
Making Cool QuickDraw 3D
Applications!

By
Brian Greenstone

Apple Computer, Inc.

1

Introduction

QuickDraw 3D is perhaps the best-designed API that Apple Computer
has ever created. It provides a way for the average programmer
who is not well versed in 3D programming to create complex 3D
scenes in very little time with very little effort. The API is so robust
that even beginner programmers should have no problem diving into
this otherwise convoluted and unstandardized technology we all
know as “3D Graphics”. A recent survey of 25 QuickDraw 3D
developers showed that the average developer gave the QuickDraw
3D API an 8.8 out of 10 where 0 was awful, 5 was average and 10
was great.

At first glance QuickDraw 3D may seem overwhelming (the
QuickDraw 3D 1.5 Technical Reference is almost 1400 pages long!),
but keep in mind that you’ll probably never use 70% of what’s in the
book. The reality of the situation is that to use QuickDraw 3D and to
use it well, you only need to be familiar with a small subset of the
functions that QuickDraw 3D provides.

This document is going to focus on that small subset of API functions
which are needed to create fast and efficient 3D worlds. We will not
be discussing the slow and difficult to use geometries such as NURBS,
but rather we will focus mainly on one geometry in particular: the
TriMesh. This is the data structure which is the easiest to work with
and also provides the maximum rendering performance, especially
with 3D accelerator hardware.

There are many QuickDraw 3D applications available today, but very
few of the programmers who wrote them knew how to write the
code in such a way as to achieve maximum performance. I’ve seen
some 3DMF geometry files created by these applications which
render up to 13 times faster after they have been reoptimized with
the techniques discussed in this book. It’s not that these weren’t
good programmers, it’s just that there is very little information
available to developers to teach them what works best in QuickDraw
3D.

2

Many people have asked me if I really think QuickDraw 3D is “fast.”
Well, yes, it’s “fast”, but “fast” is a relative term. QuickDraw 3D will
never be as fast as a custom 3D engine which you might write for a
specific task such as a game or a modeling application. No general
purpose API is ever as fast as an engine built for a specific task, but
QuickDraw 3D can come very, very close. I believe that QuickDraw
3D can come to 90-95% the speed of a custom 3D engine in most
cases. I’ve thought about writing my own 3D engine for several
years now, but as QuickDraw 3D has gotten better and better, I’ve
found that it’s simply not worth the expense of writing such an
engine when QuickDraw 3D does everything I’d ever need and it only
costs me a small percentage of relative speed.

This document is not meant to be a 3D tutorial, nor a tutorial on
QuickDraw 3D. I am going to assume that you already have a basic
understanding of how 3D and QuickDraw 3D work. This will save
hundreds of pages which would only duplicate information found in
dozens of other 3D programming books found at any book store.
Instead, this book will teach you how to code QuickDraw 3D such that
you get the maximum possible performance out of your applications.
It will also show you how to perform various 3D tasks such as
calculating splines, doing rudimentary collision detection, and
creating QuickTime movies with 3D tracks. By the time you finish
reading this documentation you will know all there is to know about
writing super-fast QuickDraw 3D applications.

