
1

Topic 1:

The TriMesh Geometry
WHAT IS THE TRIMESH?

TriMesh is your friend. If your primary concern is speed you will
want to use TriMesh geometries since they will render fast. The
TriMesh geometry type is a very low-level geometry which was
introduced in QuickDraw 3D 1.5. Before TriMesh existed, we used
less optimized geometry types like Mesh or TriGrid to build our 3D
models. These other geometry types are easier and more flexible to
work with than TriMesh, but generally do not give you as much
performance as the TriMesh. In addition, 3DMF files containing Mesh
geometries take a lot longer to load than 3DMF files containing
TriMeshes.

TriMesh geometry is very streamlined and the data can be passed to
hardware accelerators in whole without being broken down into its
individual triangles. Most 3D accelerators can process TriMeshes
around two times faster than they can a stream of individual
triangles.

The TriMesh Data Structures

TQ3TriMeshData

Simply put, a TriMesh is just a bunch of parallel arrays which define
all of the points and attributes in a model. The main data structure
looks like this:

2

typedef struct TQ3TriMeshData
{

TQ3AttributeSet triMeshAttributeSet;

unsigned long numTriangles;
TQ3TriMeshTriangleData *triangles;

unsigned long numTriangleAttributeTypes;
TQ3TriMeshAttributeData *triangleAttributeTypes;

unsigned long numEdges;
TQ3TriMeshEdgeData *edges;

unsigned long numEdgeAttributeTypes;
TQ3TriMeshAttributeData *edgeAttributeTypes;

unsigned long numPoints;
TQ3Point3D *points;

unsigned long numVertexAttributeTypes;
TQ3TriMeshAttributeData *vertexAttributeTypes;

TQ3BoundingBox bBox;
} TQ3TriMeshData;

Unlike most of the other geometries in QuickDraw 3D, there are no
support functions which help you add faces, vertices, or attributes to
a TriMesh. You get to build all of the data by hand, therefore, it is
important to really understand the TQ3TriMeshData structure.

The first record, triMeshAttributeSet, is simply a reference to a
regular QuickDraw 3D Attribute Set object. This attribute set will
contain all of the attributes to apply to the entire TriMesh such as its
color or texture map.

numTriangles determines how many triangles are in the TriMesh,
and triangles points to an array of triangle definitions (see below)
which you supply.

numTriangleAttributeTypes determines how many types of
attributes the triangles have, and triangleAttributeTypes points to
an array which contains all of the attribute data. All of the triangles
in a TriMesh have the same types and quantities of attributes, but
the value of each attribute can differ from triangle to triangle. In
other words, if one triangle has a face normal attribute, then they all
have face normal attributes. Actually, the only triangle attribute

3

which we will ever want to include in our TriMeshes is a face normal
attribute. I’ll go into more detail about triangle and vertex attributes
later, but suffice to say that you will never want to assign anything
but face normals to the triangles.

numEdges is used for defining edges on your TriMesh. This is only
needed if the fill style you’re using to render is set to
kQ3FillStyleEdges. Since you’re probably not going to use edge
rendering for a fast, interactive, 3D application, we’ll always leave
numEdges and numEdgeAttributeTypes set to 0. Also be sure to set
the edges and edgeAttributeTypes pointers to nil.

numPoints is the number of vertices in the TriMesh, and points
points to an array of 3D points (TQ3Point3D) containing the
coordinates of all the vertices.

numVertexAttributeTypes and vertexAttributeTypes are like their
counterparts numTriangleAttributeTypes and
triangleAttributeTypes. These records define the attributes you
wish to assign to each vertex. The only attributes we’ll need to apply
to our vertices are vertex normals and texture uv coordinates.

bBox is the bounding box encapsulating all of the points in the
TriMesh. QuickDraw 3D provides a utility function called
Q3BoundingBox_SetFromPoints3D which can be used to calculate the
correct bounding box based on the points in the points array.

It is critical that you calculate this correctly! Do not even
consider setting bBox.isEmpty to true! This may result in a
serious performance hit. Also, make sure to never ever create
a bounding box smaller than what it should be. If there are
vertices which lie outside of the bounding box then your
application is destined to eventually crash. Be very diligent
about generating a correct bounding box for each TriMesh.

4

Triangles

As described above, triangles points to an array of triangle
definitions. A triangle definition is a simple data structure which
looks like this:

typedef struct TQ3TriMeshTriangleData
{

unsigned long pointIndices[3];
} TQ3TriMeshTriangleData;

Since the points are kept in the points array, all that is needed to
define a triangle are three indices into the points list. So, suppose
we have following geometry:

Figure 1.0

0

1 2
3

4

A

B C

A geometry made of 3 triangles (A, B, anc C) and 5
points (0..4)

The triangles are thus built in the TriMesh as:

TQ3TriMeshData myTriMesh;
TQ3TriMeshTriangleData triangles[3] =
{

1,0,4, // triangle A
1,4,2, // triangle B
2,4,3 // triangle C

};

myTriMesh.numTriangles = 3;
myTriMesh.triangles = &triangles[0];

5

Figure 1.1

Point List

0

1

2

3

4

Triangle List

A

B

C

Graphical representation of the relation between
triangles and the point list.

TriMesh Attribute Arrays

Setting up attribute arrays for faces and vertices is a little strange at
first because it doesn’t work like anything else in QuickDraw 3D. It’s
actually a bit messy, but it makes sense.

Remember that numTriangleAttributeTypes determines how many
types of attributes we need for the faces of the TriMesh. Since the
only face attribute we will ever want to apply to a TriMesh is a face
normal, we can set this value to 1. The pointer
triangleAttributeTypes simply points to a single
TQ3TriMeshAttributeData structure which has the following form:

typedef struct TQ3TriMeshAttributeData
{

TQ3AttributeType attributeType;
void *data;
char *attributeUseArray;

} TQ3TriMeshAttributeData;

The attributeType parameter is set to kQ3AttributeTypeNormal since
we want to assign normals to the faces.

6

data points to an array of values for the specified attribute type.
Since our attribute type is kQ3AttributeTypeNormal this data pointer
points to an array of vectors (TQ3Vector3D).

There must be exactly as many vectors in the array as there
are triangles in the model. This way there is exactly 1 vector
for each triangle - no more, no less.

attributeUseArray is used for custom attributes so always set this to
nil since we don’t want to mess with those.

The code to set up these attributes might look like the following:

TQ3TriMeshData myTriMesh;
TQ3TriMeshAttributeData attribData;
TQ3Vector3D vectorArray[NUM_TRIANGLES];

/* SET MAIN TRIMESH STRUCT */

myTriMesh.numTriangles = NUM_TRIANGLES;

myTriMesh.numTriangleAttributeTypes = 1;
 myTriMesh.triangleAttributeTypes = &attribData;

/* SET ATTRIBUTE STRUCT */

attribData.attributeType = kQ3AttributeTypeNormal;
attribData.data = &vectorArray[0];
attribData.attributeUseArray = nil;

Setting normals for each of the vertices is almost completely identical
to the above code, but very often we will also need to apply UV
texture mapping coordinates to each vertex. As with the faces, there
must be a 1:1 correlation between the number of points and the
number of attribute values for each attribute type, therefore, the
normal and uv arrays must have as many entries as there are points
in the model.

7

Figure 1.2

Point List

0

1

2

3

4

Normals UV Coords

Diagram showing the parallel correlations among
the point list, normal list, and UV list.

The following code shows how to setup the normal and uv attributes
for the vertices in a TriMesh:

TQ3TriMeshData myTriMesh;
TQ3TriMeshAttributeData attribData[2];
TQ3Vector3D vectorArray[NUM_VERTICES];
TQ3Param2D uvArray[NUM_VERTICES];

/* SET MAIN TRIMESH STRUCT */

myTriMesh.numPoints = NUM_ VERTICES;

myTriMesh.numVertexAttributeTypes = 2;
 myTriMesh.vertexAttributeTypes = &attribData;

/* SET ATTRIBUTE STRUCT */

attribData[0].attributeType = kQ3AttributeTypeNormal;
attribData[0].data = &vectorArray[0];
attribData[0].attributeUseArray = nil;

attribData[1].attributeType = kQ3AttributeTypeSurfaceUV;
attribData[1].data = &uvArray [0];
attribData[1].attributeUseArray = nil;

Building the Whole TriMesh

Now let’s see how to build the TriMesh shown in Figure 1.0.

8

/*************** BUILD MY TRIMESH ****************/
//
// INPUT: textureAttrib = reference to attribute set containing
// the texture shader to apply to the
// TriMesh.
//
// OUTPUT: a reference to the new TriMesh geometry object
//

TQ3GeometryObject BuildMyTriMesh(TQ3AttributeSet *textureAttrib)
{
TQ3TriMeshData myTriMeshData;
TQ3TriMeshAttributeData vertexAttribs[2],faceAttribs;
TQ3GeometryObject myTriMeshObject;

TQ3Vector3D vertexNormals[5] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2,
x3,y3,z3,
x4,y4,z4

};

TQ3Vector3D faceNormals[3] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2

};

TQ3Param2D uvArray[5] =
{

u0,v0,
u1,v1,
u2,v2,
u3,v3,
u4,v4

};

TQ3Point3D points[5] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2,
x3,y3,z3,
x4,y4,z4

};

TQ3TriMeshTriangleData triangles[3] =
{

1,0,4, // triangle A
1,4,2, // triangle B
2,4,3 // triangle C

};

9

/* BUILD MAIN TRIMESH DATA STRUCTURE */

myTriMeshData.triMeshAttributeSet = textureAttrib;

myTriMeshData.numTriangles = 3;
myTriMeshData.triangles = &triangles[0];

myTriMeshData.numTriangleAttributeTypes = 1;
myTriMeshData.triangleAttributeTypes = &faceAttribs;

myTriMeshData.numEdges = 0;
myTriMeshData.edges = nil;
myTriMeshData.numEdgeAttributeTypes = 0;
myTriMeshData.edgeAttributeTypes = nil;

myTriMeshData.numPoints = 5;
myTriMeshData.points = &points[0];

myTriMeshData.numVertexAttributeTypes = 2;
 myTriMeshData.vertexAttributeTypes = &vertexAttribs[0];

/* CALCULATE BOUNDING BOX */

Q3BoundingBox_SetFromPoints3D(&myTriMeshData.bBox, &points[0],
 5, sizeof(TQ3Point3D));

/* CREATE FACE ATTRIBUTES */

faceAttribs.attributeType = kQ3AttributeTypeNormal;
faceAttribs.data = &faceNormals[0];
faceAttribs.attributeUseArray = nil;

/* CREATE VERTEX ATTRIBUTES */

vertexAttribs[0].attributeType = kQ3AttributeTypeNormal;
vertexAttribs[0].data = &vertexNormals[0];
vertexAttribs[0].attributeUseArray = nil;

vertexAttribs[1].attributeType = kQ3AttributeTypeSurfaceUV;
vertexAttribs[1].data = &uvArray[0];
vertexAttribs[1].attributeUseArray = nil;

/* MAKE THE TRIMESH GEOMETRY OBJECT */

myTriMeshObject = Q3TriMesh_New(&myTriMeshData);
if (myTriMeshObject == nil)

DoError("\pQ3TriMesh_New failed!");

return(myTriMeshObject);
}

10

When Q3TriMesh_New is called all of the data in the various TriMesh
data structures and arrays gets copied into QuickDraw 3D’s internal
structures. Any further modifications to myTriMeshData or the
attribute structures will have no effect on the new TriMesh object we
have created. The only way to change the settings of this TriMesh is
to call Q3TriMesh_SetData which will update the object with the
latest values contained in the data structures.

Object References & Memory

When the TriMesh object is created, the reference count of the
triMeshAttributeSet is increased by 1 since that attribute object is
now included in the new TriMesh. Making a call to
Q3TriMesh_GetData to get all of the data in a TriMesh object will
increase the reference count of the attribute set again. Because of
this action, it is very important that you properly dispose of TriMesh
data obtained from a call to Q3TriMesh_GetData. Calling
Q3TriMesh_Empty data will properly decrement the attribute set’s
reference count and will dispose of all other memory allocated by
Q3TriMesh_GetData.

It is important to realize that Q3TriMesh_GetData allocates memory
and copies the TriMesh’s data into that memory. The pointers
contained in the main TriMesh data structure do not point to data
actually being used by QuickDraw 3D to represent the TriMesh. The
pointers point to copies of that data, therefore, modifying the data
will have no effect until Q3TriMesh_SetData is called to update the
TriMesh.

Failure to call Q3TriMesh_Empty will result in memory leaks and
incorrect reference counts to any assigned attribute sets.

MAKING EFFICIENT TRIMESHES

Just because you can build a TriMesh doesn’t mean that your 3D
application will run fast. I’ve seen a lot of people who create
arbitrary TriMeshes and expect them to be blazingly fast, but this is
not how it works. To make QuickDraw 3D burn rubber and scream

11

like a demon, you need to build TriMeshes in a particular way by
following some basic rules and principles:

One Material Per TriMesh

The most important rule to making fast and efficient TriMeshes is to
only apply one “material” per TriMesh. In QuickDraw 3D there is no
such thing as a “material” per se, but for our purposes a material is a
combination of attributes which define how a surface looks. These
attributes include texture shaders, colors, specular and diffuse
values, etc. So, when we create a TriMesh object, we never ever
want to have more than one material assigned to that TriMesh.
Never build a single TriMesh with multiple textures or multiple
colors. This will kill any performance you ever hoped to gain by
using TriMeshes.

You may be wondering “How do I build my airplane model which has
six different texture maps if I’m being told to only apply one
material per TriMesh?” The answer is that you must build your
airplane model from six different TriMeshes - one for each texture
map. The reason for doing this is because QuickDraw 3D, RAVE, and
the 3D accelerator cards function much faster when they are given
large streams of triangles which all have common attributes. If you
assign a texture shader attribute to each individual triangle in a
TriMesh, don’t expect to get very good rendering performance at all.
You should only apply a texture shader or color attribute to the
TriMesh’s main attribute set, but never ever to the individual
triangles or vertices.

Earlier, I told you that the only attribute you will ever want to apply
to a triangle is a face normal. Never waver from this rule because a
face normal is the only attribute you can assign to a triangle in a
TriMesh which will not hinder performance. The same goes for
vertex attributes. Only vertex normals and vertex u/v texture
mapping coordinates should be used in a TriMesh. As long as you
stick to the “one material per TriMesh rule” you’ll be in good shape.

12

Watch out for Duplicate Data

For as much as I have praised the wonderful TriMesh, it is not
without flaws. It does have one fundamental flaw which can cause
performance problems and there is no good way around it. The best
way to explain the issue is to use a simple example. Suppose we
want to model a cube:

Figure 1.3

A cube constructed from 12 triangles and 8 points

This cube is made up of 12 triangles, 8 points, and 6 normals, right?
Wrong! There is no way to represent this cube in such a way using
the TriMesh, and here’s why:

1. Face and Vertex attributes cannot be shared in any way,
therefore, we end up with two independent arrays of normals:
one for the triangles and one for the vertices. QuickDraw 3D
must transform both lists of normals independently even
though they contain identical values.

2. Because TriMeshes are based on the concept of parallel arrays
of data, we end up with even more duplicate data per vertex
and per triangle. For example, the two front faces on the cube
have the same face normal, but because the attribute array is
parallel to the triangle array, each triangle has to have it’s own
copy of the normal. Same goes for the vertices of each triangle.

13

The three vertices of a triangle in the cube should share the
same normal, but the parallel arrays of attributes makes this
impossible, thus we end up with three copies of the same
normal.

Figure 1.4

Triangle A

Triangle B

Identical face normals, but cannot be shared

Triangle A and B have identical face normals which
cannot be shared, so two copies are needed.

3. The same problem applies to vertex u/v coordinates. Even
though a triangle on the left of the cube may share a vertex
coordinate with a triangle on the front, the u/v coordinates for
that vertex will probably be different for each triangle, thus
the point cannot be shared by the two triangles. The result is a
duplicate copy of the point.

Suppose each face of the cube has a different texture assigned
to it (say we’re making a model of a die). Remember that you
should only have one material per TriMesh. This means that
each side of the cube needs to be a separate TriMesh, therefore,
it would take six different TriMeshes to represent this model.
Even if we broke the one material per TriMesh rule, we’d still
have the problem of vertices having different u/v coordinates
depending on which triangle was using it.

14

Figure 1.5

Triangle A

Triangle B

Shared point, but not shared u/v

Vertices cannot share common points if the u/v
values are not identical.

The result of this inability to share duplicate data is that it takes 24
points, 12 face normals, and 24 vertex normals to build this TriMesh.
Not a very efficient way to represent a simple cube, eh?

Working Around The Restrictions

When I was first told about the above problems with TriMeshes I
figured that was the final nail in the coffin for TriMesh. I couldn’t
understand how I was supposed to build anything under those kinds
of conditions. Luckily, I found that just about anything in the
universe has a work-around and even though there’s no “perfect”
solution to these problems, there are “acceptable” solutions.
Additionally, the cube is a sort of worst-case example. Most real-
world models don’t suffer this severity of the problem.

15

Merging Texture Maps

If you have an airplane model which uses 4 different texture maps,
there’s no need to create 4 different TriMeshes to build it. It makes
much more sense to try to merge all 4 textures into one bigger
texture map. The simple way to do this is shown in Figure 1.6.

Figure 1.6

Combine 4 separate textures into one big texture to
that a single TriMesh can be built

The more complex way to do this is to fill in the “black” space in a
texture with other sub-textures. For example, the following single
texture map actually contains multiple textures which we’ve wedged
into what was the black space in the largest of the original textures:

16

Figure 1.7

We put the wing, wheel, and windshield texture in
the “black-space” of the body texture.

These solutions have their problems, but if maximum speed is your
top concern then these problems will seem trivial. The first problem
is that a large map may have a more difficult time fitting into VRAM
if VRAM is running low on your 3D accelerator card. Secondly, if you
are using Bi-Linear or Tri-Linear texture mapping then you may get
texture bleeding. This occurs at the edges of a texture map where
the pixels are smoothed with the pixels adjacent to it. If the adjacent
pixels are from another texture map, then you may get some bleed
through. To avoid this, just keep a margin in between your merged
textures.

Smoothing Models

If the above cube model was smoothed such that the vertex normals
were identical for each triangle using that vertex, then vertices could
be shared.

17

Figure 1.8

When triangles share vertices, the normals get
averaged.

The cube no longer has the “hard” edges that we wanted, but it does
share common vertices with common points and normals which
improves performance dramatically. Now we can build the TriMesh
from 8 points & vertex normals, and 12 face normals.

Figure 1.9

The cube on the left shows the inefficient TriMesh
with lots of duplicate data. The cube on the right

18

doesn’t have the hard edges, but it’s much more
efficient.

So, the simple rule here is to avoid having hard edges in your
models. Hard edges equate to duplicate vertices which slow down
performance.

You may think that this really sucks, but realize that for rendering
organic models, this works great. The dinosaur models in Nanosaur
have no hard edges and use one gigantic texture map. They form
incredibly optimal TriMeshes and looked great!

Figure 1.10

This model is entirely smooth shaded and is made
from a single, highly optmized TriMesh.

If you absolutely must create models with hard edges then just be
aware that you may get less performance that you expect. Always
make the best attempt to share vertices in a model to get the best
performance.

19

Form*Z & 3DMF Optimizer

Exporting 3DMF Files from Form*Z

For building highly efficient 3DMF models, I like to use Form*Z. In
addition to being a fantastic 3D modeling application for creating low
polygon count geometries, Form*Z output’s fairly clean 3DMF files.
Its output is a little buggy at times, but if you use the right export
settings it works great! The following images show what settings you
should use in Form*Z when exporting a 3DMF file:

20

These settings work great about 99% of the time, but occasionally the
exported model will have inverted faces. It seems that the solution
to this is to just “tweak” the texture mapping coordinates of any
objects whose faces are flipped and then re-export the 3DMF file.
Usually, this will cause the bad faces to magically correct themselves.

You’ll note that I recommend you export the geometry as Mesh and
not TriMesh. I’ve had problems with the TriMesh export in Form*Z
and I’ve found Mesh to be much more reliable. Not to worry,
however, because 3DMF Optimizer takes care of converting those
meshes into TriMeshes.

21

Also note that I turn “off” the Flip X option and turn “on” the Flip Y
option. For some reason, Form*Z always defaults to the wrong
settings. If you use their defaults, your object will be inverted along
the z-axis when you view it in a QuickDraw 3D application, therefore,
make sure you remember to change these checkboxes when you
export your models.

One other problem you may have with Form*Z are the vertex
normals. If you have a model with some smoothed geometry and
some non-smoothed geometry, you’re out of luck. Seems that when
you go to export the model to 3DMF, Form*Z either smoothes the
entire thing or none of it. If you have the Fix Smooth Shading option
activated then you get non-smoothed models, otherwise, the entire
model will be smoothed whether you wanted it to be or not.

Form*Z does export transparency attributes on transparent
geometry, but it does not use the transparency value in the material
you have assigned to it. Rather, it uses the Transparency on/off
value which you can apply to a model on an object by object basis.
The transparency value applied is 50% and unfortunately there is no
way to modify that.

Using 3DMF Optimizer

Once you have a 3DMF file which you created in Form*Z or any of the
other 3D modelers, you should always process it with 3DMF
Optimizer. This tool parses a 3DMF file, optimizes its contents, and
converts all geometry into TriMeshes. The 3DMF file output by 3DMF
Optimizer is as optimal as you can possibly make it.

In general, 3DMF Optimizer speeds up rendering of a model by 2 to
3x and it decreases file sizes and load times by 4-10x. Some of the
more “offensive” 3DMF files get speed-ups in the range of 5-13x!!!

3DMF Optimizer has a nice Options dialog which lets you determine
many aspects of the optimizing process. In general, I recommend
that you keep the settings as they are in the following figure unless
you have a specific need to change them:

22

These settings will generate the fastest and smallest 3DMF file
possible. This tool can do a lot of great things with 3DMF files and it
is constantly being updated. A demo is available on the Pangea
Software web site at http://www.realtime.net/~pangea.

STRIPS & FANS OPTIMIZATIONS

There is one more TriMesh optimization which may speed up your
application: Strips and Fans. Be warned that as of this writing, this
optimization actually has no effect. RAVE directly supports Strips
and Fans, but QuickDraw 3D does not. QuickDraw 3D does, however,
support the TriMesh (obviously), and if a smart 3D accelerator card
driver checks arbitrary TriMeshes for Strips and Fans, then this
optimization will work for you. Unfortunately, I do not believe that

23

any of the 3D card drivers currently make such a test. Also note that
the strip and fan optimization really does only apply to 3D
accelerator cards.

It is unlikely that QuickDraw 3D will ever directly support Strips and
Fans, but you never know. This section is going to talk about Strips
and Fans in the off chance that it eventually is added to QuickDraw
3D’s internal workings, but keep in mind that currently the only way
to make use of Strips and Fans is to write code directly to RAVE
instead of QuickDraw 3D.

Strips

A “strip” or “fan” simply refers to the way in which triangles and
vertices are ordered in a TriMesh. The idea is to be able to represent
a triangle by only 1 vertex instead of 3. “How can this be done?” you
ask. Look at the following mesh:

Figure 2.11

0

1

2

3

4

5

6

A
B

C

D

E

A TriMesh which is “stripped”

As this TriMesh is processed, we work from triangle A through
triangle E. When it passes triangle A to the 3D hardware, it needs to
pass vertices 0, 1, and 2.

Next, we do triangle B, but because vertices 1 and 2 were already
sent to the hardware for triangle A, we only need to send vertex 3 to

24

define triangle B. When this happens, the 3D hardware assumes that
you want to use the last two vertices from the previous triangle plus
the one new vertex to define the new triangle. So, to draw triangle C,
QuickDraw 3D only needs to send vertex 4 to the hardware because
the hardware automatically knows to use vertex 2 and 3 from the
previous triangle. Following this pattern you can see that triangle D
only needs to send vertex 5 and so on and so on.

Fans

Fans are very similar to Strips, but they revolve around a central
vertex as shown here:

Figure 2.12

0

1 2

3

4
5

A

B

C
D

Here, triangle A is drawn by passing vertices 0, 1, and 2 to the 3D
hardware. Next, to draw triangle B, only vertex 3 needs to be passed
since the hardware will use vertices 0 and 2 from the previous
triangle.

Triangle C will now use vertices 0 and 3 from triangle B, and triangle
D will use vertices 0 and 4 from triangle C, and so on.

25

Don’t Get Too Excited

Don’t get too excited about using Strips and Fans to build your
TriMesh. Writing an algorithm to efficiently generate long streams of
triangles like this is very difficult. Not only do you have to submit
adjacent triangles one after another, but the vertex list being used
for these triangles must be linearly incremental. In other words, the
submitted vertices must be in order such as 0,1,2,3,4, etc. or
104,105,106, etc. Taking an arbitrary 3D model and getting the data
into this kind of order is extremely difficult and often impossible to
do with any degree of efficiency.

Like I said earlier, the current version of QuickDraw 3D does not
even recognize strips or fans. The only benefit you will get from
strips and fans is if you are writing directly to RAVE in which case
you can pass your data to the hardware as strips or fans and get a
substantial speedup. There is a higher chance that some 3D
accelerator drivers will automatically detect Strip and Fan patterns
in a TriMesh than the chance of having direct Strip and Fan support
in QuickDraw 3D. Note that if a 3D driver recognizes a Strip or Fan in
a TriMesh that the vertices do not need to be sequentially ordered.
The driver will simply check if the first two vertices of the new
triangle match the last two vertices of the previous triangle, and if
so, it knows that it is a Strip.

Should QuickDraw 3D ever support strips and fans, you should also
note that the vertex ordering of every other triangle switches
direction. In figure 2.11 the first triangle’s vertices are ordered
clockwise (0,1, and 2), but the second triangle is ordered counter-
clockwise (1,2 and 3). Then the third triangle is clock wise again (2,3
and 4). If you have backface removal turned on in QuickDraw 3D,
then you’ll need to make sure that your face normals also alternate
to cancel out the changes in vertex ordering. Otherwise, your
TriMesh will be drawn with every other triangle removed via
backface removal.

26

EDGE GENERATION

As mentioned earlier in this chapter, you should set numEdges to 0 in
the TriMeshData structure because this information is not needed for
rendering triangles. Having this data only increases the file size and
memory usage. However, there are many times where edge
rendering comes in very useful. If there are edges assigned to your
TriMesh, the Wireframe renderer will use those edges to display the
model. Otherwise, the Wireframe renderer shows a true wireframe
of every edge of every triangle in the model – not a very nice thing
to look at. Rendering with edges usually displays a much cleaner
image, and I use edge mode extensively in many of my 3D tools.

The easy (and incorrect) way to generate edges is just to assume that
each side of a triangle is an edge. Don’t do this! An edge is a side of
a triangle which is not adjacent to any other co-planar triangles.
Correctly generating edges for a TriMesh is a fairly easy process
which consists of parsing the triangle data and looking for adjacent
triangles whose face normals are not identical.

The following code generates edge data for the input TriMesh object:

#define kMaxEdges 2000

/****************** CALC TRIMESH EDGES *********************/

void CalcTriMeshEdges(TQ3GeometryObject theTriMesh)
{
TQ3TriMeshData triMeshData;
unsigned long faceA,numFaces,faceB,m;
long inda[3],indb[3];
TQ3Vector3D faceNormalA,faceNormalB,v1,v2;
TQ3Status status;
TQ3Point3D *pointList,a[3], b[3],pa1,pa2,pb1,pb2;
TQ3TriMeshEdgeData edgeData[kMaxEdges];
short numEdges = 0,e1,e2;
Boolean edgeOnSpace[3];
TQ3TriMeshTriangleData *faceList;

/* GET TRIMESH DATA */

status = Q3TriMesh_GetData(theTriMesh, &triMeshData);
if (status == kQ3Failure)

DoError("\pCalcTriMeshEdges: Q3TriMesh_GetData failed!");

numFaces = triMeshData.numTriangles; // get # faces
faceList = triMeshData.triangles; // point to face list

27

pointList = triMeshData.points; // point to points

/****************************/
/* SCAN EACH FACE FOR EDGES */
/****************************/

for (faceA = 0; faceA < numFaces; faceA++)
{

/* GET 3 VERTS OF THIS FACE */

inda[0] = faceList[faceA].pointIndices[0];
inda[1] = faceList[faceA].pointIndices[1];
inda[2] = faceList[faceA].pointIndices[2];

a[0] = pointList[inda[0]];
a[1] = pointList[inda[1]];
a[2] = pointList[inda[2]];

edgeOnSpace[0] = true; // assume nothing adjacent on this edge
edgeOnSpace[1] = true;
edgeOnSpace[2] = true;

/* CALC FACE NORMAL */

v1.x = a[0].x - a[1].x;
v1.y = a[0].y - a[1].y;
v1.z = a[0].z - a[1].z;
v2.x = a[2].x - a[1].x;
v2.y = a[2].y - a[1].y;
v2.z = a[2].z - a[1].z;
Q3Vector3D_Cross(&v1, &v2, &faceNormalA);

/* CHECK EACH FACE AGAINST ALL OTHERS */

for (faceB = 0; faceB < numFaces; faceB++)
{

if (faceB == faceA) // dont compare against self
continue;

/* GET 3 VERTS FOR OTHER FACE */

indb[0] = faceList[faceB].pointIndices[0];
indb[1] = faceList[faceB].pointIndices[1];
indb[2] = faceList[faceB].pointIndices[2];

b[0] = pointList[indb[0]];
b[1] = pointList[indb[1]];
b[2] = pointList[indb[2]];

/* CALC FACE NORMAL */

v1.x = b[0].x - b[1].x;
v1.y = b[0].y - b[1].y;
v1.z = b[0].z - b[1].z;
v2.x = b[2].x - b[1].x;

28

v2.y = b[2].y - b[1].y;
v2.z = b[2].z - b[1].z;
Q3Vector3D_Cross(&v1, &v2, &faceNormalB);

/**************************/
/* SCAN 3 EDGES FOR MATCH */
/**************************/

for (e1 = 0; e1 < 3; e1++)
{

pa1 = a[e1]; // get 2 points of edge
if (e1 == 2)

pa2 = a[0];
else

pa2 = a[e1+1];

for (e2 = 0; e2 < 3; e2++)
{

pb1 = b[e2]; // get 2 points of edge
if (e2 == 2)

pb2 = b[0];
else

pb2 = b[e2+1];

/* COMPARE BOTH ENDPOINTS FOR MATCH */

if ((ComparePoints(&pa1,&pb1,0.01) &&
ComparePoints(&pa2,&pb2,0.01)) ||
ComparePoints(&pa1,&pb2,0.01) &&
ComparePoints(&pa2,&pb1,0.01))

{
/***************/
/* GOT A MATCH */
/***************/
//
// we check face normals here (and not earlier)
// b/c we still want to know if a face has an
// adjacent match since empty space indicates an edge.
//

edgeOnSpace[e1] = false;

/* CHECK IF THIS EDGE PREVIOUSLY DETECTED */

if (faceB >= faceA)
continue;

/* IF FACE NORMALS MATCH (OR CLOSE ENOUGH), THEN SKIP */

if (CompareVectors(&faceNormalA, &faceNormalB, 0.01))
continue;

/* ADD EDGE TO LIST */

edgeData[numEdges].pointIndices[0] = inda[e1];

29

if (e1 == 2)
edgeData[numEdges].pointIndices[1] = inda[0];

else
edgeData[numEdges].pointIndices[1] = inda[e1+1];

edgeData[numEdges].triangleIndices[0] = faceA;
edgeData[numEdges].triangleIndices[1] = faceB;

numEdges++;

if (numEdges >= kMaxEdges)
DoError("\pCalcTriMeshEdges: numEdges >= kMaxEdges ");

}
} // e2

} // e1
} // face2

/**************************************/
/* NOW CHECK FOR EDGES ON EMPTY SPACE */
/**************************************/

for (m = 0; m < 3; m++)
{

if (edgeOnSpace[m])
{

edgeData[numEdges].pointIndices[0] = inda[m];
if (m == 2)

edgeData[numEdges].pointIndices[1] = inda[0];
else

edgeData[numEdges].pointIndices[1] = inda[m+1];

edgeData[numEdges].triangleIndices[0] = faceA;
edgeData[numEdges].triangleIndices[1] = faceA;
numEdges++;
if (numEdges >= 2000)

DoFatalAlert("\pCalcTriMeshEdges: m-numEdges >= 2000");
}

}
} // face1

/* UPDATE TRIMESH DATA */

if (numEdges > 0)
{

triMeshData.numEdges = numEdges;
triMeshData.edges = &edgeData[0];

Q3TriMesh_SetData(theTriMesh,&triMeshData);
}

/* CLEANUP */

Q3TriMesh_Empty(&triMeshData);
}

30

/************* COMPARE POINTS ******************/
//
// Returns true if input points are close enough based
// on tolerance value.
//

Boolean ComparePoints(TQ3Point3D *p1, TQ3Point3D *p2,
float tolerance)

{
float dx,dy,dz;

dx = fabs(p1->x - p2->x);
dy = fabs(p1->y - p2->y);
dz = fabs(p1->z - p2->z);

if ((dx <= tolerance) && (dy <= tolerance) && (dz <= tolerance))
return(true);

return(false);
}

/********** COMPARE VECTORS *********************/
//
// Returns true if input vectors are close enough based
// on tolerance value.
//

Boolean CompareVectors(TQ3Vector3D *p1, TQ3Vector3D *p2,
float tolerance)

{
float dx,dy,dz;

dx = fabs(p1->x - p2->x);
dy = fabs(p1->y - p2->y);
dz = fabs(p1->z - p2->z);

if ((dx <= tolerance) && (dy <= tolerance) && (dz <= tolerance))
return(true);

return(false);
}

The code is a little complex because of the multiple nested loops, but
the logic is simple. We compare each triangle against all other
triangles. If two triangles share a common side then we see if the
face normals are the same. If the face normals are different, then we
assume that the shared side is a visible edge and we generate edge
data for it. When no triangle shares a side with the current triangle,
then this side also becomes an edge which we want displayed.

31

The two utility functions ComparePoints and CompareVectors
determines if the input data are “close enough” to be considered a
match.

SUBMITTING TRIMESHES

There is one additional trick you can do with TriMeshes to get a little
more performance:

When submitting your TriMeshes and if you are
using the QuickDraw 3D Interactive Renderer, try
to submit your largest TriMesh first.

The reason for this lies in the way that the Interactive Renderer
manages memory. When a TriMesh is submitted for rendering, the
Interactive Renderer allocates enough temporary memory to work
with that TriMesh. If the next submitted TriMesh in the same
rendering loop is larger than the previous TriMesh, then the
Interactive Renderer has to reallocate a larger block of temporary
memory to work with.

So, if you submit the largest TriMesh first, then all subsequent
smaller TriMeshes will already have enough temporary memory to
work with and the Interactive Renderer will not need to do any new
memory allocation. Depending on your specific circumstances, you
may see up to a 3-5% speed boost if you use this optimization.

SUMMARY

In this chapter we learned about the TriMesh geometry type which
is new to QuickDraw 3D 1.5. TriMesh is the preferred geometry type
if you want the maximum speed in your 3D applications.

To make sure your TriMesh geometries are built for maximum
performance, follow these rules:

32

1. Only use one material per TriMesh.
2. Apply only face normal attributes to triangles.
3. Apply only vertex normals and vertex u/v coordinate

attributes to points.
4. Smooth your models so that vertices will be shared.
5. If possible, attempt to construct Strips and Fans in your

TriMeshes so that hardware acceleration will be improved.
6. Try to submit your largest TriMesh first to improve the

Interactive Renderer’s memory management.

