a corresponding IODisplayInfo isn’t found, this method returns -1.

See the IODisplay class description for information on display modes and the
IODisplayInfo type.

setBrightness:token:

− setBrightness:(int)level token:(int)token

Checks whether level is between EV_SCREEN_MIN_BRIGHTNESS and
EV_SCREEN_MAX_BRIGHTNESS (inclusive). If not, this method logs an error
message. Subclasses that support brightness changes should override this method and
implement it as described in the IOScreenEvents protocol specification.

Returns self.

setCharValues:forParameter:count:

− (IOReturn)setCharValues:(unsigned char *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parameters to super.

See also: − setCharValues:forParameter:count: (IODevice)

setIntValues:forParameter:count:

− (IOReturn)setIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOFrameBufferDisplays; forwards the
handling of all other parameters to super.

See also: − setIntValues:forParameter:count: (IODevice)

setTransferTable:count:

− setTransferTable:(const unsigned int *)table count:(int)numEntries

Specifies new gamma correction values to be used by the hardware. The default
implement does nothing but return self. Subclasses that support multiple gamma
correction transforms must override this method so that it sets the hardware to reflect
the values in table.

Gamma correction is necessary because displays respond nonlinearly to linear ranges
of voltage. For example, consider a pixel that can have red, green, and blue values
between 0 and 15. This pixel’s brightness when the values are (7, 0, 0) might be more
than 7/15 its brightness when the values are (15, 0, 0). Gamma correction lets the
hardware adjust the voltage of the beam—for example, using 6.5/15 of maximum
voltage instead of 7/15, so that the pixel isn’t too bright.

Each entry in table specifies the gamma correction (a value scaled to be between 0

and 255, inclusive) for the corresponding pixel component values. For example, for
RGB color modes, table[7] specifies the gamma corrections for a red value of 7, a
green value of 7, and a blue value of 7 (using one byte of the entry per component). If
a pixel’s value is (0, 5, 15), for example, the hardware should use the red gamma
correction from table[0], the green gamma correction from table[5], and the blue
gamma correction from table[15]. Which bytes you use from each table entry depends
on whether the transfer table is for a color or black-and-white mode; you can
determine the mode from the value of numEntries.

When numEntries is IO_2BPP_TRANSFER_TABLE_SIZE or
IO_8BPP_TRANSFER_TABLE_SIZE (as defined in the header file
driverkit/displayDefs.h), the table is for a black-and-white display. In this case,
each table entry has only one meaningful byte: the least significant byte.

When numEntries is IO_12BPP_TRANSFER_TABLE_SIZE,
IO_15BPP_TRANSFER_TABLE_SIZE, or IO_24BPP_TRANSFER_TABLE_SIZE,
the table is for an RGB display, and each entry has three meaningful bytes. The most
significant byte holds the red gamma correction, the next most significant byte holds
the green gamma correction, and the next holds the blue gamma correction. The least
significant byte holds no information.

The following example shows how to copy the correction information from the
transfer table to a particular type of hardware.

/* This driver implements setTransferTable: so that it copies the
 * table values into a table that contains first all the red
values,
 * then all the green values, and then all the blue values. It
 * defines 3 instance variables -- redTransferTable,
 * greenTransferTable, and blueTransferTable -- to point to where
 * each component’s values begin in the copied table. Finally,
 * it puts the values in the hardware gamma correction table. */
- setTransferTable:(unsigned int *)table count:(int)numEntries
{
 int k;

 /* redTransferTable, greenTransferTable, and blueTransferTable
 * are driver-defined instance variables
 if (redTransferTable != 0)
 IOFree(redTransferTable, 3 * transferTableCount);

 transferTableCount = numEntries;

 redTransferTable = IOMalloc(3 * numEntries);
 greenTransferTable = redTransferTable + numEntries;
 blueTransferTable = greenTransferTable + numEntries;

 switch ([self displayInfo]->bitsPerPixel) {
 case IO_2BitsPerPixel:
 case IO_8BitsPerPixel:
 for (k = 0; k < numEntries; k++) {
 redTransferTable[k] = greenTransferTable[k] =
 blueTransferTable[k] = table[k] & 0xFF;
 }
 break;

 case IO_12BitsPerPixel:
 case IO_15BitsPerPixel:
 case IO_24BitsPerPixel:
 for (k = 0; k < numEntries; k++) {
 redTransferTable[k] = (table[k] >> 24) & 0xFF;
 greenTransferTable[k] = (table[k] >> 16) & 0xFF;
 blueTransferTable[k] = (table[k] >> 8) & 0xFF;
 }
 break;

 default:
 IOFree(redTransferTable, 3 * numEntries);
 redTransferTable = 0;
 break;
 }
 [self setGammaTable]; /* subclass method */
 return self;
}

/* subclass function */
static void
SetGammaValue(unsigned int r, unsigned int g, unsigned int b,
 int level)
{
 /* EV_SCALE_BRIGHTNESS is a macro defined in bsd/dev/ev_types.h
 * that scales a pixel value to the specified brightness level.
*/
 outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, r));
 outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, g));
 outb(PALETTE_DATA, EV_SCALE_BRIGHTNESS(level, b));
}

/* subclass method */
- setGammaTable
{
 unsigned int i, j, g;
 const IODisplayInfo *displayInfo;

 displayInfo = [self displayInfo];

 outb(PALETTE_WRITE, 0x00);

 /* brightnessLevel is a subclass ivar initialized to
 * EV_SCREEN_MAX_BRIGHTNESS; setBrightness: changes it */
 if (redTransferTable != 0) {
 for (i = 0; i < transferTableCount; i++) {
 for (j = 0; j < 256/transferTableCount; j++) {
 SetGammaValue(redTransferTable[i],
 greenTransferTable[i],
 blueTransferTable[i],
brightnessLevel);
 }
 }
 }
 return self;
}

Gamma correction transforms are set using the setframebuffertransfer PostScript
operator. The Window Server uses the functions specified in setframebuffertransfer

to fill the values used in table. It then passes the values down the display system so
that eventually the setTransferTable:count: message is invoked.

Note: The default transfer table cannot be specified using NetInfo, despite the
claims of the setframebuffertransfer documentation.

See also: setframebuffertransfer PostScript Operator (NEXTSTEP General
Reference)

showCursor:frame:token:

− showCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification.
You should never need to invoke or implement this method.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IONetbufQueue

Inherits From: Object

Declared In: driverkit/IONetbufQueue.h

Class Description

IONetbufQueue is used by network device drivers to store packets until they’re
transmitted. IONetbufQueue is a first-in first-out (FIFO) queue.

Instance Variables

None declared in this class.

Method Types

Creating and initializing instances
− initWithMaxCount:

Adding and removing netbufs from the queue
− enqueue:

− dequeue

Getting the size of the queue − count

− maxCount

Instance Methods

count

− (unsigned int)count

Returns the number of netbufs in the IONetbufQueue.

See also: − maxCount

dequeue

− (netbuf_t)dequeue

Removes and returns the netbuf that has been in the queue the longest. Returns NULL
if no netbufs are in the queue.

enqueue:

− (void)enqueue:(netbuf_t)netbuf

Adds the specified netbuf to the queue, unless the queue already has reached its
maximum length. If the queue is at its maximum length, the netbuf is freed.

See also: − count, − maxCount

initWithMaxCount:

− initWithMaxCount: (unsigned int)maxCount

Initializes and returns a newly allocated IONetbufQueue. The maximum number of
netbufs in the queue is set to maxCount.

maxCount

− (unsigned int)maxCount

Returns the maximum number of netbufs that can be in the IONetbufQueue. This
number is set at initialization time.

See also: − maxCount, − initWithMaxCount:

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IONetwork

Inherits From: Object

Declared In: driverkit/IONetwork.h

Class Description

The IONetwork class connects direct drivers, such as Ethernet drivers, into the kernel
network interface. One IONetwork object is associated with each instance of a
network direct driver. In the future, support may be added for indirect network
drivers, as well.

Network direct drivers must implement the IONetworkDeviceMethods protocol, so
that the IONetwork can send them messages.

Note: Network drivers must run in the kernel.

See the IOEthernet specification for information on how to write Ethernet drivers, and
the IOTokenRing specification for information on writing Token Ring drivers. See
Chapter 8, “Network Modules,” in NEXTSTEP Operating System Software for more
information about network drivers.

Instance Variables

None declared in this class.

Method Types

Initializing an IONetwork instance
− initForNetworkDevice:name:unit:type:

maxTransferUnit:flags:
− finishInitialization

Passing packets from the driver up to the protocol stack
− handleInputPacket:extra:

Outputting a packet − outputPacket:address:

Performing a command − performCommand:data:

Allocating a network buffer − allocateNetbuf

Keeping statistics − collisions

− incrementCollisions

− incrementCollisionsBy:

− incrementInputErrors

− incrementInputErrorsBy:

− incrementInputPackets

− incrementInputPacketsBy:

− incrementOutputErrors

− incrementOutputErrorsBy:

− incrementOutputPackets

− incrementOutputPacketsBy:

− inputErrors

− inputPackets

− outputErrors

− outputPackets

Instance Methods

allocateNetbuf

− (netbuf_t)allocateNetbuf

This method creates and returns a netbuf to be used for an impending output.

This method doesn’t always have to return a buffer. For example, you might want to
limit the number of buffers your driver instance can allocate (say, 200 kilobytes
worth) so that it won’t use too much wired-down kernel memory. When this method
fails to return a buffer, it should return NULL.

Here’s an example of implementing allocateNetbuf.

#define my_HDR_SIZE 14
#define my_MTU 1500
#define my_MAX_PACKET (my_HDR_SIZE + my_MTU)

- netbuf_t allocateNetbuf
{
 if (_numbufs == _maxNumbufs)
 return(NULL);
 else {
 _numbufs++;
 return(nb_alloc(my_MAX_PACKET));
 }
}

See also: nb_alloc() (NEXTSTEP Operating System Software)

collisions

− (unsigned int)collisions

Returns the total number of network packet collisions that have been detected since
boot time.

finishInitialization

- (int)finishInitialization

This method should perform any initialization that hasn’t already been done. For
example, it should make sure its hardware is ready to run. You can specify what the
integer return value (if any) should be.

If you implement this method, you need to check that [self isRunning] == YES.

handleInputPacket:extra:

− (int)handleInputPacket:(netbuf_t)packet extra:(void *)extra

Increments the number of input packets and passes packet to the kernel for
processing. The kernel dispatches the packet to the appropriate protocol handler, as
described <<only in the OS book, for now>>.

A network device driver should invoke this method after it’s processed a newly
received packet. The value of extra should be zero, unless the protocol handler
requires another value. For instance, token ring drivers need to return a valid pointer
to a token ring header. This method returns EAFNOSUPPORT if no protocol handler
accepts the packet; otherwise, it returns zero.

incrementCollisions

− (void)incrementCollisions

Increments by one the total number of network packet collisions that have been
detected since boot time.

incrementCollisionsBy:

− (void)incrementCollisionsBy:(unsigned int)increment

Increments by increment the total number of network packet collisions that have been
detected since boot time.

incrementInputErrors

− (void)incrementInputErrors

Increments by one the total number of packet input errors that have been detected
since boot time.

incrementInputErrorsBy:

− (void)incrementInputErrorsBy: (unsigned int)increment

Increments by increment the total number of packet input errors that have been
detected since boot time.

incrementInputPackets

− (void)incrementInputPackets

Increments by one the total number of packets that have been received by the
computer since boot time. You usually don’t need to invoke this method because
handleInputPacket:extra: does so for you.

incrementInputPacketsBy:

− (void)incrementInputPacketsBy:(unsigned int)increment

Increments by increment the total number of packets that have been received by the
computer since boot time.

incrementOutputErrors

− (void)incrementOutputErrors

Increments by one the total number of packet output errors that have been detected
since boot time.

incrementOutputErrorsBy:

− (void)incrementOutputErrorsBy: (unsigned int)increment

Increments by increment the total number of packet output errors that have been

detected since boot time.

incrementOutputPackets

− (void)incrementOutputPackets

Increments by one the total number of packets that have been transmitted by the
computer since boot time.

incrementOutputPacketsBy:

− (void)incrementOutputPacketsBy:(unsigned int)increment

Increments by increment the total number of packets that have been transmitted by
the computer since boot time.

initForNetworkDevice:name:unit:type:maxTransferUnit:flags:

− initForNetworkDevice:device
name:(const char *)name
unit: (unsigned int)unit
type:(const char *)type
maxTransferUnit: (unsigned int)mtu
flags:(unsigned int)flags

Initializes and returns the IONetwork instance associated with the specified direct
device driver device. This method connects device into the kernel’s networking
subsystem. It’s typically called from a network driver’s implementation of
initFromDeviceDescription. You shouldn’t invoke initForNetworkDevice:...
directly. IOEthernet and IOTokenRing invoke this method on behalf of their
subclasses and return an IONetwork object in their respective
attachToNetworkWithAddress: methods.

The name argument should be set to a constant string that names this type of network
device. For example, Ethernet drivers are named “en”, and Token Ring drivers are
named “tr”. The unit is an integer greater than or equal to zero that’s unique for name.
For example, the first instance of an Ethernet driver is unit 0, the second is unit 1, and
so on.

The type is a constant string that describes this module. For example, Ethernet drivers
supply the constant IFTYPE_ETHERNET (which is defined in net/etherdefs.h to be
“10MB Ethernet”).

The mtu is the maximum amount of data your module can send or receive. For
example, Ethernet drivers use the value ETHERMTU, which is defined in the header file

net/etherdefs.h as 1500.

Finally, flags defines the initial flags for the interface. Possible values are:

IFF_UP: If true, this interface is working.
IFF_BROADCAST: If true, this interface supports broadcast.
IFF_LOOPBACK: If true, this interface is local only.
IFF_POINTTOPOINT: If true, this is a point-to-point interface.

inputErrors

− (unsigned int)inputErrors

Returns the total number of packet input errors that have been detected since boot
time.

inputPackets

− (unsigned int)inputPackets

Returns the total number of packets that have been received by the computer since
boot time.

outputErrors

− (unsigned int)outputErrors

Returns the total number of packet output errors that have been detected since boot
time.

outputPacket:address:

− (int)outputPacket:(netbuf_t)packet address:(void *)address

This method should deliver the specified packet to the given address. Its return value
should be zero if no error occurred; otherwise, return an error number from the header
file sys/errno.h.

If you implement this method, you need to check that [self isRunning] == YES. If so,
insert the necessary hardware addresses into the packet and check it for minimum
length requirements.

outputPackets

− (unsigned int)outputPackets

Returns the total number of packets that have been transmitted by the computer since
boot time.

performCommand:data:

− (int)performCommand:(const char *)command data:(void *)data

This method performs arbitrary control operations; the character string command is
used to select between these operations. Although you don’t have to implement any
operations, there are five standard operations. You can also define your own
operations.

The standard commands are listed in the following table. The constant strings listed
below are declared in the header file net/netif.h (under the bsd directory of
/NextDeveloper/Headers).

Command Operation

IFCONTROL_SETFLAGS Request to have interface flags turned on or off.
The data argument for this command is of type
union ifr_ifru (which is declared in the header file
net/if.h).

IFCONTROL_SETADDR Set the address of the interface.

IFCONTROL_GETADDR Get the address of the interface.

IFCONTROL_AUTOADDR Automatically set the address of the interface.

IFCONTROL_UNIXIOCTL Perform a UNIX ioctl() command. This is only for
compatibility; ioctl() isn’t a recommended
interface for network drivers. The argument is of
type if_ioctl_t * , where the if_ioctl_t structure
contains the UNIX ioctl request (for example,
SIOCSIFADDR) in the ioctl_command field and
the ioctl data in the ioctl_data field.

An example of implementing performCommand:data: follows.

- (int)performCommand:(const char *)command data:(void *)data
{
 int error = 0;

 if (strcmp(command, IFCONTROL_SETFLAGS) == 0)
 /* do nothing */;
 else
 if (strcmp(command, IFCONTROL_GETADDR) == 0)
 bcopy(&my_address, data, sizeof (my_address));
 else

 error = EINVAL;

 return (error);
}

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOPCIDeviceDescription

Inherits From: IOEISADeviceDescription : IODeviceDescription : Object

Declared In: driverkit/i386/IOPCIDeviceDescription.h

Class Description

IOPCIDeviceDescription objects encapsulate information about IODirectDevices that
run on PCI-compliant computers. Usually, you need only to pass around
IOPCIDeviceDescriptions, without creating them, subclassing them, or sending
messages to them. IOPCIDeviceDescriptions are created by the system and
initialized from IOConfigTables.

This object encapsulates the PCI Configuration Space address of the device. This
address contains three fields:

• Device number, ranging from 0 to 31
• Function number, ranging from 0 to 7
• Bus number, ranging from 0 to 255

Instance Variables

None declared in this class.

Method Types

Getting config address of PCI device
− getPCIdevice:function:bus:

Instance Methods

getPCIdevice

− (IOReturn)getPCIdevice:(unsigned char *)deviceNumber
function: (unsigned char *)functionNumber
bus:(unsigned char *)busNumber

This method allows callers to get the PCI config address of the PCI device associated
with this device description. If all goes well, the three parameters are filled in and
IO_R_SUCCESS is returned. There are a variety of reasons that the address couldn’t
be known, in which case an appropriate code is returned and the parameters are left
untouched. It is acceptable for any of the parameter pointers to be nil .

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOPCMCIADeviceDescription

Inherits From: IOEISADeviceDescription : IODeviceDescription : Object

Declared In: driverkit/i386/IOPCMCIADeviceDescription.h

Class Description

IOPCMCIADeviceDescription objects encapsulate information about
IODirectDevices that run on PCMCIA-compliant computers. Usually, you need only
to pass around IOPCMCIADeviceDescriptions, without creating them, subclassing
them, or sending messages to them. IOPCMCIADeviceDescriptions are created by
the system and initialized from IOConfigTables.

Instance Variables

None declared in this class.

Method Types

Getting information about tuples − numTuples

− tupleList

Instance Methods

numTuples

− (unsigned)numTuples

Returns the number of items in the tuple list.

See also: tupleList

tupleList

− (id *)tupleList

Returns the tuple list.

See also: numTuples

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOPCMCIATuple

Inherits From: IOPCMCIATuple : Object

Declared In: driverkit/i386/IOPCMCIATuple.h

Class Description

IOPCMCIATuple objects encapsulate configuration information about
IODirectDevices that run on PCMCIA-compliant computers. Data from a “tuple” is
from information stored on the PCMCIA card; each tuple stores a separate piece of
information. IOPCMCIADeviceDescription objects typically contain a list of
IOPCMCIATuple objects, containing such configuration data as electrical
requirements, I/O port ranges, and timing information.

Usually, you need only to pass around IOPCMCIATuple objects, without creating
them, subclassing them, or sending messages to them. IOPCMCIATuples are created
by the system.

Instance Variables

None declared in this class.

Method Types

Getting information from a tuple
− code

− data

− length

Instance Methods

code

− (unsigned char)code

Returns a code describing the contents of the tuple, as described in the PCMCIA

standard.

See also: data, length

data

− (unsigned char *)data

Returns the tuple data, which is in machine readable form.

See also: code, length

length

− (unsigned)length

Returns the length of the tuple data in bytes.

See also: code, data

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOSCSIController

Inherits From: IODirectDevice : IODevice : Object

Conforms To: IOSCSIControllerExported

Declared In: driverkit/IOSCSIController.h

Class Description

IOSCSIController is an abstract class for managing SCSI controllers. It provides a
framework for making SCSI requests and providing standard statistics. It also
provides an I/O thread.

Implementing a Subclass

To write a driver for a SCSI controller, you create a subclass of IOSCSIController.
Your subclass must do the following:

• Implement probe: (as documented in IODevice) and
initFromDeviceDescription:. These let your driver create instances of itself.

• Implement executeRequest:buffer:client: and resetSCSIBus.

• Implement timeouts, as described in “Implementing Timeouts,” below.

• Implement interruptOccurred , as documented in IODirectDevice.

To support standard statistics, you should implement sumQueueLengths,
maxQueueLength, numQueueSamples, and resetStats, as described in “Supporting
Standard Statistics,” below.

Implementing Timeouts

To implement timeouts, you need to implement the timeoutOccurred: method (as
documented in IODirectDevice) and make sure that your driver sends a timeout
message whenever a request has taken too much time. To do the latter, your
executeRequest:buffer:client: method should use IOScheduleFunc() to schedule a
function; the method should then start I/O. If the I/O finishes before the function has
executed, executeRequest:buffer:client: should unschedule the function.
Otherwise, the function should send a timeout message (one with a msg_id field set to
IO_TIMEOUT_MSG) to the instance’s interrupt port. An example is below.

Italicized text delineated in angle brackets, that is << >>, is to be filled in with
device-specific code.

In executeRequest:buffer:client:
 << ...Construct a device-dependent command buffer “ccb”...
 Since the function we schedule won’t be called from the I/O
 task, it must use msg_send_from_kernel. This means that we
 must convert the interrupt port from the I/O task space to
one
 that’s valid in the regular kernel space. We do this in
 initFromDeviceDescription: as follows:
 interruptPortKern = IOConvertPort([self
interruptPort],
 IO_KernelIOTask, IO_Kernel); >>
 ccb->timeoutPort = interruptPortKern;
 IOScheduleFunc(myTimeout, ccb, scsiRequest->timeoutLength);
 << ...Start the I/O and wait for it to finish... >>
 (void) IOUnscheduleFunc(myTimeout, ccb);

/* This method just logs a warning and sends a timeout message. */
static void myTimeout(void *arg)
{
 struct ccb *ccb = arg;
 msg_header_t msg;

 if(!ccb->in_use) {
 /* Race condition - this CCB got completed another way. */
 return;
 }

 msg.msg_remote_port = ccb->timeoutPort;
 msg.msg_id = IO_TIMEOUT_MSG;
 IOLog("mySCSIController timeout\n");
 (void) msg_send_from_kernel(&msg, MSG_OPTION_NONE, 0);
}

Supporting Standard Statistics

Subclasses of IOSCSIController can provide information used by the iostat command
and any other statistics-gathering modules. To provide this information, the
IOSCSIController must look at the number of requests in its queue of I/O requests,
keeping track of the following:

• The total number of requests detected in the queue. The IOSCSIController should
implement sumQueueLengths so that it returns this value.

• The highest number of requests in the queue at one time. This value should be
returned by maxQueueLength.

• The number of times the driver has looked at the queue. The numQueueSamples
method should return this value.

For example, assume the IOSCSIController has looked at its list of outstanding I/O
requests three times, and found 1 request the first time, 5 the second, and 2 the third.
At this point, sumQueueLengths should return 8, maxQueueLength should return 5,

and numQueueSamples should return 3. The average number of requests in the list is
sumQueueLengths divided by numQueueSamples.

The IOSCSIController should reset all these values to 0 whenever it receives a
resetStats message.

Instance Variables

None declared in this class.

Adopted Protocols

IOSCSIControllerExported −
allocateBufferOfLength:actualStart:actualLength:
− executeRequest:buffer:client:

− getDMAAlignment:

− maxTransfer

− releaseTarget:lun:forOwner:

− reserveTarget:lun:forOwner:

− resetSCSIBus

− returnFromScStatus:

Method Types

Initializing a newly allocated IOSCSIController
− initFromDeviceDescription:

Reserving target/lun pairs − numReserved

Getting and setting parameters − getIntValues:forParameter:count:

− setIntValues:forParameter:count:

Collecting statistics − maxQueueLength

− numQueueSamples

− sumQueueLengths

− resetStats

Instance Methods

getIntValues:forParameter:count:

− (IOReturn)getIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int *)count

Handles the two parameters specific to SCSI
controllers—IO_SCSI_CONTROLLER_STATS and
IO_IS_A_SCSI_CONTROLLER—and forwards the handling of all other parameters
to super. The array of values returned for IO_SCSI_CONTROLLER_STATS is set to
the numbers returned by maxQueueLength, numQueueSamples, and
sumQueueLengths. No array is returned for IO_IS_A_SCSI_CONTROLLER; only
IO_R_SUCCESS is returned, to indicate that this IODevice is indeed a SCSI
controller.

See also: − setIntValues:forParameter:count:

initFromDeviceDescription:

− initFromDeviceDescription:deviceDescription

Initializes a new IOSCSIController instance. After invoking IODirectDevice’s
version of initFromDeviceDescription:, this method starts an I/O thread (with
startIOThread) and sets its unit, name, and device kind. Each IOSCSIController has
its own unit number. The first instance’s unit is 0, the second is 1, and so on. The
name is the concatenation of “sc” and the unit (for example, “sc0”), and the device
kind is “sc”.

This method also determines the alignment restrictions for the hardware, using the
getDMAAlignment: method. The alignment restrictions are used by the method
allocateBufferOfLength:actualStart:actualLength: .

This method returns nil and frees the instance if initialization failed; otherwise, it
returns self.

You should implement this method to invoke IOSCSIController’s version and to then
perform any driver-dependent initialization, including initializing the hardware and (at
the very end) invoking registerDevice.

maxQueueLength

− (unsigned int)maxQueueLength

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the highest number of requests queued since this instance
was initialized or resetStats was last called. See the class description for more
information on supporting standard statistics.

numQueueSamples

− (unsigned int)numQueueSamples

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the number of times the instance has collected information
about its queue of I/O requests. This number should be reset to 0 when this instance is
initialized and when resetStats is called. See the class description for more
information on supporting standard statistics.

numReserved

− (unsigned int)numReserved

Returns the number of target/lun pairs that are reserved. Each pair corresponds to an
active device on the SCSI bus that this instance controls.

See also: − reserveTarget:lun:forOwner: and − releaseTarget:lun:forOwner:
(IOSCSIControllerExported protocol)

resetStats

− (void)resetStats

Does nothing. Subclasses that support standard statistics should implement this
method so that it resets to zero the numbers that are returned by maxQueueLength,
numQueueSamples, and sumQueueLengths. See the class description for more
information on supporting standard statistics.

setIntValues:forParameter:count:

− (IOReturn)setIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles the IO_SCSI_CONTROLLER_STATS parameter, forwarding the handling
of all other parameters to super. The IO_SCSI_CONTROLLER_STATS parameter
resets (using resetStats) the standard statistical data kept by this instance.

See also: − getIntValues:forParameter:count:

sumQueueLengths

− (unsigned int)sumQueueLengths

Returns zero. Subclasses that support standard statistics should implement this
method so that it returns the total number of requests detected in its queue of I/O
requests. This number should be reset to 0 when this instance is initialized and when
resetStats is called. See the class description for more information on supporting
standard statistics.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOSVGADisplay

Inherits From: IODisplay : IODirectDevice : IODevice : Object

Conforms To: IOScreenEvents

Declared In: driverkit/IOSVGADisplay.h

Class Description

IOSVGADisplay is an abstract class for managing Super VGA (SVGA) video
displays. It provides most of the functionality needed by SVGA drivers. Functionality
that varies from card to card must be provided by subclasses of IOSVGADisplay. In
particular, different SVGA cards have different ways of setting the current plane and
segment and of entering and exiting SVGA modes.

IOSVGADisplay supports 2-bit grayscale modes; it doesn’t currently support 8-bit
gray or color modes. To provide 2-bit grayscale support, IOSVGADisplay uses 2 of
the 8 planes associated with screen pixels. The IOSVGADisplay subclass maps the
values in the two planes into four entries in the hardware color palette, as described in
enterSVGAMode.

Because the VGA specification allows only 64KB of screen memory to be mapped
(from 0xa0000 to 0xbffff), the screen is split up into segments of 64KB or less. The
display system tells the driver which segment and plane to map into the 64KB of
available space. For a screen that’s 768 pixels high by 1024 wide, the first 64KB
segment (segment 0) consists of the top 512 rows of pixels. The next segment consists
of the bottom 256 rows.

To write an SVGA display driver, you need to write two software modules:

• A subclass of IOSVGADisplay
• Five functions to be loaded into a user-level PostScript driver

How to write these modules is described below. See the IODisplay class description
for additional notes on implementing a display driver.

Implementing a Subclass

In your subclass of IOSVGADisplay, you must implement the following methods:

• initFromDeviceDescription:
• enterSVGAMode

• revertToVGAMode
• savePlaneAndSegmentSettings
• restorePlaneAndSegmentSettings
• setReadPlane:
• setReadSegment:
• setWritePlane:
• setWriteSegment:

If the hardware supports setting brightness, you should also implement
setBrightness:token:.

Writing Functions for the PostScript Driver

Besides implementing a subclass of IOSVGADisplay, you also need to write five C
functions. One, named IOSetSVGAFunctions(), should fill in the structure it’s
passed with pointers to the other four functions. It should return zero on success. The
other four functions correspond exactly to four methods that you must also implement;
each function should have exactly the same code as its corresponding method.

Function Prototype Corresponding Method

void setReadPlane(unsigned char num) setReadPlane:
void setReadSegment(unsigned char num) setReadSegment:
void setWritePlane(unsigned char num) setWritePlane:
void setWriteSegment(unsigned char num) setWriteSegment:

Here’s an example of how to implement IOSetSVGAFunctions().

void SetReadPlane(unsigned char num) . . .
void SetReadSegment(unsigned char num) . . .
void SetWriteSegment(unsigned char num) . . .
void SetWritePlane(unsigned char num) . . .

int IOSetSVGAFunctions(IOSVGAFunctions *funcs)
{
 funcs->setReadSegment = SetReadSegment;
 funcs->setWriteSegment = SetWriteSegment;
 funcs->setReadPlane = SetReadPlane;
 funcs->setWritePlane = SetWritePlane;

 return 0;
}

Note: The functions must contain only C code; Objective C code won’t work.

The five functions should be defined in a user-level executable, to be loaded into the
SVGA PostScript driver at run time. You need to inform the PostScript driver of the
executable’s location using the configuration key “SVGA PostScript Driver
Extension”. You also need to specify the SVGA PostScript driver
(/usr/lib/NextStep/Displays/SVGA_psdrvr) with the “PostScript Driver” key. For
example, the lines below specify that the SVGA PostScript driver should load the
executable named TsengLabsET4000_psdrvr from the driver’s configuration
bundle.

"SVGA PostScript Driver Extension" = "TsengLabsET4000_psdrvr";
"PostScript Driver" = "/usr/lib/NextStep/Displays/SVGA_psdrvr";

Note: See the IODisplay class description for other configuration keys that must be
specified.

Instance Variables

None declared in this class.

Method Types

Creating and initializing IOSVGADisplays
+ probe:
− initFromDeviceDescription:

Getting and setting parameters − getIntValues:forParameter:count:

− setIntValues:forParameter:count:

Handling the cursor − hideCursor:

− moveCursor:frame:token:

− showCursor:frame:token:

Setting screen brightness − setBrightness:token:

Mapping memory − mapFrameBufferAtPhysicalAddress:length:

Choosing video modes − enterSVGAMode

− revertToVGAMode

− selectMode:count:

− selectMode:count:valid:

Setting planes and segments − savePlaneAndSegmentSettings

− restorePlaneAndSegmentSettings

− setReadPlane:

− setReadSegment:

− setWritePlane:

− setWriteSegment:

Class Methods

probe:

+ (BOOL)probe:deviceDescription

Without checking for the presence of hardware, allocates and initializes an
IOSVGADisplay. You shouldn’t reimplement this method.

If initialization (done with initFromDeviceDescription:) is unsuccessful, this
method returns NO. Otherwise, this method sets the device kind to “frame buffer”,
invokes registerDevice, and returns YES.

Instance Methods

enterSVGAMode

− (void)enterSVGAMode

Implemented by subclasses to put the display into SVGA mode. This method is
invoked by the system when appropriate, such as when the window server starts
running. This method should set up all the registers necessary for the selected mode,
set the color palette, and clear the screen.

You should set the color palette to contain values for the four supported shades of
gray in the first four entries; the rest of the entries should be zeroed out. NeXT drivers
currently use the palette values shown in the following table.

Color Palette Index Value

Black 0 0
Dark gray 1 0x26
Light gray 2 0x34
White 3 0x3F

See also: − revertToVGAMode

getIntValues:forParameter:count:

− (IOReturn)getIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int *)count

Handles NeXT-internal parameters specific to IOSVGADisplays; forwards the
handling of all other parameters to super.

hideCursor:

− hideCursor:(int)token

Implements this method, as described in the IOScreenEvents protocol specification.
You should never need to invoke or implement this method.

initFromDeviceDescription:

− initFromDeviceDescription:deviceDescription

Invokes initFromDeviceDescription: on super. If successful, sets the unit number
and the name (to “SVGADisplay” followed by the unit number). Frees itself if
initialization was unsuccessful.

Subclasses must implement this method so that it performs all initialization necessary
to set up the device and the driver. After invoking initFromDeviceDescription: on
super, this method should determine its mode (invoking selectMode:count: or
selectMode:count:valid:, if necessary) and set [self displayMode] to the
IODisplayInfo appropriate for the mode. The driver should finish by invoking
mapFrameBufferAtPhysicalAddress:length: and setting the IODisplayInfo’s
frameBuffer field to the value returned.

If possible, this method should check the hardware to see if it matches the
IOConfigTable. If the hardware doesn’t match, the driver should do what it can to
ensure that the display is still usable.

See also: IODisplay class description (“IODisplayInfo”)

mapFrameBufferAtPhysicalAddress:length:

− (vm_address_t)mapFrameBufferAtPhysicalAddress:(unsigned int)address
length:(int)numBytes

Maps the physical memory for this instance into virtual memory for use by the device
driver. If address is 0, this method maps the physical memory corresponding to local
memory range 0, and numBytes is ignored. If address is not 0, the reserved resources
are overridden—address is used as the physical memory address and numBytes is
used as the length. The mapped memory range is cached as IO_WriteThrough.

Note: When overriding reserved resources, you can’t map memory outside of the
memory range reserved for the device. However, you can map a subset of the
memory range.

You should invoke this method during initialization.

Returns the virtual address that corresponds to address. If the memory mapping failed,
this method logs an error message and returns NULL.

moveCursor:frame:token:

− moveCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described by the IOScreenEvents protocol. You should
never need to invoke or implement this method.

restorePlaneAndSegmentSettings

− (void)restorePlaneAndSegmentSettings

Implemented by subclasses to restore the plane and segment settings to the saved
values. This method is invoked by IOSVGADisplay’s cursor handling methods. The
cursor handling methods invoke savePlaneAndSegmentSettings, do whatever is
necessary to update the cursor, and then invoke restorePlaneAndSegmentSettings
to restore the display’s state.

Here’s an example of implementing this method by saving the current settings into
subclass-defined instance variables.

- (void)restorePlaneAndSegmentSettings
{
 IOWriteRegister(EIDR_SEQ_ADDR, SEQ_AT_MPK, writePlane);
 IOWriteRegister(EIDR_GCR_ADDR, GCR_AT_READ_MAPS, readPlane);
 outb(EIDR_GCR_SEGS, readSegment);
 outb(EIDR_GCR_SEGS, writeSegment);
}

revertToVGAMode

− (void)revertToVGAMode

Implemented by subclasses to remove the display from whatever advanced mode it’s
in and enter a mode in which it can be used as a standard VGA device. Implementing
this method usually consists of setting registers that aren’t used by VGA.

savePlaneAndSegmentSettings

− (void)savePlaneAndSegmentSettings

Implemented by subclasses to save the current plane and segment settings. This
method is invoked by IOSVGADisplay’s cursor handling methods. The cursor
handling methods invoke savePlaneAndSegmentSettings, do whatever is necessary
to update the cursor, and then invoke restorePlaneAndSegmentSettings to restore
the display’s state.

Each invocation of savePlaneAndSegmentSettings is followed by exactly one
invocation of restorePlaneAndSegmentSettings, with no intervening invocations of

savePlaneAndSegmentSettings. In other words, the driver only has to remember
one group of settings at a time.

Here’s an example of implementing this method by saving the current settings into
subclass-defined instance variables.

- (void)savePlaneAndSegmentSettings
{
 writePlane = IOReadRegister(EIDR_SEQ_ADDR, SEQ_AT_MPK);
 readPlane = IOReadRegister(EIDR_GCR_ADDR, GCR_AT_READ_MAPS);
 readSegment = inb(EIDR_GCR_SEGS);
 writeSegment = inb(EIDR_GCR_SEGS);
}

selectMode:count:

− (int)selectMode:(const IODisplayInfo *)modeList count:(int)count

Invokes selectMode:count:valid:, specifying 0 for the last argument.

selectMode:count:valid:

− (int)selectMode:(const IODisplayInfo *)modeList
count:(int)count
valid: (const BOOL *)isValid

Determines which IODisplayInfo in the driver-supplied modeList matches the value
of the “Display Mode” key in the device’s IOConfigTable. Drivers that support
multiple advanced modes should invoke this method during initialization. When the
driver receives a enterSVGAMode message, it should enter the mode selected by
this method. If this method doesn’t find a valid mode, the driver should determine a
mode that will work.

The “Display Mode” key is a configuration key that can be used by drivers to support
multiple modes—for example, 66 Hz and 72 Hz. IODisplayInfo is defined in the
header file driverkit/displayDefs.h.

The modeList argument should contain an IODisplayInfo for each advanced mode the
driver supports. The count argument should specify the number of IODisplayInfos in
modeList. isValid should either be 0 (in which case it’s ignored) or an array that
corresponds to the modeList. If isValid[1] is NO, for example, then this method
ignores the IODisplayInfo pointed to by modeList[1].

If this method finds a match, it returns the index of the matching IODisplayInfo in
modeList. If the “Display Mode” key is missing or its value is improperly formatted,
or if a corresponding IODisplayInfo isn’t found, this method returns -1.

See the IODisplay class description for information on display modes and the
IODisplayInfo type.

setBrightness:token:

− setBrightness:(int)level token:(int)token

Checks whether level is between EV_SCREEN_MIN_BRIGHTNESS and
EV_SCREEN_MAX_BRIGHTNESS (inclusive). If not, logs an error message.
Subclasses that support brightness changes should override this method. A typical
implementation has code like this:

/* Color palette constants (gamma 2.2, for typical CRT displays)
*/
#define WHITE_PALETTE_VALUE 0x3F
#define LIGHT_GRAY_PALETTE_VALUE 0x34
#define DARK_GRAY_PALETTE_VALUE 0x26
#define BLACK_PALETTE_VALUE 0
.
.
.
unsigned char val;

val = EV_SCALE_BRIGHTNESS(level, WHITE_PALETTE_VALUE);
/* Write val to the hardware’s color palette entry for white */

val = EV_SCALE_BRIGHTNESS(level, LIGHT_GRAY_PALETTE_VALUE);
/* Write val to the entry for light gray */

val = EV_SCALE_BRIGHTNESS(level, DARK_GRAY_PALETTE_VALUE);
/* Write val to the entry for dark gray */

val = EV_SCALE_BRIGHTNESS(level, BLACK_PALETTE_VALUE);
/* Write val to the entry for black */

Returns self.

setIntValues:forParameter:count:

− (IOReturn)setIntValues:(unsigned int *)parameterArray
forParameter:(IOParameterName)parameterName
count:(unsigned int)count

Handles NeXT-internal parameters specific to IOSVGADisplays; forwards the
handling of all other parameters to super.

See also: − setIntValues:forParameter:count: (IODevice)

setReadPlane:

− (void)setReadPlane:(unsigned char)planeNum

Implemented by subclasses to set which of two planes the display subsystem will

read from. Only one plane can be active at a time. Here’s an example of implementing
this method.

#define GRAPHICS_CONTROLLER_REGISTER_ADDRESS 0x03CE
#define SEGMENT_REGISTER_INDEX 0x09

- (void)setReadSegment: (unsigned char)segmentNum
{
 IOWriteRegister(GRAPHICS_CONTROLLER_REGISTER_ADDRESS,
 SEGMENT_REGISTER_INDEX,
 (segmentNum << 4));
}

See also: − setWritePlane:

setReadSegment:

− (void)setReadSegment:(unsigned char)segmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read
from.

#define GRAPHICS_CONTROLLER_REGISTER_ADDRESS 0x03CE
#define PLANE_REGISTER_INDEX 0x04
#define PROTECT_HIGH_REGISTER_BITS 0xFC

- (void)setReadPlane: (unsigned char)planeNum
{
 IOReadModifyWriteRegister(GRAPHICS_CONTROLLER_REGISTER_ADDRESS,
 PLANE_REGISTER_INDEX,
 PROTECT_HIGH_REGISTER_BITS,
 planeNum);
}

See also: − setWriteSegment:

setWritePlane:

− (void)setWritePlane:(unsigned char)planeNum

Implemented by subclasses to set which of two planes the display subsystem will
write to. Only one plane can be active at a time.

See also: − setReadPlane:

setWriteSegment:

− (void)setWriteSegment:(unsigned char)segmentNum

Implemented by the subclass to set the 64KB segment the display subsystem will read
from.

See also: − setReadSegment:

showCursor:frame:token:

− showCursor:(Point *)cursorLoc
frame:(int)frame
token:(int)token

Implements this method, as described in the IOScreenEvents protocol specification.
You should never need to invoke or implement this method.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

IOTokenRing

Inherits From: IODirectDevice : IODevice : Object

Conforms To: IONetworkDeviceMethods

Declared In: driverkit/IOTokenRing.h

Class Description

IOTokenRing is an abstract class for controlling Token Ring devices. It provides a
framework for sending and receiving packets (also known as frames), handling
interrupts, and setting and detecting timeouts. It also provides an IONetwork instance
that connects the driver with the kernel networking subsystem, as well as an I/O
thread from which most of the IOTokenRing instance methods are invoked. To write a
Token Ring driver, you create a subclass of IOTokenRing.

Implementing a Subclass

Your subclass of IOTokenRing must do the following:

• Implement probe: and initFromDeviceDescription:. These let your driver create
instances of itself. The implementation of probe: should allocate an instance, if
necessary, and invoke initFromDeviceDescription:. See the IODevice
specification for more information on implementing probe:.

• Implement resetAndEnable:, and interruptOccurred . (interruptOccurred is
documented in the IODirectDevice specification.)

• Implement either transmit: or outputPacket:address:.

IONetwork Method Usage

When your driver invokes IONetwork’s method handleInputPacket:extra: to hand
off a packet to the kernel, it needs to pass a valid pointer to a tokenHeader_t struct as
the extra: argument. Passing 0 for this argument (as ethernet drivers do) won’t
suffice.

IONetworkDeviceMethods Protocol Implementation

In IOEthernet’s implementation, finishInitialization invokes resetAndEnable:YES if

[self isRunning] == YES.

Recommended Reading

Besides the documentation for your hardware, see the references in the “Network
Drivers” section of “Suggested Reading” in the Appendix to help you write a Token
Ring driver.

Instance Variables

None declared in this class.

Adopted Protocols

IONetworkDeviceMethods − allocateNetbuf

− finishInitialization

− outputPacket:address:

− performCommand:data:

Method Types

Creating and destroying IOTokenRing instances
− free

− initFromDeviceDescription:

− attachToNetworkWithAddress:

Transmitting packets − transmit:

Setting and handling hardware timeouts
− setRelativeTimeout:

− relativeTimeout

− clearTimeout

Setting and getting the state of the hardware
− setRunning:

− isRunning

− resetAndEnable:

Setting and getting maximum sizes
− setMaxInfoFieldSize:

− maxInfoFieldSize

Getting other configuration information
− earlyTokenEnabled

− nodeAddress

− ringSpeed

− shouldAutoRecover

Instance Methods

attachToNetworkWithAddress:

− (IONetwork *)attachToNetworkWithAddress:(token_addr_t)address

Invokes registerDevice, sets the node address to address, creates an IONetwork
instance, and attaches to the network subsystem by sending the IONetwork an
initForNetworkDevice:... message. Besides starting up the IP protocol stack for the
device, this method also starts up an 802.2-compliant Null SAP interface. Finally, this
method logs a message stating the node address. Returns the IONetwork instance just
created.

To determine the value to specify for address, first invoke nodeAddress. If
nodeAddress returns a nonzero value, use that value. Otherwise, use the hardware’s
burnt-in address.

You invoke this method at the end of your implementation of
initFromDeviceDescription:. You must invoke resetAndEnable:NO before
invoking this method, as described under initFromDeviceDescription:, later in this
specification.

clearTimeout

− (void)clearTimeout

If a transmission timeout is scheduled, unschedules the timeout. This method is
normally invoked from a subclass’s implementation of interruptOccurred .

See also: − setRelativeTimeout:, − relativeTimeout

earlyTokenEnabled

− (BOOL)earlyTokenEnabled

Returns YES if Early Token Release (ETR) is supported by the station; otherwise,
returns NO. Stations that support ETR can co-exist with non-ETR stations in the ring.
The value returned by this method is set by initFromDeviceDescription:.

free

− free

Frees the IOTokenRing instance and its resources and returns nil .

initFromDeviceDescription:

− initFromDeviceDescription:(IODeviceDescription *)devDesc

Invokes the superclass implementation, starts an I/O thread (using startIOThread),
and sets the device name, kind, and unit.

Next, it examines the device configuration table for such parameters as ring speed
and early token enablement. It then sets the maximum packet size, based on the ring
speed. If the ring speed is 4 megabits per second, the maximum info field size is
MAC_INFO_4MB. If the ring speed is 16, the maximum info field size is
MAC_INFO_16MB. (The maximum packet size is the maximum info field size plus
MAC_HDR_MAX.) These constants are defined in the header file
bsd/net/tokendefs.h.

Subclasses of IOTokenRing should implement this method so that it invokes the
superclass version of initFromDeviceDescription:, makes sure the configuration is
correct, invokes setMaxInfoFieldSize:, does any other device-specific software and
hardware initialization, and invokes attachToNetworkWithAddress:.

This method should free the instance and return nil on failure; otherwise, it should
return self. A rough example of implementing this method is below.

- initFromDeviceDescription:(IODeviceDescription *)devDesc
{
 if([super initFromDeviceDescription:devDesc] == nil)
 return nil;

 /* Perform any 1-time hardware initialization. */

 /* Finish initializing the hardware. */
 [self resetAndEnable:NO];

 /* Do any additional software initialization; set the max info
 * field size; get the node address (as described in the
 * documentation of attachToNetworkWithAddress: */

 IOLog("%s: Token-Ring at port=%x irq=%d dma=%d speed=%d\n",
 [self name], base, myIrq, myDmaChan, [self ringSpeed]);

 network = [super attachToNetworkWithAddress:myNodeAddress];
 return self;
}

isRunning

− (BOOL)isRunning

Returns YES if the hardware is currently inserted in the ring; otherwise, returns NO.

See also: − setRunning:

maxInfoFieldSize

− (unsigned int)maxInfoFieldSize

Returns the maximum size of the info field. This value is used by allocateNetbuf. It’s
also used as the maximum transfer unit specified to the network subsystem.

See also: − setMaxInfoFieldSize:

nodeAddress

− (token_addr_t)nodeAddress

Returns the node address for this station. Currently, only burnt-in addresses are
supported. In the future, however, IOTokenRing will be able to initialize the node
address from the device configuration table. The value returned by this method is set
by attachToNetworkWithAddress:.

relativeTimeout

− (unsigned int)relativeTimeout

Returns the number of milliseconds until a transmission timeout will occur. If no
transmission timeout is currently scheduled, this method returns zero.

See also: − clearTimeout, − setRelativeTimeout:

resetAndEnable:

− (BOOL)resetAndEnable:(BOOL)enable

Does nothing and returns YES. Subclasses of IOTokenRing must implement this
method so that it resets and initializes the hardware. This method should invoke
setRunning: to record the basic state of the device.

If enable is YES and the station is already in the ring, this method should do nothing
but invoke setRunning: with a YES argument and return YES. If enable is YES and
the station isn’t in the ring, interrupts should be enabled and the station inserted in the
ring; setRunning: should be used to update the device running status to YES or NO,

depending on the success of the insertion. If enable is NO, interrupts should be left
disabled, the station should be removed from the ring, and setRunning: should be
invoked with a NO argument.

This method should return YES if it encounters no errors (no matter what value
enable has); if it encounters errors, it should return NO. For example, the result from
resetAndEnable:NO should be YES if the reset is successful.

The only time this method is invoked, with the exception of any invocations from your
IOTokenRing subclass implementation, is during initialization. Specifically,
resetAndEnable:YES is invoked once in the I/O thread after
attachToNetworkWithAddress: is invoked.

See also: − setRunning:

ringSpeed

− (unsigned int)ringSpeed

Returns the speed of the Token Ring, in megabits per second. This value, which is
either 4 or 16, is set to the amount specified by the “Ring Speed” key in the device
configuration table. If the value is missing or invalid, the ring speed is set to 16.

setMaxInfoFieldSize:

− (void)setMaxInfoFieldSize:(unsigned int)size

Sets the maximum size of the info field. This value is used by allocateNetbuf. It’s
also used as the maximum transfer unit specified to the network subsystem. Your
subclass should invoke this method in its implementation of
initFromDeviceDescription:.

See also: − maxInfoFieldSize

setRelativeTimeout:

− (void)setRelativeTimeout:(unsigned int)timeout

Schedules a timeout to occur in timeout milliseconds. When timeout milliseconds
pass without the timeout being cleared (with clearTimeout), timeoutOccurred is
invoked.

See also: − clearTimeout, − relativeTimeout, − timeoutOccurred
(IODirectDevice)

setRunning:

− (void)setRunning:(BOOL)running

Sets whether the hardware is inserted into the ring. The value of running should be
YES to indicate that the hardware is inserted; otherwise, it should be NO. This
method is invoked only by methods in IOTokenRing subclasses—not by
IOTokenRing’s own method implementations. You should invoke this method in your
implementation of resetAndEnable:.

See also: − isRunning

shouldAutoRecover

− (BOOL)shouldAutoRecover

Returns YES if the device should try to recover from a failed attempt at inserting itself
into the ring or from an unexpected removal from the ring; otherwise, returns NO.
IOTokenRing sets this value depending on the value of the “Auto Recovery” key in
the device configuration table. This method is provided as a convenience for
IOTokenRing subclasses that support automatic recovery.

transmit:

− (void)transmit: (netbuf_t)packet

Does nothing except free packet, using the nb_free() function. This method is invoked
by the kernel networking subsystem when the hardware should transmit a packet.

Subclasses of IOTokenRing can implement this method or they can reimplement the
method that invokes it: outputPacket:address:. To determine the number of bytes of
data to be transmitted, use the nb_size() function. To get a pointer to the data, use
nb_map(). After getting the information you need from packet, you should free it with
nb_free().

See also: − outputPacket:address: (IONetworkDeviceMethods protocol)

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Configuration Keys
This section describes keys that can be used in .table files in driver and system
configuration bundles (in /NextLibrary/Devices). The configuration system and
Configure application are described in Chapter 4.

Some keys can have several values, expressed as a space-delimited list.
Space-delimited lists have one space between elements, with nothing before the first
or after the last element.

Key values that specify addresses are expressed as ranges. Ranges include both the
start and end address. If a range consists of a single byte, it’s indicated by specifying
the same start and end address—for example, “0x0-0x0”.

Driver Configuration Keys
The keys described in this section can be used in .table files in a driver’s bundle. You
can also specify your own keys. User and kernel modules alike can get the value of
any key using the IOConfigTable class. Configure inspectors, which set some key
values, use NXStringTable to do so; the NXStringTable corresponding to the instance
configuration is available through the table instance variable of IODeviceInspector.

Here’s an example of a default configuration file:

"Class Names" = "myTestDriver";
"Family" = "Example";
"Instance" = "0";
"Version" = "1.1";
"Driver Version" = "myTestDriver, 3.2 version, built by kw
8/20/93";
"DMA Channels" = "1";
"I/O Ports" = "0x0-0x0";
"IRQ Levels" = "2";
"Valid IRQ Levels" = "1 2 3 4";
"Memory Maps" = "0x20000-0x200ff";
"Server Name" = "myTestDriver";

See the driver bundles under /NextLibrary/Devices for more examples.

The following table shows the keys and explains when they must be used. Each key is
explained in detail later in this section.

Key Used For

“Auto Detect IDs” Drivers that support device auto detection
“Auto Recovery” IOTokenRing drivers
“Block Major” Drivers with UNIX block entry points; optional
“Boot Driver” Drivers that must be loaded at boot time
“Bus Type” Drivers that aren’t EISA- or ISA-based
“Character Major” Drivers with UNIX character entry points; optional
“Class Names” All drivers that don’t specify “Driver Name”
“Default Table” Instance tables only (inserted by Configure)
“Display Mode” Display drivers
“DMA Channels” Drivers that support DMA
“Driver Name” Alternative to the preferred “Class Names”
“Driver Version” All drivers
“Family” All drivers
“Instance” All drivers
“I/O Ports” Drivers that need access to I/O ports
“IRQ Levels” Drivers that support interrupts
“Location” All drivers; optional
“Memory Maps” Drivers that need access to mapped device
memory
“Post-Load” Drivers that require user-level help after loading
“PostScript Driver” IOSVGADisplay drivers
“Pre-Load” Drivers that require user-level help before loading
“Ring Speed” IOTokenRing drivers
“Server Name” All drivers (inserted by Driver Kit makefiles)
“Share IRQ Levels” Drivers that use shared interrupts
“SVGA PostScript Driver Extension”

Display drivers that require a special PostScript
driver
“Valid DMA Channels” Drivers that support DMA; optional but
recommended
“Valid IRQ Levels” Drivers that support interrupts; optional but
recommended
“Version” All drivers
“VGA Memory Maps” Display drivers
“16Mb Early Token” IOTokenRing drivers

Keys

Auto Detect IDs

Example: “Auto Detect IDs” = “CPQ1234”;
or
“Auto Detect IDs” = “0x71789004 0x0e111234”;

This is a string used by Configure and installation software to identify hardware that

can be controlled by the device driver. The string is a space separated list of auto
detect IDs, each of which is an identifier that can be used to match a device
connected to an I/O bus.

The auto detect ID contains both a vendor ID and a 16-bit device ID. An ANSI
committee assigns vendor IDs; the vendor assigns device IDs. The auto detect ID
takes the form of a 7 character string described in the EISA specification. It consists
of two fields: VVVdddd, where V is an upper-case letter, and d is a hexadecimal digit.
The three letters VVV represent the vender code; the four digit hexadecimal number
dddd represents the device ID. The combination of these two fields is guaranteed to
be unique. For example, “CPQ” is the vendor ID for Compaq, so an ID of “CPQ1234”
represents the Compaq device with device ID “1234”.

The 7 character format is the preferred form of the auto detect ID. However, this ID
can also be expressed as a 32-bit hexadecimal number. The vendor ID is translated
into a 16-bit hexadecimal number; the device ID is the same as in the other format.
The layout in this format differs for each bus type. For the EISA bus, the device ID is
in the lower 16 bits, and the vendor ID is in the upper 16 bits. For the PCI bus, the
vendor ID is in the lower 16 bits, and the device ID is in the upper 16 bits.

Auto Recovery

Example: “Auto Recovery” = “YES”;

Used in IOTokenRing drivers to specify whether the driver should support automatic
recovery from errors. See the IOTokenRing class specification for more information.

Block Major

Example: “Block Major” = “1”;

Used by some drivers with UNIX entry points to specify the device’s block major
number. See the IODevice class specification for more information.

Boot Driver

Example: “Boot Driver”;

Specifies that the driver must be loaded at boot time. For example, SCSI controller
drivers must typically be loaded at boot time so that the system can use the disks
attached to the controller.

Bus Type

Example: “Bus Type” = “PCI”;

Indicates the type of bus the device uses. The current valid values are “EISA” (which
includes ISA), “PCI” and “PCMCIA”. If the key isn’t present or valid, it defaults to
“EISA”.

Character Major

Example: “Character Major” = “15”;

Used by some drivers with UNIX entry points to specify the device’s character major
number. See the IODevice class specification for more information.

Class Names

Example: “Class Names” = “FloppyController FloppyDisk”;
“Class Names” = “AHAController”;

A space-delimited list of the classes in the relocatable object file that should receive
probe: messages. This key is preferred to the “Driver Name” key, which may
become obsolete.

Default Table

Example: “Default Table” = “ATIUltraPro”;

Automatically inserted into Instancen.table files by Configure when necessary. You
should never have to specify this key.

Display Mode

Example: “Display Mode” = “Width: 1024 Height: 768 Refresh: 76Hz
ColorSpace: RGB:555/16”;

Used by display drivers to specify the mode the display should be in. This key’s value
should be equivalent to one of the values assigned to the “Display Modes” key in the
bundle’s Language.lproj/Localizable.strings file.

The key’s value should be of the form:

“Width: width Height:height ColorSpace:(BW:bits | RGB:xyz/w) Refresh:rate
Hz”

White space and ordering are ignored, but correct capitalization is required. The color
space parameter should be either BW: followed by the bits per pixel, or RGB:
followed by the bits per color component and then the bits per pixel.

For example, the string shown below describes a display mode that’s 800 pixels wide
and 600 high, supports color at 16 bits per pixel (5 bits each of red, green, and blue per
pixel), and has a refresh rate of 60 Hz.

 Width: 800 Height: 600 ColorSpace: RGB:555/16 Refresh: 60 Hz

DMA Channels

Example: “DMA Channels” = “2”;
“DMA Channels” = “3 7”;

A space-delimited list of DMA channels that should be reserved for the device. You
must specify default values with this key if your device performs DMA. The user can
change the default values with the Configure application, subject to restrictions that
you impose with the “Valid DMA Channels” key.

Driver Name

Example: “Driver Name” = “AHAController”;

This is obsolete; use the “Class Names” key instead. The “Driver Name” key is
identical to the “Class Names” key, except that it doesn’t allow you to specify more
than one class.

Driver Version

Example: “Driver Version” = “PROGRAM:Wingine
PROJECT:displayDrivers-14 DEVELOPER:mflynn BUILT:NO DATE SET (-B
used)”;

“Driver Version” = “myTestDriver, 3.2 version, built by kw 8/18/93”;

A string uniquely identifying the driver version. In the future, the system may display
this string when appropriate.

Family

Example: “Family” = “Display”;

The family the device belongs to. Configure uses this key to group devices and to
make sure that all essential device families are represented. Valid values are listed in
the table below.

Value Configure View

“Display” Display (at least one is required in the system
configuration)
“Pointing Device” Mouse (at least one pointing device is required)
“Network” Network
“SCSI” SCSI
“Audio” Audio
“Keyboard” Other (at least one keyboard is required)
“Disk” Other

The “SCSI” value should be used only for SCSI controllers—not for SCSI devices
such as tape drives. The “Disk” value should be used for both disks and disk
controllers (except for SCSI controllers). For example, the IDE disk and IDE
controller drivers (which are in the same relocatable object file) have the value

“Disk” in their default configuration file.

Values besides those listed in the table above are permitted, but aren’t treated
specially. They’re included in the Configure view labeled Other. Examples of other
values in use include “Parallel” and “Serial”.

Instance

Example: “Instance” = “0”;

The instance number of this configuration file. Configure automatically specifies this
key in Instancen.table files, but you should specify “Instance” = “0” in default files.

I/O Ports

Example: “I/O Ports” = “0x170-0x177”;
“I/O Ports” = “0x3f8-0x3ff 0x2f8-0x2ff”;

A space-delimited list of I/O port ranges that should be reserved for the device. You
must specify default values with this key if your driver uses I/O ports to get access to
the device. If your driver uses Configure’s default inspector, the user can change the
starting address of the first range (but not the length of the range) using the inspector.

IRQ Levels

Example: “IRQ Levels” = “1”;
“IRQ Levels” = “4 3”;

A space-delimited list of interrupts (IRQs) that should be reserved for the device. You
must specify default values with this key if your device interrupts. The user can
change the default values with the Configure application, subject to restrictions that
you impose with the “Valid IRQ Levels” key.

Location

Example: “Location” = “Slot 3”;

The location of the device. This string is set automatically by the device auto
detection software and has a different format for each bus.

EISA
“Slot n” where n is replaced by a slot number, as in “Slot
1”.

PCI
“Dev:d Func:f Bus:b” where d is the device number,

 f is the function number, and
 b is the bus number;
“Dev:6 Func:0 Bus:0”, for example.

Memory Maps

Example: “Memory Maps” = “0x0D0000-0xD3FFF”;
“Memory Maps” = “0xa0000-0xbffff 0xc0000-0xcffff”;

A space-delimited list of memory ranges that should be reserved for the device. You
must specify default values with this key if your driver needs access to mapped
device memory. If your driver uses Configure’s default inspector, the user can change
the starting address of the first range (but not the length of the range) using the
inspector.

Post-Load

Example: “Post-Load” = “InstallPPDev”;

A user-level program to be run just after the driver is loaded. In the example above,
the executable file InstallPPDev is a file in the driver’s bundle that installs the
driver’s device files.

PostScript Driver

Example: “PostScript Driver” = “/usr/lib/NextStep/Displays/SVGA_psdrvr”;

Used by display drivers to specify the PostScript driver that matches them.
IOFrameBufferDisplays don’t specify this key, since they use the default PostScript
driver. IOSVGADisplay drivers, however, must specify the SVGA PostScript driver,
as shown above. See the IOSVGADisplay class description for more information.

Pre-Load

Example: “Pre-Load” = “RemovePPDev”
;

A user-level program to be run just before the driver is loaded. In the example above,
the executable file RemovePPDev is a file in the driver’s bundle that removes the
driver’s old device files before the driver is loaded.

Ring Speed

Example: “Ring Speed” = “4”
;

Used by IOTokenRings to specify the speed of the Token Ring. This must be either 4
or 16. See the IOTokenRing class specification for more information.

Server Name

Example: “Server Name” = “ATI”;

Indicates the name of this driver’s bundle, minus the .config suffix. You shouldn’t
need to specify this key, since it’s inserted automatically by the Driver Kit makefiles.
For information on using the Driver Kit makefiles, refer to Chapter 4.

Share IRQ Levels

Example: “Share IRQ Levels” = “Yes”;

Indicates whether the device uses shared interrupts or not. On EISA and PCI systems,
using shared interrupts implies using level-triggered interrupts. The value is either
“Yes” or “No” with the default being “No”. Shared interrupts are not supported on
ISA bus computers.

SVGA PostScript Driver Extension

Example: “SVGA PostScript Driver Extension” =
“CirrusLogicGD542X_psdrvr”;

Used by IOSVGADisplay drivers to specify the driver-specific module to be loaded
into the SVGA PostScript driver. See the IOSVGADisplay class description for more
information.

Valid DMA Channels

Example: “Valid DMA Channels” = “0 1 3 5 6 7”;
“Valid DMA Channels” = “2”
;

A space-delimited list of DMA channels that can be used by the device. When the
user inspects the device, Configure automatically dims every DMA channel that isn’t
valid, so that the user can select only valid channels. See also the “DMA Channels”
key.

Valid IRQ Levels

Example: “Valid IRQ Levels” = “1”;
“Valid IRQ Levels” = “11 12 14 15”
;

A space-delimited list of interrupts (IRQs) that can be used by the device. When the
user inspects the device, Configure automatically dims every IRQ that isn’t valid, so
that the user can select only valid IRQs. See also the “IRQ Levels” key.

Note: IRQ 2 can’t be used on ISA- and EISA-based machines, so it should never be
in the “Valid IRQ Levels” list.

Version

Example: “Version” = “1.0”;
“Version” = “2.1”;

A floating point number that describes the version of this driver. In the future, the
system may warn the user whenever the user attempts to install a driver that has a
lower version than the already installed version of the same driver. By convention, the
number before “.” should change only when the driver is incompatible (for user-level
clients) from earlier versions. Configure display this version string.

VGA Memory Maps

Example: “VGA Memory Maps” = “0xa0000-0xbffff 0xc0000-0xcffff”;

A space-delimited list of memory ranges used for VGA access. Every display
driver’s default configuration table must include this key with the value
“0xa0000-0xbffff 0xc0000-0xcffff”.

16Mb Early Token

Example: “16Mb Early Token” = “YES”;

Used in IOTokenRing drivers to specify whether the driver should support early token
release. See the IOTokenRing class specification for more information.

System Configuration Keys
The keys described in this section are used in .table files in the system bundle. You
don’t usually have to specify any of the keys except perhaps the “Kernel Flags” key.

Active Drivers

Example: “Active Drivers” = “EtherExpress16 ParallelPort ATI Beep”;

Drivers to be loaded automatically and probed after boot time. Configure
automatically adds drivers to either this list or the “Boot Drivers” list whenever the
user adds a driver to the system configuration. By default, drivers are added to this
list; if the default table contains the “Boot Driver” key, however, the driver is added
to the “Boot Drivers” list.

Boot Drivers

Example: “Boot Drivers” = “PS2Keyboard BusMouse DPT2012 IDE Floppy”;

Drivers to be loaded and probed at boot time. See also “Active Drivers”, above.

Boot Graphics

Example: “Boot Graphics” = “Yes”;

Specifies whether graphics (instead of system messages) should be displayed during
boot time.

Bus Type

Example: “Bus Type” = “ISA”;
“Bus Type” = “EISA”;

The system bus architecture. This key isn’t currently used for the System
Configuration.

Kernel

Example: “Kernel” = “mach_kernel”;

The name of the kernel to use.

Kernel Flags

Example: “Kernel Flags” = “rootdev=sd1a”;

Options to pass to the kernel.

Machine Name

Example: “Machine Name” = “Dell 450DE/2 DGX”;

The system manufacturer name/model. This key isn’t currently used.

Version

Example: “Version” = “1.0”;

Used by the Configure application.

Copyright 1995 by NeXT Computer, Inc. All Rights Reserved.

Suggested Readings on
Writing Device Drivers

These references provide useful information in a variety of areas for driver writers.

NeXT Documentation
NEXTSTEP General Reference

This reference manual describes the Mach Kit, which contains the NXLock and
NXConditionLock classes.

NEXTSTEP Development Tools and Techniques

This manual tells how to use development tools such as ProjectBuilder and gdb.

NEXTSTEP Operating System Software

This manual has information on the Mach Operating System and using Mach
messages. It contains extensive material on writing Loadable Kernel Servers.

NEXTSTEP Object-Oriented Programming and the Objective C Language

This book explains the basic concepts of Objective C including Objective C
messages, protocols, and categories.

NeXTanswers on archive sites

These files contain much useful information on NeXT device drivers and the
Driver Kit.

Mach Operating System
Programming under Mach. Joseph Boykin, David Kirschen, Alan Langerman, and
Susan LoVerso. Addison-Wesley, 1993.

An introduction to Mach tasks, threads, interprocess communication, and memory
management.

General Driver Writing
Writing a UNIXΤΜDevice Driver, Second Edition. Janet I. Egan and Thomas J.
Teixeira. John Wiley and Sons, 1992.

An excellent general introduction to UNIX drivers. Make sure you specify the
second edition since the first one is very specific to System V and MassComp in
particular.

Writing Device Drivers for SCOΤΜUNIXΤΜ, A Practical Approach. Peter Kettle and
Steve Statler. Addison-Wesley, 1993.

This book includes some details of Intel hardware. It contains a good reference
section.

Buses
EISA System Architecture, Second Edition. Tom Shanley. Mindshare Press, 1993.

ISA System Architecture, Second Edition. Tom Shanley and Don Anderson.
Mindshare Press, 1993.

PCI System Architecture, Second Edition. Tom Shanley. Mindshare Press, 1993.

This book tells how to work with a version 2.0 compliant bus.

PCMCIA System Architecture, Tom Shanley. Mindshare Press, 1994.

All of these books are distributed by Computer Literacy Bookshops.

Display Drivers
Programmer’s Guide to the EGA and VGA Cards, Second Edition. Richard F. Ferraro.
Addison-Wesley.

Network Drivers

Besides the documentation for your hardware, the following references can help you
write a Token Ring driver.

Computer Networks. Andrew S. Tanenbaum, Prentice Hall, 1981.

Has information on networking, in general.

International Standard ISO/IEC 8802-3; ANSI/IEEE Std. 802.3.

IBM Token-Ring Network Architecture Technical Reference (SC30-3374-02).

This definitive and readable manual describes a superset of the 802.5
specification. You can get it from IBM or from IBM dealers.

Information Technology—Local and Metropolitan Area Networks. Part 5: Token Ring
Access Method and Physical Layer Specifications. International Standard ISO/IEC
8802-5; ANSI/IEEE Std. 802.5.

This is the specification for 802.5.

All NeXT manuals are copyright  1995 by NeXT Computer, Inc. All Rights Reserved.

