
Motorola Confidential Proprietary

AltiVec Programming Model

REVISION 1.2.3

Revision 0.1 February 3, 1997
Revision 0.2 February 10, 1997

Revision 0.3 March 7, 1997
Revision 0.3.1 March 24, 1997
Revision 0.3.2 March 27, 1997

Revision 1.0 April 14, 1997
Revision 1.1 June 3, 1997

Revision 1.1.1 July 2, 1997
Revision 1.1.2 September 8, 1997

Revision 1.1.3 October 2, 1997
Revision 1.1.4 March 4, 1998
Revision 1.1.5 March 4, 1998
Revision 1.1.6 March 4, 1998
Revision 1.1.7 April 6, 1998
Revision 1.1.8 April 16, 1998
Revision 1.2.0 April 30, 1998
Revision 1.2.1 May 8, 1998
Revision 1.2.2 June 4, 1998

Revision 1.2.3 September 22, 1998

Note: Version 1.2 of the AltiVec Programming Model is intended to be consistent with the AltiVec
specification 1.2.3 (7/18/97). The AltiVec Programming Model replaces section 6 ÒSoftware
ConsiderationsÓ of the AltiVec specification.

Please send all comments to Mike Phillip (R12869@email.sps.mot.com) or Roger Smith
(RZXE50@email.sps.mot.com) or Tom Wood (RA0417@email.sps.mot.com)

 2
Motorola Confidential Proprietary

1. INTRODUCTION 6

1.1 Versions 6

1.2 Change Log 6
1.2.1 Changes to Version 1.2.3 6
1.2.2 Changes to Version 1.2.2 6
1.2.3 Changes to Version 1.2.1 6
1.2.4 Changes to Version 1.2.0 6
1.2.5 Changes to Version 1.1.8 7
1.2.6 Changes to Version 1.1.7 7
1.2.7 Changes to Version 1.1.6 7
1.2.8 Changes to Version 1.1.5 7
1.2.9 Changes to Version 1.1.4 7
1.2.10 Changes to Version 1.1.3 7
1.2.11 Changes to Version 1.1.2 7

2. HIGH-LEVEL LANGUAGE INTERFACE 8

2.1 Data Types 8

2.2 New Keywords 9
2.2.1 The keyword and predefine method 9
2.2.2 The context sensitive keyword method 9

2.3 Alignment 9
2.3.1 Alignment of vector types 9
2.3.2 Alignment of non-vector types 10
2.3.3 Alignment of aggregates and unions containing vector types 10

2.4 Extensions of C/C++ operators for the new types 10
2.4.1 sizeof() 10
2.4.2 Assignment 10
2.4.3 Address Operator 10
2.4.4 Pointer Arithmetic 10
2.4.5 Pointer Dereferencing 10
2.4.6 Type Casting 11

2.5 New operators 11
2.5.1 Vector Literals 11
2.5.2 Vector literals and casts 12
2.5.3 Value for adjusting pointers 13
2.5.4 New operators representing AltiVec operations 13

2.6 Programming Interface 14

3. APPLICATION BINARY INTERFACE (ABI) 16

3.1 Data Representation 16

3.2 Register Usage Conventions 16

 3
Motorola Confidential Proprietary

3.3 The Stack Frame 16
3.3.1 SVR4 ABI and EABI Stack Frame 17
3.3.2 AIX ABI and Apple Macintosh ABI Stack Frame 20
3.3.3 Vector Register Saving and Restoring Functions 22

3.4 Function Calls 24
3.4.1 SVR4 ABI and EABI Parameter Passing and Varargs 24
3.4.2 AIX ABI and Apple Macintosh ABI Parameter Passing Without Varargs 25
3.4.3 AIX ABI and Apple Macintosh ABI Parameter Passing With Varargs 25

3.5 malloc(), vec_malloc(), and new 26

3.6 setjmp() and longjmp() 26

3.7 Debugging Information 27

3.8 printf() and scanf() control strings 27
3.8.1 Output conversion specifications 27
3.8.2 Input conversion specifications 29

4. NEW ALTIVEC OPERATIONS 31

4.1 Generic and Specific AltiVec Operators 31
4.1.1 vec_add(arg1, arg2) 31
4.1.2 vec_addc(arg1, arg2) 32
4.1.3 vec_adds(arg1, arg2) 32
4.1.4 vec_and(arg1, arg2) 32
4.1.5 vec_andc(arg1, arg2) 33
4.1.6 vec_avg(arg1, arg2) 34
4.1.7 vec_ceil(arg1) 34
4.1.8 vec_cmpb(arg1, arg2) 34
4.1.9 vec_cmpeq(arg1, arg2) 34
4.1.10 vec_cmpge(arg1, arg2) 35
4.1.11 vec_cmpgt(arg1, arg2) 35
4.1.12 vec_ctf(arg1, arg2) 35
4.1.13 vec_cts(arg1, arg2) 35
4.1.14 vec_ctu(arg1, arg2) 35
4.1.15 vec_dss(arg1) 36
4.1.16 vec_dssall(void) 36
4.1.17 vec_dst(arg1, arg2, arg3) 36
4.1.18 vec_dstst(arg1, arg2, arg3) 37
4.1.19 vec_dststt(arg1, arg2, arg3) 38
4.1.20 vec_dstt(arg1, arg2, arg3) 39
4.1.21 vec_expte(arg1) 40
4.1.22 vec_floor(arg1) 40
4.1.23 vec_ld(arg1, arg2) 40
4.1.24 vec_lde(arg1, arg2) 41
4.1.25 vec_ldl(arg1, arg2) 41
4.1.26 vec_loge(arg1) 42
4.1.27 vec_lvsl(arg1, arg2) 42
4.1.28 vec_lvsr(arg1, arg2) 42
4.1.29 vec_madd(arg1, arg2, arg3) 43
4.1.30 vec_madds(arg1, arg2, arg3) 43

 4
Motorola Confidential Proprietary

4.1.31 vec_max(arg1, arg2) 43
4.1.32 vec_mergeh(arg1, arg2) 44
4.1.33 vec_mergel(arg1, arg2) 44
4.1.34 vec_mfvscr(void) 44
4.1.35 vec_min(arg1, arg2) 45
4.1.36 vec_mladd(arg1, arg2, arg3) 45
4.1.37 vec_mradds(arg1, arg2, arg3) 45
4.1.38 vec_msum(arg1, arg2, arg3) 46
4.1.39 vec_msums(arg1, arg2, arg3) 46
4.1.40 vec_mtvscr(arg1) 46
4.1.41 vec_mule(arg1, arg2) 47
4.1.42 vec_mulo(arg1, arg2) 47
4.1.43 vec_nmsub(arg1, arg2, arg3) 47
4.1.44 vec_nor(arg1, arg2) 47
4.1.45 vec_or(arg1, arg2) 48
4.1.46 vec_pack(arg1, arg2) 48
4.1.47 vec_packpx(arg1, arg2) 49
4.1.48 vec_packs(arg1, arg2) 49
4.1.49 vec_packsu(arg1, arg2) 49
4.1.50 vec_perm(arg1, arg2, arg3) 49
4.1.51 vec_re(arg1) 50
4.1.52 vec_rl(arg1, arg2) 50
4.1.53 vec_round(arg1) 50
4.1.54 vec_rsqrte(arg1) 50
4.1.55 vec_sel(arg1, arg2, arg3) 51
4.1.56 vec_sl(arg1, arg2) 52
4.1.57 vec_sld(arg1, arg2, arg3) 52
4.1.58 vec_sll(arg1, arg2) 52
4.1.59 vec_slo(arg1, arg2) 53
4.1.60 vec_splat(arg1, arg2) 54
4.1.61 vec_splat_s8(arg1) 54
4.1.62 vec_splat_s16(arg1) 54
4.1.63 vec_splat_s32(arg1) 54
4.1.64 vec_splat_u8(arg1) 54
4.1.65 vec_splat_u16(arg1) 55
4.1.66 vec_splat_u32(arg1) 55
4.1.67 vec_sr(arg1, arg2) 55
4.1.68 vec_sra(arg1, arg2) 55
4.1.69 vec_srl(arg1, arg2) 56
4.1.70 vec_sro(arg1, arg2) 56
4.1.71 vec_st(arg1, arg2, arg3) 57
4.1.72 vec_ste(arg1, arg2, arg3) 58
4.1.73 vec_stl(arg1, arg2, arg3) 59
4.1.74 vec_sub(arg1, arg2) 61
4.1.75 vec_subc(arg1, arg2) 61
4.1.76 vec_subs(arg1, arg2) 61
4.1.77 vec_sum4s(arg1, arg2) 62
4.1.78 vec_sum2s(arg1, arg2) 62
4.1.79 vec_sums(arg1, arg2) 62
4.1.80 vec_trunc(arg1) 63
4.1.81 vec_unpack2sh(arg1, arg2) 63
4.1.82 vec_unpack2sl(arg1, arg2) 63
4.1.83 vec_unpack2uh(arg1, arg2) 63
4.1.84 vec_unpack2ul(arg1, arg2) 63

 5
Motorola Confidential Proprietary

4.1.85 vec_unpackh(arg1) 64
4.1.86 vec_unpackl(arg1) 64
4.1.87 vec_xor(arg1, arg2) 64

4.2 AltiVec Predicates 66
4.2.1 vec_all_eq(arg1, arg2) 66
4.2.2 vec_all_ge(arg1, arg2) 66
4.2.3 vec_all_gt(arg1, arg2) 67
4.2.4 vec_all_in(arg1, arg2) 68
4.2.5 vec_all_le(arg1, arg2) 68
4.2.6 vec_all_lt(arg1, arg2) 68
4.2.7 vec_all_nan(arg1) 69
4.2.8 vec_all_ne(arg1, arg2) 69
4.2.9 vec_all_nge(arg1, arg2) 70
4.2.10 vec_all_ngt(arg1, arg2) 70
4.2.11 vec_all_nle(arg1, arg2) 70
4.2.12 vec_all_nlt(arg1, arg2) 70
4.2.13 vec_all_numeric(arg1) 70
4.2.14 vec_any_eq(arg1, arg2) 71
4.2.15 vec_any_ge(arg1, arg2) 71
4.2.16 vec_any_gt(arg1, arg2) 72
4.2.17 vec_any_le(arg1, arg2) 72
4.2.18 vec_any_lt(arg1, arg2) 73
4.2.19 vec_any_nan(arg1) 73
4.2.20 vec_any_ne(arg1, arg2) 74
4.2.21 vec_any_nge(arg1, arg2) 74
4.2.22 vec_any_ngt(arg1, arg2) 74
4.2.23 vec_any_nle(arg1, arg2) 75
4.2.24 vec_any_nlt(arg1, arg2) 75
4.2.25 vec_any_numeric(arg1) 75
4.2.26 vec_any_out(arg1, arg2) 75

5. FUTURE DIRECTIONS 76

5.1 Assembly Language Interface 76

5.2 AltiVec Instruction Mnemonics 76

5.3 Compiler Implementation Notes 76
5.3.1 AltiVec Predicate mappings 76

5.4 Debugger Implementation Notes 77

5.5 Coding Examples 77

 6
Motorola Confidential Proprietary

1. Introduction

This document defines a programming model for use with the AltiVec instruction set extension to the
PowerPC architecture. There are three types of programming interfaces described in this document:

· A high-level language interface, intended for use within programming languages such as C or
C++

· An application binary interface (ABI) defining low-level coding conventions

· An assembly language interface

Although a higher-level application programming interface (API) such as ÒmediaLibÓ is intended for
use with AltiVec, such a specification is not addressed by this document.

1.1 Versions

This document, the corresponding C++ class library, and the Motorola AltiVec-enabled C compiler all
incorporate information about AltiVec from a common source. The version number associated with
the programming model will be of the form v.r. Corresponding versions of the C++ class library
will have version number v.r.n, where the n allows corrections to be made without underlying
changes in the programming model. Similarly, the AltiVec-enabled compiler will predefine the value
__VEC__ as the decimal integer vrrnn.

1.2 Change Log

1.2.1 Changes to Version 1.2.3

Change the overload to vec_msum(vector signed char, vector unsigned char). Add mappings
to vec_st, vec_ste, and vec_stl for vector bool types and vector pixel types. Parameters may be
any integral type where type int was previously specified. Casting may require a
parenthesized expression. The bit numbering of VRsave is reversed. The programming
interface section is added. Clarify the semantics of the vector and pixel type specifiers.

1.2.2 Changes to Version 1.2.2

Add long * and unsigned long * mappings to vec_dst, vec_dstst, vec_dststt, vec_dstt, vec_ld,
vec_lde, vec_ldl, vec_lvsl, vec_lvsr, vec_st, vec_ste, and vec_stl. Specify mappings for
pointers to const and volatile qualified types. Fixed the range of values for vec_splat_u16.
Fixed the descriptions of vec_splat_u{8,16,32} and vec_unpack2{u,s}{h,l} and vec_ste.

1.2.3 Changes to Version 1.2.1

The vector save/restore functions use r0 and modify r12. Used the conventional bit numbers
for VRsave. Noted exceptions for the specific AltiVec operations. Added implementation
notes for the AltiVec predicates.

1.2.4 Changes to Version 1.2.0

Typos. Changed the memory allocation routines. VMX is now vec or AltiVec. Specified
scanf behavior. Described alternatives for handling the new keywords.

 7
Motorola Confidential Proprietary

1.2.5 Changes to Version 1.1.8

Renamed and changed the vector save and restore functions. Changed the function prologue
and epilogue sample code. Described the computation of len in the prologue and epilogue
sample code. Corrected the description of vec_st and vec_stl.

1.2.6 Changes to Version 1.1.7

Added specification for all PowerPC ABIs.

1.2.7 Changes to Version 1.1.6

Move ABI Discussion to a separate document.

1.2.8 Changes to Version 1.1.5

Replace types vec_xxx by vector xxx. Update casts and constants.

1.2.9 Changes to Version 1.1.4

Add vec_any_ne, vec_all_ne, vec_any_eq, vec_all_eq capability for boolean
and pixel types.

1.2.10 Changes to Version 1.1.3

Add unpack2[su][hl] (sections Error! Reference source not found. to Error!
Reference source not found.) to allow converting two 8-bit elements to a 16-bit element
or two 16-bit elements to a 32-bit element without having to do type casting.

1.2.11 Changes to Version 1.1.2

Third argument of vec_msum, vec_msums fixed.
vec_st(vector float, int, vector float *) added.

 8
Motorola Confidential Proprietary

2. High-Level Language Interface

The high-level language interface for AltiVec is intended to accomplish the following goals:

1. Provide an efficient and expressive mechanism for programmers to access AltiVec functionality
from programming languages such as C and C++.

Note: Access to AltiVec functionality from Java applications is not currently addressed by this
specification, but will likely be addressed through a higher level API such as ÒmediaLib.Ó

2. Define a minimal set of language extensions that unambiguously describe the intent of the
programmer while minimizing the impact on existing PowerPC compilers and development tools.

3. Provide a mechanism for code written to this interface to be compiled by a C++ compiler that is not
AltiVec-enabled for a target that may not include the AltiVec architectural extensions. Equivalent
functionality is obtained through use of functions simulating AltiVec operations and header files
and class definitions mapping vector data types into conventional C++ types.

4. Define a minimal set of library extensions needed to support AltiVec.

2.1 Data Types

The AltiVec programming model introduces a set of fundamental data types, as described in Table 1.

New C/C++
type

Interpretation of
contents

Values

vector unsigned char 16 unsigned char 0...255
vector signed char 16 signed char -128...127
vector bool char 16 unsigned char 0(F), 255 (T)

vector unsigned short 8 unsigned short 0...65535
vector unsigned short int 8 unsigned short 0...65535

vector signed short 8 signed short -32768...32767
vector signed short int 8 signed short -32768...32767

vector bool short 8 unsigned short 0 (F), 65535 (T)
vector bool short int 8 unsigned short 0 (F), 65535 (T)
vector unsigned long 4 unsigned long 0...232 - 1

vector unsigned long int 4 unsigned long 0...232 - 1
vector signed long 4 signed long -231...231-1

vector signed long int 4 signed long -231...231-1
vector bool long 4 unsigned long 0 (F), 232 - 1 (T)

vector bool long int 4 unsigned long 0 (F), 232 - 1 (T)
vector float 4 float IEEE-754 values
vector pixel 8 unsigned short 1/5/5/5 pixel

Table 1. Vector Data Types

In illustrations where an algorithm could apply to multiple types, vec_data represents any one of
these types. Introducing fundamental types permits the compiler to provide stronger type checking and
support overloaded operations on vector types.

 9
Motorola Confidential Proprietary

2.2 New Keywords

The model introduces new uses for five identifiers: vector, __vector, pixel, __pixel, and
bool as simple type specifier keywords. Among the type specifiers used in a declaration, the vector
type specifier must occur first. As in C and C++, the remaining type specifiers may be freely
intermixed in any order, possibly with other declaration specifiers. The syntax does not allow the use
of a typedef name as a type specifier. For example, the following is not allowed

typedef signed short int16;
vector int16 data;

These new uses may conflict with their existing use in C and C++. There are two methods that may be
used to deal with this conflict. An implementation of the AltiVec programming model may choose
either method.

2.2.1 The keyword and predefine method

In this method, __vector, __pixel, and bool are added as keywords while vector and
pixel are predefined macros. bool is already a keyword in C++. To allow its use in C as a
keyword, it is treated the same as it is in C++. This means that the C language is extended to allow
bool alone as a set of type specifiers. Typically, this type will map to int.

To accomodate a conflict with other uses of the identifiers vector and pixel, the user can either
#undef or use a command line option to remove the predefines.

2.2.2 The context sensitive keyword method

In this method, __vector and __pixel are added as keywords without regard to context while the
new uses of vector, pixel, and bool are keywords only in the context of a type. Since vector
must be first among the type specifiers, it can be recognized as a type specifier when a type identifier is
being scanned. The new uses of pixel and bool occur after vector has been recognized. In all
other contexts, vector, pixel, and bool are not reserved. This avoids conflicts such as class
vector, typedef int bool, and allows the use of vector, pixel, and bool as identifiers
for other uses.

2.3 Alignment

2.3.1 Alignment of vector types

A defined data item of any vector data type in memory is always aligned on a 16-byte boundary. A
pointer to any vector data type always points to a 16-byte boundary. The compiler is responsible for
aligning vector data types on 16-byte boundaries. Given that vector data is correctly aligned, a
program is incorrect if it attempts to dereference a pointer to a vector type if the pointer does not
contain a 16-byte aligned address. In the AltiVec architecture, an unaligned load/store does not cause
an alignment exception that might lead to (slow) loading of the bytes at the given address. Instead, the
low-order bits of the address are quietly ignored.

 10
Motorola Confidential Proprietary

2.3.2 Alignment of non-vector types

An array of components to be loaded into vector registers need not be aligned, but will have to be
accessed with attention to its alignment. Typically, this will be accomplished with the vec_lvsr()
or vec_lvsl() instruction and the vec_perm() instruction.

2.3.3 Alignment of aggregates and unions containing vector types

Aggregates (structures and arrays) and unions containing vector types must be aligned on 16-byte
boundaries and their internal organization padded, if necessary, so that each internal vector type is
aligned on a 16-byte boundary. This is an extension to all ABIs (AIX, Apple Macintosh, SVR4, and
EABI).

2.4 Extensions of C/C++ operators for the new types

Most C/C++ operators do not permit any of their arguments to be one of the new types. Let a and b
be vector types and p be a pointer to a vector type. The normal C/C++ operators are extended to
include the following operations.

2.4.1 sizeof()

sizeof(a) and sizeof(*p) return 16.

2.4.2 Assignment

If either the left-hand side or right hand side of an expression has a vector type, then both sides of the
expression must be of the same vector type. Thus, the expression a=b is valid and represents
assignment if a and b are of the same vector type (or if neither is a vector type). Otherwise, the
expression is invalid and must be signaled as an error by the compiler.

2.4.3 Address Operator

The operation &a is valid if a is a vector type. The result of the operation is a pointer to a.

2.4.4 Pointer Arithmetic

The usual pointer arithmetic can be performed on p. In particular, p+1 is a pointer to the next vector
element after p.

2.4.5 Pointer Dereferencing

If p is a pointer to a vector type, *p implies either a 128-bit vector load from the address obtained by
clearing the low order bits of p, equivalent to the instruction vec_ld(0,p), or a 128-bit vector store
to that address, equivalent to the instruction vec_st(0,p). If it is desired to mark the data accessed
as least-recently-used (LRU), the explicit instruction vec_ldl(0,p) or vec_stl(0,p) must be
used.

Dereferencing a pointer to a non-vector type produces the standard behavior of either a load or a copy
of the corresponding type.

 11
Motorola Confidential Proprietary

Accessing of non-aligned memory must be carried out explicitly by a vec_ld(int, type *)
operation, a vec_ldl(int, type *) operation, a vec_st(int, type *) operation or a
vec_stl(int, type *) operation.

2.4.6 Type Casting

Pointers to old and new types may be cast back and forth to each other. Casting a pointer to a new
type represents an (unchecked) assertion that the address is 16-byte aligned. Some new operators are
provided to provide the equivalence of casts and data initialization.

Casts from one vector type to another are provided by normal C casts. These should not be needed
frequently if the overloaded forms of operators are used. None of the casts performs a conversion; the
bit pattern of the result is the same as the bit pattern of the argument that is cast.

· (vector signed char) vec_data

· (vector signed short) vec_data

· (vector signed long) vec_data

· (vector unsigned char) vec_data

· (vector unsigned short) vec_data

· (vector unsigned long) vec_data

· (vector bool char) vec_data

· (vector bool short) vec_data

· (vector bool long) vec_data

· (vector float) vec_data

· (vector pixel) vec_data

2.5 New operators

New operators are introduced to construct vector literals, adjust pointers, and allow full access to the
functionality provided by the AltiVec architecture.

2.5.1 Vector Literals

Vector literals are written as casts of a parenthesized set of constant expressions. These literals may be
used either in initialization statements or as constants in executable statements.

· (vector unsigned char)(unsigned int) represents a set of 16 unsigned 8-bit
quantities which all have the value specified by the integer. The compiler generates code that
either computes or loads the values into the register.

· (vector unsigned char)(unsigned int, ..., unsigned int) represents a
set of 16 unsigned 8-bit quantities specified by the 16 integers. The compiler generates code
that either computes or loads the values into the register.

 12
Motorola Confidential Proprietary

· (vector signed char)(int) represents a set of 16 signed 8-bit quantities which all
have the value specified by the integer. The compiler generates code that either computes or
loads the values into the register.

· (vector signed char)(int, ..., int) represents a set of 16 signed 8-bit
quantities specified by the 16 integers. The compiler generates code that either computes or
loads the values into the register.

· (vector unsigned short)(unsigned int) represents a set of 8 unsigned 16-bit
quantities which all have the value specified by the unsigned integer. The compiler generates
code that either computes or loads the values into the register.

· (vector unsigned short)(unsigned int, ..., unsigned int) represents
a set of 8 unsigned 16-bit quantities specified by the 8 unsigned integers. The compiler
generates code that either computes or loads the values into the register.

· (vector signed short)(int) represents a set of 8 signed 16-bit quantities which all
have the value specified by the integer. The compiler generates code that either computes or
loads the values into the register.

· (vector signed short)(int, ..., int) represents a set of 8 signed 16-bit
quantities specified by the 8 integers. The compiler generates code that either computes or loads
the values into the register.

· (vector unsigned long)(unsigned int) represents a set of 4 unsigned 32-bit
quantities which all have the value specified by the unsigned integer. The compiler generates
code that either computes or loads the values into the register.

· (vector unsigned long)(unsigned int, ..., unsigned int) represents a
set of 4 unsigned 32-bit quantities specified by the 4 unsigned integers. The compiler generates
code that either computes or loads the values into the register.

· (vector signed long)(int) represents a set of 4 signed 32-bit quantities which all
have the value specified by the integer. The compiler generates code that either computes or
loads the values into the register.

· (vector signed long)(int, ..., int) represents a set of 4 signed 32-bit
quantities specified by the 4 integers. The compiler generates code that either computes or loads
the values into the register.

· (vector float)(float) represents a set of 4 floating-point quantities which all have the
value specified by the floating-point value. The compiler generates code that either computes or
loads the values into the register.

· (vector float)(float, ..., float) represents a set of 4 floating-point quantities
which all have the value specified by the 4 floating-point values. The compiler generates code
that either computes or loads the values into the register.

2.5.2 Vector literals and casts

The combination of vector casts and vector literals can complicate some parsers. An implementation is
not required to support the cast to a vector type of a vector cast or vector literal when the operand of the
cast is not a parenthesized expression. For example, the programmer may write

 13
Motorola Confidential Proprietary

(vector unsigned char)((vector unsigned long)(1, 2, 3, 4))
(vector signed char)((vector unsigned short) variable)

The similar expressions below without the parenthesized expression may not be used in a conforming
application

(vector unsigned char)(vector unsigned long)(1, 2, 3, 4)
(vector signed char)(vector unsigned short) variable

2.5.3 Value for adjusting pointers

vec_step(vec_data) produces at compile time the integer value representing the amount by
which a pointer to a component of a vector data should be incremented to cause a pointer increment to
increment by 16 bytes. For example, a vector unsigned short data type is considered to
contain 8 unsigned 2-byte values. A pointer to unsigned 2-byte values used to stream through an array
of unsigned 2-byte values by a full vector at a time should be incremented by vec_step(vector
unsigned short) = 8.

· vec_step(vector unsigned char) = vec_step(vector signed char)
= vec_step(vector bool char) = 16

· vec_step(vector unsigned short) = vec_step(vector signed short)
= vec_step(vector bool short) = 8

· vec_step(vector unsigned long) = vec_step(vector signed long)
= vec_step(vector bool long) = 4

· vec_step(vector pixel) = 8

· vec_step(vector float) = 4

2.5.4 New operators representing AltiVec operations

New operators are introduced to allow full access to the functionality provided by the AltiVec
architecture. The new operators are represented in the programming language by language structures
that parse like function calls. The names associated with these operations are all prefixed with
Òvec_Ó. The appearance of one of these forms can indicate:

· a generic AltiVec operation, like vec_add()

· a specific AltiVec operation, like vec_vaddubm()

· a predicate computed from a AltiVec operation like vec_all_eq()

· loading of a vector of components, as discussed in section 2.5.1 on page 11.

Each operator representing an AltiVec operation takes a list of arguments representing the input
operands in the order in which they are shown in the architecture specification and returns a result
(possibly void).

The programming model restricts the operand types that are permitted for each AltiVec operation,
whether specific or generic. The programmer may override this constraint by explicitly casting
arguments to permissible types.

 14
Motorola Confidential Proprietary

For a specific operation, the operand types are used to determine whether the operation is acceptable
within the programming model and to determine the type of the result. For example,
vec_vaddubm(vector signed char, vector signed char) is acceptable in the
programming model because that represents a reasonable way to do modular addition with signed
bytes, while vec_vaddubs(vector signed char, vector signed char) and
vec_vadduhm(vector signed char, vector signed char) are not acceptable. If
permitted, the former operation would produce a result in which saturation treated the operands as
unsigned, while the latter would produce a result in which adjacent pairs of signed bytes would be
treated as signed halfwords.

For a generic operation, the operand types are used to determine whether the operation is acceptable, to
select a particular operation according to the types of the arguments, and to determine the type of the
result. For example, vec_add(vector signed char, vector signed char) will map
onto vec_vaddubm() and return a result of type vector signed char, while
vec_add(vector unsigned short, vector unsigned short) will map onto
vec_vadduhm() and return a result of type vector unsigned short.

The AltiVec operations that set condition register CR6 (the compare dot instructions) are treated
somewhat differently in the programming model. The programmer does not have access to specific
register names. Instead of directly specifying a compare dot instruction, the programmer makes
reference to a predicate which returns an integer value derived from the result of a compare dot
instruction. As in C, this value may be used directly as a value (1 is true, 0 is false) or as a condition
for branching. It is expected that the compiler will produce the minimum code needed to use the
condition. The predicates all begin with vec_all_ or vec_any_. Either the true or false state of
any bit that can be set by a compare dot instruction has a predicate. For example,
vec_all_gt(x,y) tests the true value of bit 24 of the CR after executing some vcmpgt.
instruction. To complete the coverage by predicates, additional predicates exercise compare dot
instructions with reversed or duplicated arguments. As examples, vec_all_lt(x,y) performs a
vcmpgtx.(y,x), and vec_all_nan(x) is mapped onto vcmpeqfp.(x,x). If the
programmer wishes to have both the result of the compare dot instruction as returned in the vector
register and the value of CR6, the programmer specifies two instructions. The compilerÕs job is to
determine that these can be merged.

The table of AltiVec operations is listed in section 4.1 on page 31. The table of AltiVec predicates is
listed in section 4.2 on page 66.

2.6 Programming Interface

This document does not prohibit or require an implementation to provide any set of include files or
#pragma preprocessor commands. If an implementation chooses to require that an include file be
used prior to the use of the syntax described in this document, it is suggested that the include file be
named <altivec.h>. If an implementation chooses to support #pragma preprocessor commands,
it is suggested that it provide __ALTIVEC__ as a predefined macro with a nonzero value. A
suggested set of preprocessor commands are

#pragma altivec_codegen on | off

When you this pragma is on, the compiler may use altivec instructions. When you set this pragma off,
the altivec_model pragma is also set to off.

 15
Motorola Confidential Proprietary

#pragma altivec_model on | off

When you this pragma is on, the compiler accepts the syntax specified in this document. When you
set this pragma on, the altivec_model pragma is also set to on.

#pragma altivec_vrsave on | off

When you this pragma is on, the compiler will maintain the VRsave register.

 16
Motorola Confidential Proprietary

3. Application Binary Interface (ABI)

The AltiVec Programming Model extends the existing PowerPC ABIs. Here we specify extensions to
the System V Application Binary Interface PowerPC Processor Supplement (SVR4 ABI), the
PowerPC Embedded Application Binary Interface (EABI), Appendix A of The PowerPC Compiler
WriterÕs Guide (AIX ABI), and the Apple Macintosh ABI (document unknown). The SVR4 ABI and
EABI specifications define both a Big-Endian ABI and a Little-Endian ABI. This extension is
independent of the endian mode.

3.1 Data Representation

The vector data types are 16-bytes long and 16-byte aligned. All ABIs are extended similarly.
Aggregates (structures and arrays) and unions containing vector types must be aligned on 16-byte
boundaries and their internal organization padded, if necessary, so that each internal vector type is
aligned on a 16-byte boundary. The AIX ABI and Apple ABI specify a maximum alignment for
aggregates and unions of 4-bytes; the EABI specifies a maximum alignment of 8-bytes. Increasing the
alignment to 16-bytes creates the opportunity for padding or holes in the parameter lists involving these
aggregates described in section 3.4.2 on page 25.

3.2 Register Usage Conventions

The register usage conventions for the vector register file are defined as follows:

Register Intended use Behavior across call sites

v0-v1 General use Volatile (Caller save)

v2-v13 Parameters, general Volatile (Caller save)

v14-v19 General Volatile (Caller save)

v20-v31 General Non-volatile (Callee save)

vrsave Special, see below Non-volatile (Callee save)

Table 2. AltiVec Registers

The VRsave special purpose register (SPR(256), named vrsave in assembly instructions) is used to
inform the operating system which vector registers need to be saved and reloaded across context
switches. Bit n of this register is set to 1 if vector register vn needs to be saved and restored across a
context switch. Otherwise, the operating system may return that register with any value that does not
violate security after a context switch. The most significant bit in the 32-bit word is considered to be
bit 0.

The EABI does not use VRsave for any special purpose, but VRsave is a non-volatile register.

3.3 The Stack Frame

The stack pointer maintains 16-byte alignment in the SVR4 ABI and the AIX ABI and 8-byte
alignment in the EABI and the Apple Macintosh ABI. It is not necessary to dynamically align the stack
in either the SVR4 ABI or the AIX ABI, however, the alignment padding space is specified for both.

 17
Motorola Confidential Proprietary

The additions to the stack frame are the vector register save area, the VRsave save word, and the
alignment padding space to dynamically align the stack to a quadword boundary.

The following additional requirements apply to the stack frame:

· Before a function changes the value of vrsave, it shall save the value of vrsave at the time of
entry to the function in the VRsave save word.

· The alignment padding space shall be either 0, 4, 8, or 12 bytes long so that the address of the
vector register save area (and subsequent stack locations) are quadword aligned.

· If the code establishing the stack frame dynamically aligns the stack pointer, it shall update the
stack pointer atomically with an stwux instruction. The code may assume the stack pointer on
entry is aligned on an 8-byte boundary.

· Before a function changes the value in any non-volatile vector register, vn, it shall save the value
in vn in the word in the vector register save area 16*(32-n) bytes before the low-addressed end of
the alignment padding space.

· Local variables of a vector data type which need to be saved to memory will be placed on the stack
frame on a 16-byte alignment boundary in the same stack frame region used for local variables of
other types.

SP in the figures denotes the stack pointer (general purpose register r1) of the called function after it
has executed code establishing its stack stack frame.

3.3.1 SVR4 ABI and EABI Stack Frame

High Address
Back chain

Floating-point
register save area
General register

save area
CR save word

VRsave save word New
Alignment padding New

Vector register
save area

New

Local variable space
Parameter list area

LR save word
Back chain

Low Address

Figure 1 SVR4 ABI and EABI Stack Frame

The size of the vector register save area and the presence of the VRsave save word may vary within a
function and are determined by a new Registers Valid tag. Note: In the SVR4 ABI, the Registers Valid
tag is the most general method of describing a stack frame. It is associated with a Frame or Frame
Valid tag.

SP

 18
Motorola Confidential Proprietary

Table 3. Vector Registers Valid Tag Format

Word Bits Name Description

1 0-17 RESERVED 0

1 18-29 START_OFFSET The number of words between the BASE of the nearest
preceding Frame or Frame Valid tag and the first
instruction to which this tag applies.

1 30-31 TYPE 2

2 0-11 VECTOR_REGS One bit for each non-volatile vector register, bit 0 for v31,
..., bit 11 for v20, with a 1 signifying that the register is
saved in the vector register save area.

2 12 VRSAVE_AREA * 1 if and only if the VRsave save word is allocated in the
register save area.

2 13-17 VR * Size in quadwords of the vector register save area.

2 18-29 RANGE The number of words between the first and the last
instruction to which this tag applies.

2 30 VRSAVE_REG 1 if and only if vrsave is saved in the VRsave save
word.

2 31 SUBTYPE 1

* If more than one Vector Registers Valid Tag applies to the same Frame or Frame Valid tag, they shall
all have the same values for VRSAVE_AREA and VR.

Figure 2 below shows sample prologue and epilogue code with full saves of all the non-volatile
floating-point, general, and vector registers and a stack frame of less than 32 Kbytes. The example
dynamically aligns the stack pointer, addresses incoming arguments via r30, uses volatile vector
registers v0-v10, maintains vrsave, does not alter the non-volatile fields of the CR and does no
dynamic stack allocation. Saving and restoring the vector registers and updating the vrsave register
can occur in either order. A function that does not need to address incoming arguments but does
dynamically align the stack pointer can recover the address of the original stack pointer with an
instruction such as Òlwz r11,0(sp)Ó.

The computation of len in the example and whether to use subfic or addi to dynamically align the
stack is based on the size of the components of the frame. Starting with the components at higher
addresses, the value of len is computed by adding the size of the floating-point register save area, the
general register save area, the CR save word, and the VRsave save word. The size of the alignment
padding space is then computed as the smallest number of bytes needed to make len a multiple of 16.
In the example below, the alignment padding space is 4 bytes. Consequently, subfic is used to
dynamically align the stack by increasing the size of the alignment padding space by either 0 or 8
bytes. Had the alignment padding space been 8 or 12 bytes, addi would be used to dynamically align
the stack by decreasing the size of the alignment padding space by either 0 or 8 bytes. Continuing, the
value of len is updated by adding the size of the vector register save area, the local variable space, the
outgoing parameter list area, and the LR save word. The size of the local variable space is adjusted so
that the overall value of len is a multiple of 16.

 19
Motorola Confidential Proprietary

function: mflr r0 # Save return address ...
stw r0,4(sp) # ... in callerÕs frame.
ori r11,sp,0 # Save end of fpr save area
rlwinm r12,sp,0,28,28 # 0 or 8 based on SP alignment
subfic r12,r12,-len # Add in stack length
stwux sp,sp,r12 # Establish new aligned frame
bl _savefpr_14 # Save floating-point registers
addi r11,r11,-144 # Compute end of gpr save area
bl _savegpr_14_g # Save gprs and fetch GOT ptr
mflr r31 # Place GOT ptr in r31

Save CR here if necessary
addi r30,r11,144 # Save pointer to incoming arguments
mfspr r0,vrsave # Save VRsave ...
stw r0,-220(r30) # ... in callerÕs frame.
oris r0,r0,0xff70 # Use v0-v10 and ...
ori r0,r0,0x0fff # v20-v31 (for example)
mtspr vrsave,r0 # Update VRsave
addi r0,sp,len-224 # Compute end of vr save area
bl _savevr20 # Save vector registers

Body of function
addi r0,sp,len-224 # Address of vr save area to r0
bl _restvr20 # Restore vector registers
lwz r0,-220(r30) # Fetch prior value of VRsave
mtspr vrsave,r0 # Restore VRsave
addi r11,r30,-144 # Address of gpr save area to r11
bl _restgpr_14 # Restore gprs
addi r11,r11,144 # Address of fpr save area to r11
bl _restfpr_14_x # Restore fprs and return

Figure 2 SVR4 ABI and EABI Prologue and Epilogue Sample Code

 20
Motorola Confidential Proprietary

3.3.2 AIX ABI and Apple Macintosh ABI Stack Frame

High Address
Back chain

Floating-point
register save area
General register

save area
VRsave save word New
Alignment padding New

Vector register
save area

New

Local variable space
Parameter list area

Saved TOC
Reserved for Binders

Reserved for Compilers
LR save word
CR save word

Back chain
Low Address

Figure 3 AIX ABI and Apple Macintosh ABI Stack Frame

The AIX ABI and Apple Macintosh ABI stack frame allows the use of a 220-byte area at a negative
offset from the stack pointer. This area can be used to save non-volatile registers before the stack
pointer has been updated. This size of this area is not changed. Depending on the number of non-
volatile registers saved, it may be necessary to update the stack pointer before saving the vector
registers. However, it remains unnecessary to update the stack pointer before saving the general-
purpose registers or floating-point registers.

The size of the vector register save area and the presence of the VRsave save word are determined by a
traceback table entry. The spare3 two-bit field in the fixed portion of the traceback table is changed
to:

has_vec_info One-bit field. This field is set to 1 if the procedure saves non-volatile vector
registers in the vector register save area, saves vrsave in the VRsave save
word, specifies the number of vector parameters, or uses AltiVec instructions.

spare4 One-bit field. Reserved.

When the has_vec_info bit is set to 1, all the following optional fields of the traceback table are
present following the position of the alloca_reg field.

vr_saved Six-bit field. This six-bit field represents the number of non-volatile vector
registers saved by this procedure. Because the last register saved is always v31,
a value of 2 in vr_saved indicates that v30 and v31 are saved.

saves_vrsave One-bit field. If this routine saves vrsave, this field is set to 1. If so, the
VRsave save word in the register save area must be used to restore the prior value
before returning from this procedure.

SP

 21
Motorola Confidential Proprietary

has_varargs One-bit field. If this function has a variable argument list, this field is set to 1.
Otherwise, it is set to 0.

vectorparms Seven-bit field. This field records the number of vector parameters. This field
may be set to a non-zero value for a procedure with vector parameters that does
not have a variable argument list. Otherwise, parmsonstk must be set.

vec_present One-bit field. This field is set to 1 if AltiVec instructions are performed within
this procedure.

Note: In version 1.1.5 of this document, the vector register save area was placed between the back
chain and the floating-point register save area. The new location for the vector register save area has
the following advantages:

1. The change required in the traceback table and tags mechanisms are simplified because the
placement of existing elements in the stack frame does not change.

2. Existing debuggers and runtime exception mechanisms can support frames that contain a vector
register save area by ignoring it.

3. The relative location of the general register save area and the floating-point register save area to the
back chain is fixed.

4. A prologue that dynamically aligns the stack pointer may require two base registers allocated in
callee-save general pupose registers. In the AIX ABI and Apple Macintosh ABI , the size of the
vector register save area does not move the general register save area beyond the 220 byte area that
can be saved before updating the stack pointer, thus simplifying the prologue and epilogue code.

The prior location for the vector register save area has the following disadvantage:

1. The alignment padding space is required when the stack pointer is 16-byte aligned and the local
variable space does not need to be 16-byte aligned.

Figure 4 below shows sample prologue and epilogue code with full saves of all the non-volatile
floating-point, general, and vector registers and a stack frame of less than 32 Kbytes. The example
dynamically aligns the stack pointer, addresses incoming arguments via r31, uses volatile vector
registers v0-v10, maintains vrsave, does not alter the non-volatile fields of the CR and does no
dynamic stack allocation. Saving and restoring the vector registers and updating the vrsave register
can occur in either order. A function that does not need to address incoming arguments but does
dynamically align the stack pointer can recover the address of the original stack pointer with an
instruction such as Òlwz r11,0(sp)Ó.

The computation of len in the example and whether to use subfic or addi to dynamically align the
stack is based on the size of the components of the frame. Starting with the components at higher
addresses, the value of len is computed by adding the size of the floating-point register save area, the
general register save area, and the VRsave save word. The size of the alignment padding space is then
computed as the smallest number of bytes needed to make len a multiple of 16. In the example
below, the alignment padding space is 0 bytes. Consequently, subfic is used to dynamically align
the stack by increasing the size of the alignment padding space by either 0 or 8 bytes. Had the
alignment padding space been 8 or 12 bytes, addi would be used to dynamically align the stack by
decreasing the size of the alignment padding space by either 0 or 8 bytes. Continuing, the value of
len is updated by adding the size of the vector register save area, the local variable space, the

 22
Motorola Confidential Proprietary

outgoing parameter list area, and 24 for the size of the link area. The size of the local varaible space is
adjusted so that the overall value of len is a multiple of 16.

function: mflr r0 # Save return address ...
stw r0,8(sp) # ... in the callerÕs frame.
bl _savef14 # Save floating-point registers.
stmw r13,-220(sp) # Save gprs in gpr save area

Save CR here if necessary
ori r31,sp,0 # Save pointer to incoming arguments
rlwinm r12,sp,0,28,28 # 0 or 8 based on SP alignment
subfic r12,r12,-len # Add in stack length
stwux sp,sp,r12 # Establish new aligned frame
mfspr r0,vrsave # Save VRsave ...
stw r0,-224(r31) # ... in callerÕs frame.
oris r0,r0,0xff70 # Use v0-v10 v20-v31 and ...
ori r0,r0,0x0fff # v20-v31 (for example)
mtspr vrsave,r0 # Update VRsave
addi r0,sp,len-224 # Compute end of vr save area
bl _savev20 # Save vector registers

Body of function
addi r0,sp,len-224 # Address of vr save area to r0
bl _restv20 # Restore vector registers
lwz r0,-224(r31) # Fetch prior value of VRsave
mtspr vrsave,r0 # Restore Vrsave
ori sp,r31 # Restore SP
lmw r13,-220(sp) # Restore gprs
lwz r0,8(sp) # Restore return address ...
mtlr r0 # ... and return from _restf14
b _restf14 # Restore fprs and return

Figure 4 AIX ABI and Apple Macintosh ABI Prologue and Epilogue Sample Code

3.3.3 Vector Register Saving and Restoring Functions

The vector register saving and restoring functions described in this section are not part of the ABI.
They are defined here only to encourage uniformity among compilers in the code used to save and
restore vector registers.

On entry to the functions described in this section, r0 contains the address of the word just beyond the
end of the vector register save area, and they leave r0 undisturbed. They modify the value of r12.

 23
Motorola Confidential Proprietary

_savev20: addi r12,r0,-192
stvx v20,r12,r0 # save v20

_savev21: addi r12,r0,-176
stvx v21,r12,r0 # save v21

_savev22: addi r12,r0,-160
stvx v22,r12,r0 # save v22

_savev23: addi r12,r0,-144
stvx v23,r12,r0 # save v23

_savev24: addi r12,r0,-128
stvx v24,r12,r0 # save v24

_savev25: addi r12,r0,-112
stvx v25,r12,r0 # save v25

_savev26: addi r12,r0,-96
stvx v26,r12,r0 # save v26

_savev27: addi r12,r0,-80
stvx v27,r12,r0 # save v27

_savev28: addi r12,r0,-64
stvx v28,r12,r0 # save v28

_savev29: addi r12,r0,-48
stvx v29,r12,r0 # save v29

_savev30: addi r12,r0,-32
stvx v30,r12,r0 # save v30

_savev31: addi r12,r0,-16
stvx v31,r12,r0 # save v31
blr # return to prologue

Figure 5 Vector Register Save

 24
Motorola Confidential Proprietary

_restv20: addi r12,r0,-192
lvx v20,r12,r0 # restore v20

_restv21: addi r12,r0,-176
lvx v21,r12,r0 # restore v21

_restv22: addi r12,r0,-160
lvx v22,r12,r0 # restore v22

_restv23: addi r12,r0,-144
lvx v23,r12,r0 # restore v23

_restv24: addi r12,r0,-128
lvx v24,r12,r0 # restore v24

_restv25: addi r12,r0,-112
lvx v25,r12,r0 # restore v25

_restv26: addi r12,r0,-96
lvx v26,r12,r0 # restore v26

_restv27: addi r12,r0,-80
lvx v27,r12,r0 # restore v27

_restv28: addi r12,r0,-64
lvx v28,r12,r0 # restore v28

_restv29: addi r12,r0,-48
lvx v29,r12,r0 # restore v29

_restv30: addi r12,r0,-32
lvx v30,r12,r0 # restore v30

_restv31: addi r12,r0,-16
lvx v31,r12,r0 # restore v31
blr # return to prologue

Figure 6 Vector Register Restore

3.4 Function Calls

This section applies to all user functions. The AltiVec intrinsic operations are not treated as function
calls, so these comments donÕt apply to those operations.

The first twelve vector parameters are placed in vector registers v2 through v13. If fewer (or no)
vector type arguments are passed, the unneeded registers are not loaded and will contain undefined
values on entry to the called function.

Functions that declare a vector data type as a return value will place that return value in register v2.

Any function that returns a vector type or has a vector parameter requires a prototype. This
requirement enables the compiler to avoid shadowing vector registers in GPRs.

3.4.1 SVR4 ABI and EABI Parameter Passing and Varargs

The SVR4 ABI algorithm for passing parameters considers the arguments as ordered from left (first
argument) to right, although the order of evaluation of the arguments is unspecified. The vector
arguments maintain their ordering. The algorithm is modified to add vr to contain the number of the
next available vector register. In the INITIALIZE step, set vr=2. In the SCAN loop, add a case for
the next argument VECTOR_ARG as:

 25
Motorola Confidential Proprietary

VECTOR_ARG:

If the next argument is in the variable portion of a parameter list, set vr=14. This leaves
the fixed portion of a variable argument list in vector registers and places the variable
portion in memory.

If vr>13 (that is, there are no more available vector registers), go to OTHER. Otherwise,
load the argument value into vector register vr, set vr to vr+1, and go to SCAN.

The OTHER case is modified only to understand that vector arguments have 16-byte size and
alignment.

Aggregates are passed by reference (i.e., converted to a pointer to the object), so no change is needed
to deal with 16-byte aligned aggregates.

The va_list type is unchanged, but an additional _va_arg_type value of 4 named
arg_VECTOR is defined for the __va_arg() interface. Since vector parameters in the variable
portion of a parameter list are passed in memory, the __va_arg() routine can access the vector value
from the overflow_arg_area value in the va_list type.

3.4.2 AIX ABI and Apple Macintosh ABI Parameter Passing Without Varargs

If the function does not take a variable argument list, the non-vector parameters are passed in the same
registers and stack locations as they would be if the vector parameters were not present. The only
change is that aggregates and unions may be 16-byte aligned instead of 4-byte aligned. This can result
in words in the parameter list being skipped for alignment (padding) and left with undefined value.

The first twelve vector parameters are placed in vector registers v2 through v13. These parameters
are not shadowed in GPRs. They are not allocated space in the memory argument list. Any additional
vector parameters are passed through memory on the program stack. They appear together, 16-byte
aligned, and after any non-vector parameters.

3.4.3 AIX ABI and Apple Macintosh ABI Parameter Passing With Varargs

The va_list type continues to be a pointer to the memory location of the next parameter. If
va_arg accesses a vector type, the va_list value must first be aligned to a 16-byte boundary.

A function that takes a variable argument list has all parameters, including vector parameters, mapped
in the argument area as ordered and aligned according to their type. The first 8 words of the argument
area are shadowed in the GPRs, but only if they correspond to the variable portion of the parameter
list. The first parameter word is named PW0 and is at stack offset 24. A vector parameter must be
aligned on a 16-byte boundary. This means there are two cases where vector parameters are passed in
GPRs. If a vector parameter is passed in PW2:PW5 (stack offset 32), its value is placed in GPRs
r5:r8. If a vector parameter is passed in PW6:PW9 (stack offset 48), its value PW6:PW7 is placed
in GPRs r9 and r10 and the value PW8:PW9 is placed on the stack. All parameters after the first 8
words of the argument area that correspond to the variable portion of the parameter list are passed in
memory.

In the fixed portion of the parameter list, vector parameters are placed in vector registers v2 through
v13, but are provided a stack location corresponding to their position in the parameter list.

 26
Motorola Confidential Proprietary

3.5 malloc(), vec_malloc(), and new

In the interest of saving space, malloc(), calloc(), and realloc() are not required to return
a 16-byte aligned address. Instead, a new set of memory management functions is introduced that
return a 16-byte aligned address. The new functions are named vec_malloc(), vec_calloc(),
vec_realloc(), and vec_free(). The two sets of memory management functions may not be
interchanged: memory allocated with malloc(), calloc(), or realloc() may only be freed
with free() and reallocated with realloc(); memory allocated with vec_alloc(),
vec_calloc(), or vec_realloc() may only be freed with vec_free() and reallocated with
vec_realloc().

The user must use the appropriate set of functions based on the alignment requirement of the type
involved. In the case of the C++ operator new, the implementation of new is required to use the
appropriate set of functions based on the alignment requirement of the type.

3.6 setjmp() and longjmp()

The context required to be saved and restored by setjmp(), longjmp() and related functions now
includes the 12 non-volatile vector registers and vrsave. The user types sigjmp_buf and
jmp_buf are extended by 48 words. One of the unused words in the existing jmp_buf is used to
save vrsave.

ABI jmp_buf size vrsave offset v20:v31 offset

AIX ABI 448 100 256

Apple Macintosh ABI 448 16 256

SVR4 ABI and EABI 448 248 256

Open question: The SVR4 ABI states only that the sigjmp_buf buffer is 132 words long. It does
not detail what the additional 68 words are used for. It appears these are not related to the processor,
but instead to the signal mechanism. The AIX ABI uses the same structure for jmp_buf and
sigjmp_buf. The Apple Macintosh ABI does not seem to have a sigjmp_buf type.

There are complications with setjmp() and longjmp():

1. The user types must be enlarged. Existing applications that use these interfaces will have to be
recompiled even though they make no use of the AltiVec instruction set.

2. The implementation that saves and restores the vector registers can only assume that the v20:v31
offset is aligned on a 4-byte boundary. Note: A method where the vector registers are saved at the
first aligned location in the jmp_buf was rejected because the user types are only 4-byte aligned
and may be copied by value to a location with different alignment.

3. The implementation that saves and restores the vector registers and vrsave uses instructions that
do not exist on a non-AltiVec enabled PowerPC architecture. The method for testing whether the
AltiVec instructions operate is privileged. One solution is to define an O/S interface that saves and
restores the vector registers and vrsave if and only if the AltiVec instructions exist and are
enabled.

 27
Motorola Confidential Proprietary

3.7 Debugging Information

Extensions to the debugging information format are required to describe vector types and vector
register locations. While vector types can be described as fixed length arrays of existing C types, the
quality implementation will describe these as new fundamental types. Doing so allows a debugger to
provide mechanisms to display vector values, assign vector values, create vector literals, etc.

This section is subject to change. It is intended to describe the extensions to the standard debugging
formats: xcoff stabstrings, DWARF version 1.1.0, and DWARF version 2.0.0.
Xcoff stabstrings used in the AIX ABI and adopted by the Apple Macintosh ABI support the location
of objects in GPRs and FPRs. The stabstring code ÒRÓ describes a parameter passed by value in the
given GPR; ÒrÓ describes a local variable residing in the given GPR. The stabstring code ÒXÓ is taken
to describe a parameter passed by value in the given vector register; ÒxÓ is taken to describe a local
variable residing in the given vector register.

DWARF 2.0 debugging DIEs support the location of objects in any machine register. The SVR4 ABI
specifies the DWARF register number mapping. The vector registers v0-v31 are assigned register
numbers 1124-1155. The VRsave SPR is SPR256 and is assigned the register number 356.

3.8 printf() and scanf() control strings

The conversion specifications in control strings for input functions (fscanf, scanf, sscanf) and
output functions (fprintf, printf, sprintf, vfprintf, vprintf, vsprintf) are extended
to support vector types.

3.8.1 Output conversion specifications

The output conversion specifications have the following general form:

%[<flags>][<width>][<precision>][<size>]<conversion>

where,

<flags> ::= <std-flags> |
<c-sep> |
[<std-flags>]<num-sep>[<std-flags]

<std-flags> ::= <std-flags-char> | <std-flags><std-flag-char>
<std-flag-char> ::= Ô-Õ | Ô+Õ | Ô0Õ | Ô#Õ | Ô Ô
<c-sep> ::= any character except Ô.Õ, Ô*Õ, and those for which

isalnum() in the C locale is nonzero.
<num-sep> ::= <c-sep> except <std-flag-char>

<width> ::= <decimal-integer> | Ô*Õ

<precision> ::= Ô.Õ <width>

<size> ::= ÔllÕ | ÔLÕ | ÔlÕ | ÔhÕ | <vector-size>
<vector-size> ::= ÔvlÕ | ÔvhÕ | ÔlvÕ | ÔhvÕ | ÔvÕ

 28
Motorola Confidential Proprietary

<conversion> ::= <char-conv> | <str-conv> | <fp-conv> |
<int-conv> | <misc-conv>

<char-conv> ::= ÔcÕ
<str-conv> ::= ÔsÕ | ÔPÕ
<fp-conv> ::= ÔeÕ | ÔEÕ | ÔfÕ | ÔgÕ | ÔGÕ
<int-conv> ::= ÔdÕ | ÔiÕ | ÔuÕ | ÔoÕ | ÔpÕ | ÔxÕ | ÔXÕ
<misc-conv> ::= ÔnÕ | Ô%Õ

The extensions to the output conversion specification for vector types are shown in bold.

Note: alphanumeric characters are explicitly excluded as separators.

The <vector-size> indicates that a single vector value is to be converted. The vector value is
displayed in the following general form:

value1 C value2 C ... C valuen

where C is a separator character defined by the <flags> (<c-sep> or <num-sep>) and there are
4, 8, or 16 output values depending on the <vector-size> each formatted according to the
<conversion>.

A <vector-size> of ÔvlÕ or ÔlvÕ consumes one argument and modifies the <int-conv>
conversion; it should be of type vector signed long, vector unsigned long, or
vector bool long; it is treated as a series of four 4-byte components. A <vector-size> of
ÔvhÕ or ÔhvÕ consumes one argument and modifies the <int-conv> conversion; it should be of
type vector signed short, vector unsigned short, vector bool short, or
vector pixel; it is treated as a series of eight 2-byte components. A <vector-size> of ÔvÕ
with <int-conv> or <char-conv> consumes one argument; it should be of type vector
signed char, vector unsigned char, or vector bool char; it is treated as a series of
sixteen 1-byte components. A <vector-size> of ÔvÕ with <fp-conv> consumes one argument;
it should be of type vector float; it is treated as a series of four 4-byte floating-point components.
All other combinations of <vector-size> and <conversion> are undefined.

The default value for the separator character is a space unless the ÔcÕ conversion is being used. For
the ÔcÕ conversion the default separator character is null. Also for the ÔcÕ conversion, any of the
standard numeric flag characters (Ô-Õ, Ô+Õ, Ô#Õ, Ô Ô) may be used as a separator since these
flags are not otherwise used. For numeric conversions the standard flags apply to the conversions and
thus may not be specified as a separator flag. Also, only one separator character may be specified in
the <flags>.

Examples:

vector signed char s8 = vector signed char(1, 2, 3, 4, 5, 6, 7, 8,
 9,10,11,12,13,14,15,16);
vector unsigned short u16 = vector unsigned short(ÔaÕ,ÕbÕ,ÕcÕ,ÕdÕ,
 ÕeÕ,ÕfÕ,ÕgÕ,ÕhÕ);
vector signed long s32 = vector signed long(1, 2, 3, 99);
vector float f32 = vector float(1.1, 2.2, 3.3, 4.4);

 29
Motorola Confidential Proprietary

printf(Òs8 = %vd\nÓ, s8);
printf(Òs8 = %,vd\nÓ, s8);
printf(Òu16 = %vhc\nÓ, u16);
printf(Òs32 = %,2lvd\nÓ, s32);
printf(Òf32 = %,5.2vf\nÓ, f32);

Produces the output

s8 = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s8 = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
u16 = abcdefgh
s32 = 1, 2, 3,99
f32 = 1.10, 2.20, 3.30, 4.40

3.8.2 Input conversion specifications

The input conversion specifications have the following general form:

%[<flags>][<width>][<size>]<conversion>

where,

<flags> ::= Ô*Õ | <c-sep> [Ô*Õ] | [Ô*Õ] <c-sep>
<c-sep> ::= any character except Ô.Õ, Ô*Õ, and those for which

isalnum() in the C locale is nonzero.

<width> ::= <decimal-integer>

<size> ::= ÔllÕ | ÔLÕ | ÔlÕ | ÔhÕ | <vector-size>
<vector-size> ::= ÔvlÕ | ÔvhÕ | ÔlvÕ | ÔhvÕ | ÔvÕ

<conversion> ::= <char-conv> | <str-conv> | <fp-conv> |
<int-conv> | <misc-conv>

<char-conv> ::= ÔcÕ
<str-conv> ::= ÔsÕ | ÔPÕ
<fp-conv> ::= ÔeÕ | ÔEÕ | ÔfÕ | ÔgÕ | ÔGÕ
<int-conv> ::= ÔdÕ | ÔiÕ | ÔuÕ | ÔoÕ | ÔpÕ | ÔxÕ | ÔXÕ
<misc-conv> ::= ÔnÕ | Ô%Õ

The extensions to the input conversion specification for vector types are shown in bold.

Note: alphanumeric characters and Ô.Õ are explicitly excluded as separators.

The <vector-size> indicates that a single vector value is to be scanned and converted. The vector
value to be scanned is in the following general form:

value1 C value2 C ... C valuen

where C is a separator character defined by the <flags> (<c-sep> surrounded by any number of
spaces) and 4, 8, or 16 values are scanned depending on the <vector-size> each value scanned
according to the <conversion>.

 30
Motorola Confidential Proprietary

A <vector-size> of ÔvlÕ or ÔlvÕ consumes one argument and modifies the <int-conv>
conversion; it should be of type vector signed long * or vector unsigned long *
depending on the <int-conv> specification; 4 values are scanned. A <vector-size> of ÔvhÕ
or ÔhvÕ consumes one argument and modifies the <int-conv> conversion; it should be of type
vector signed * or vector unsigned short * depending on the <int-conv>
specification; 8 values are scanned. A <vector-size> of ÔvÕ with <int-conv> or <char-
conv> consumes one argument; it should be of type vector signed char * or vector
unsigned char * depending on the <int-conv> or <char-conv> specification; 16 values
are scanned. A <vector-size> of ÔvÕ with <fp-conv> consumes one argument; it should be of
type vector float *; 4 floating-point values are scanned. All other combinations of <vector-
size> and <conversion> are undefined.

The default value for the separator character is any number of spaces unless the ÔcÕ conversion is
being used. For the ÔcÕ conversion the default separator character is null.

If the input stream reaches end-of-file or there is a conflict between the control string and a character
read from the input stream, the input functions return EOF and do not assign to their vector argument.
When a conflict occurs, the character causing the conflict remains unread and will be processed by the
next input operation.

Examples:

sscanf(Ò1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Ó, Ò%vdÓ, &s8);
sscanf(Ò1,2, 3 ,4 , 5,6,7,8,9,10,11,12,13,14,15,16Ó, Ò%,vdÓ, &s8);
sscanf(ÒabcdefghÓ, Ò%vhcÓ, &u16);
sscanf(Ò1, 2, 3,99Ó, Ò%,2lvdÓ, &s32);
sscanf(Ò1.10, 2.20, 3.30, 4.40Ó, Ò%,5vfÓ, &f32);

This is equivalent to:

vector signed char s8 = vector signed char(1, 2, 3, 4, 5, 6, 7, 8,
 9,10,11,12,13,14,15,16);
vector unsigned short u16 = vector unsigned short(ÔaÕ,ÕbÕ,ÕcÕ,ÕdÕ,
 ÕeÕ,ÕfÕ,ÕgÕ,ÕhÕ);
vector signed long s32 = vector signed long(1, 2, 3, 99);
vector float f32 = vector float(1.1, 2.2, 3.3, 4.4);

 31
Motorola Confidential Proprietary

4. New AltiVec Operations

4.1 Generic and Specific AltiVec Operators

The first set of tables is organized alphabetically by generic operation name and defines the permitted
generic and specific AltiVec operations. Each table describes a single generic AltiVec operation. Each
line shows a valid set of argument types for that generic AltiVec operation, the result type for that set
of argument types, and the specific AltiVec instruction generated for that set of arguments. For
example, vec_add(vector unsigned char, vector unsigned char) maps to
ÒvaddubmÓ.

In almost all cases, it is also permissible to use a specific AltiVec operator formed by adding Òvec_Ó
to the name of the operation in the Maps To column with that lineÕs set of argument types. For
example, vec_vaddubm(vector unsigned char, vector unsigned char) has the
same effect as vec_add(vector unsigned char, vector unsigned char). A few
cases are prohibited because that set of argument types has been chosen to produce a different result
type.

Any operation that is not explicitly permitted by this table is prohibited. The desperate programmer can
cast arguments, if necessary, to use operators in bizarre ways. The less desperate programmer can
request an extension or modification of the programming model!

4.1.1 vec_add(arg1, arg2)

Each element of the result is the sum of the corresponding elements of arg1 and arg2. The arithmetic
is modular for integer types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vaddubm
vector unsigned char vector unsigned char vector bool char vaddubm
vector unsigned char vector bool char vector unsigned char vaddubm
vector signed char vector signed char vector signed char vaddubm
vector signed char vector signed char vector bool char vaddubm
vector signed char vector bool char vector signed char vaddubm

vector unsigned short vector unsigned short vector unsigned short vadduhm
vector unsigned short vector unsigned short vector bool short vadduhm
vector unsigned short vector bool short vector unsigned short vadduhm
vector signed short vector signed short vector signed short vadduhm
vector signed short vector signed short vector bool short vadduhm
vector signed short vector bool short vector signed short vadduhm

vector unsigned long vector unsigned long vector unsigned long vadduwm
vector unsigned long vector unsigned long vector bool long vadduwm
vector unsigned long vector bool long vector unsigned long vadduwm
vector signed long vector signed long vector signed long vadduwm
vector signed long vector signed long vector bool long vadduwm
vector signed long vector bool long vector signed long vadduwm

vector float vector float vector float vaddfp

 32
Motorola Confidential Proprietary

4.1.2 vec_addc(arg1, arg2)

Each element of the result is the carry produced by adding the corresponding elements of arg1 and
arg2. A carry gives a value of 1; no carry gives a value of 0.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned long vector unsigned long vaddcuw

4.1.3 vec_adds(arg1, arg2)

Each element of the result is the saturated sum of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vaddubs
vector unsigned char vector unsigned char vector bool char vaddubs
vector unsigned char vector bool char vector unsigned char vaddubs
vector signed char vector signed char vector signed char vaddsbs
vector signed char vector signed char vector bool char vaddsbs
vector signed char vector bool char vector signed char vaddsbs

vector unsigned short vector unsigned short vector unsigned short vadduhs
vector unsigned short vector unsigned short vector bool short vadduhs
vector unsigned short vector bool short vector unsigned short vadduhs
vector signed short vector signed short vector signed short vaddshs
vector signed short vector signed short vector bool short vaddshs
vector signed short vector bool short vector signed short vaddshs

vector unsigned long vector unsigned long vector unsigned long vadduws
vector unsigned long vector unsigned long vector bool long vadduws
vector unsigned long vector bool long vector unsigned long vadduws
vector signed long vector signed long vector signed long vaddsws
vector signed long vector signed long vector bool long vaddsws
vector signed long vector bool long vector signed long vaddsws

4.1.4 vec_and(arg1, arg2)

Each element of the result is the logical AND of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vand
vector unsigned char vector unsigned char vector bool char vand
vector unsigned char vector bool char vector unsigned char vand
vector signed char vector signed char vector signed char vand
vector signed char vector signed char vector bool char vand
vector signed char vector bool char vector signed char vand
vector bool char vector bool char vector bool char vand

vector unsigned short vector unsigned short vector unsigned short vand
vector unsigned short vector unsigned short vector bool short vand
vector unsigned short vector bool short vector unsigned short vand
vector signed short vector signed short vector signed short vand

 33
Motorola Confidential Proprietary

vector signed short vector signed short vector bool short vand
vector signed short vector bool short vector signed short vand
vector bool short vector bool short vector bool short vand

vector unsigned long vector unsigned long vector unsigned long vand
vector unsigned long vector unsigned long vector bool long vand
vector unsigned long vector bool long vector unsigned long vand
vector signed long vector signed long vector signed long vand
vector signed long vector signed long vector bool long vand
vector signed long vector bool long vector signed long vand
vector bool long vector bool long vector bool long vand

vector float vector bool long vector float vand
vector float vector float vector bool long vand
vector float vector float vector float vand

4.1.5 vec_andc(arg1, arg2)

Each element of the result is the logical AND of the corresponding element of arg1 and the one's
complement of the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vandc
vector unsigned char vector unsigned char vector bool char vandc
vector unsigned char vector bool char vector unsigned char vandc
vector signed char vector signed char vector signed char vandc
vector signed char vector signed char vector bool char vandc
vector signed char vector bool char vector signed char vandc
vector bool char vector bool char vector bool char vandc

vector unsigned short vector unsigned short vector unsigned short vandc
vector unsigned short vector unsigned short vector bool short vandc
vector unsigned short vector bool short vector unsigned short vandc
vector signed short vector signed short vector signed short vandc
vector signed short vector signed short vector bool short vandc
vector signed short vector bool short vector signed short vandc
vector bool short vector bool short vector bool short vandc

vector unsigned long vector unsigned long vector unsigned long vandc
vector unsigned long vector unsigned long vector bool long vandc
vector unsigned long vector bool long vector unsigned long vandc
vector signed long vector signed long vector signed long vandc
vector signed long vector signed long vector bool long vandc
vector signed long vector bool long vector signed long vandc
vector bool long vector bool long vector bool long vandc

vector float vector bool long vector float vandc
vector float vector float vector bool long vandc
vector float vector float vector float vandc

 34
Motorola Confidential Proprietary

4.1.6 vec_avg(arg1, arg2)

Each element of the result is the average of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vavgub
vector signed char vector signed char vector signed char vavgsb

vector unsigned short vector unsigned short vector unsigned short vavguh
vector signed short vector signed short vector signed short vavgsh

vector unsigned long vector unsigned long vector unsigned long vavguw
vector signed long vector signed long vector signed long vavgsw

4.1.7 vec_ceil(arg1)

Each element of the result is the largest representable floating point integer not less than the
corresponding element of arg1.

Result arg1 Maps To
vector float vector float vrfip

4.1.8 vec_cmpb(arg1, arg2)

Each element of the result is 0 if the corresponding element of arg1 is greater than or equal to the
negative of the corresponding element of arg2 and less than or equal to the corresponding element of
arg2. If the corresponding element of arg2 is not negative, each element of the result will be negative
if the corresponding element of arg1 is greater than the corresponding element of arg2 and positive if
the corresponding element of arg1 is less than the negative of the corresponding element of arg1.

Result arg1 arg2 Maps To
vector signed long vector float vector float vcmpbfp

4.1.9 vec_cmpeq(arg1, arg2)

Each element of the result is TRUE if the corresponding element of arg1 is equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool char vector unsigned char vector unsigned char vcmpequb
vector bool char vector signed char vector signed char vcmpequb
vector bool short vector unsigned short vector unsigned short vcmpequh
vector bool short vector signed short vector signed short vcmpequh
vector bool long vector unsigned long vector unsigned long vcmpequw
vector bool long vector signed long vector signed long vcmpequw
vector bool long vector float vector float vcmpeqfp

 35
Motorola Confidential Proprietary

4.1.10 vec_cmpge(arg1, arg2)

Each element of the result is TRUE if the corresponding element of arg1 is greater than or equal to the
corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool long vector float vector float vcmpgefp

4.1.11 vec_cmpgt(arg1, arg2)

Each element of the result is TRUE if the corresponding element of arg1 is greater than the
corresponding element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
vector bool char vector unsigned char vector unsigned char vcmpgtub
vector bool char vector signed char vector signed char vcmpgtsb
vector bool short vector unsigned short vector unsigned short vcmpgtuh
vector bool short vector signed short vector signed short vcmpgtsh
vector bool long vector unsigned long vector unsigned long vcmpgtuw
vector bool long vector signed long vector signed long vcmpgtsw
vector bool long vector float vector float vcmpgtfp

4.1.12 vec_ctf(arg1, arg2)

Each element of the result is the closest floating-point representation of the number obtained by
dividing the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector float vector unsigned long 5-bit unsigned literal vcfux
vector float vector signed long 5-bit unsigned literal vcfsx

4.1.13 vec_cts(arg1, arg2)

Each element of the result is the saturated signed value obtained after truncating the number obtained
by multiplying the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector signed long vector float 5-bit unsigned literal vctsxs

4.1.14 vec_ctu(arg1, arg2)

Each element of the result is the saturated unsigned value obtained after truncating the number obtained
by multiplying the corresponding element of arg1 by 2 to the power of arg2.

Result arg1 arg2 Maps To
vector unsigned long vector float 5-bit unsigned literal vctuxs

 36
Motorola Confidential Proprietary

4.1.15 vec_dss(arg1)

Each operation stops cache touches for the data stream associated with tag arg1.

Result arg1 Maps To
void 2-bit unsigned literal dss

4.1.16 vec_dssall(void)

The operation stops cache touches for all data streams.

Result Maps To
void dssall

4.1.17 vec_dst(arg1, arg2, arg3)

Each operation initiates cache touches for loads for the data stream associated with tag arg3 at the
address arg1 using the data block in arg2. The arg1 type may also be a pointer to a const-qualified
type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3
Maps To

void vector unsigned char * any integral type 2-bit unsigned literal
dst

void vector signed char * any integral type 2-bit unsigned literal
dst

void vector bool char * any integral type 2-bit unsigned literal
dst

void vector unsigned short * any integral type 2-bit unsigned literal
dst

void vector signed short * any integral type 2-bit unsigned literal
dst

void vector bool short * any integral type 2-bit unsigned literal
dst

void vector pixel * any integral type 2-bit unsigned literal
dst

void vector unsigned long * any integral type 2-bit unsigned literal
dst

void vector signed long * any integral type 2-bit unsigned literal
dst

void vector bool long * any integral type 2-bit unsigned literal
dst

void vector float * any integral type 2-bit unsigned literal
dst

void unsigned char * any integral type 2-bit unsigned literal
dst

void signed char * any integral type 2-bit unsigned literal
dst

void unsigned short * any integral type 2-bit unsigned literal
dst

 37
Motorola Confidential Proprietary

void short * any integral type 2-bit unsigned literal
dst

void unsigned int * any integral type 2-bit unsigned literal
dst

void int * any integral type 2-bit unsigned literal
dst

void unsigned long * any integral type 2-bit unsigned literal
dst

void long * any integral type 2-bit unsigned literal
dst

void float * any integral type 2-bit unsigned literal
dst

4.1.18 vec_dstst(arg1, arg2, arg3)

Each operation initiates cache touches for stores for the data stream associated with tag arg3 at the
address arg1 using the data block in arg2. The arg1 type may also be a pointer to a const-qualified
type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3
Maps To

void vector unsigned char * any integral type 2-bit unsigned literal
dstst

void vector signed char * any integral type 2-bit unsigned literal
dstst

void vector bool char * any integral type 2-bit unsigned literal
dstst

void vector unsigned short * any integral type 2-bit unsigned literal
dstst

void vector signed short * any integral type 2-bit unsigned literal
dstst

void vector bool short * any integral type 2-bit unsigned literal
dstst

void vector pixel * any integral type 2-bit unsigned literal
dstst

void vector unsigned long * any integral type 2-bit unsigned literal
dstst

void vector signed long * any integral type 2-bit unsigned literal
dstst

void vector bool long * any integral type 2-bit unsigned literal
dstst

void vector float * any integral type 2-bit unsigned literal
dstst

void unsigned char * any integral type 2-bit unsigned literal
dstst

void signed char * any integral type 2-bit unsigned literal
dstst

void unsigned short * any integral type 2-bit unsigned literal
dstst

 38
Motorola Confidential Proprietary

void short * any integral type 2-bit unsigned literal
dstst

void unsigned int * any integral type 2-bit unsigned literal
dstst

void int * any integral type 2-bit unsigned literal
dstst

void unsigned long * any integral type 2-bit unsigned literal
dstst

void long * any integral type 2-bit unsigned literal
dstst

void float * any integral type 2-bit unsigned literal
dstst

4.1.19 vec_dststt(arg1, arg2, arg3)

Each operation initiates cache touches for transient stores for the data stream associated with tag arg3
at the address arg1 using the data block in arg2. The arg1 type may also be a pointer to a const-
qualified type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3
Maps To

void vector unsigned char * any integral type 2-bit unsigned literal
dststt

void vector signed char * any integral type 2-bit unsigned literal
dststt

void vector bool char * any integral type 2-bit unsigned literal
dststt

void vector unsigned short * any integral type 2-bit unsigned literal
dststt

void vector signed short * any integral type 2-bit unsigned literal
dststt

void vector bool short * any integral type 2-bit unsigned literal
dststt

void vector pixel * any integral type 2-bit unsigned literal
dststt

void vector unsigned long * any integral type 2-bit unsigned literal
dststt

void vector signed long * any integral type 2-bit unsigned literal
dststt

void vector bool long * any integral type 2-bit unsigned literal
dststt

void vector float * any integral type 2-bit unsigned literal
dststt

void unsigned char * any integral type 2-bit unsigned literal
dststt

void signed char * any integral type 2-bit unsigned literal
dststt

void unsigned short * any integral type 2-bit unsigned literal
dststt

 39
Motorola Confidential Proprietary

void short * any integral type 2-bit unsigned literal
dststt

void unsigned int * any integral type 2-bit unsigned literal
dststt

void int * any integral type 2-bit unsigned literal
dststt

void unsigned long * any integral type 2-bit unsigned literal
dststt

void long * any integral type 2-bit unsigned literal
dststt

void float * any integral type 2-bit unsigned literal
dststt

4.1.20 vec_dstt(arg1, arg2, arg3)

Each operation initiates cache touches for transient loads for the data stream associated with tag arg3 at
the address arg1 using the data block in arg2. The arg1 type may also be a pointer to a const-
qualified type. Plain char * is excluded in the mapping for arg1.

Result arg1 arg2 arg3
Maps To

void vector unsigned char * any integral type 2-bit unsigned literal
dstt

void vector signed char * any integral type 2-bit unsigned literal
dstt

void vector bool char * any integral type 2-bit unsigned literal
dstt

void vector unsigned short * any integral type 2-bit unsigned literal
dstt

void vector signed short * any integral type 2-bit unsigned literal
dstt

void vector bool short * any integral type 2-bit unsigned literal
dstt

void vector pixel * any integral type 2-bit unsigned literal
dstt

void vector unsigned long * any integral type 2-bit unsigned literal
dstt

void vector signed long * any integral type 2-bit unsigned literal
dstt

void vector bool long * any integral type 2-bit unsigned literal
dstt

void vector float * any integral type 2-bit unsigned literal
dstt

void unsigned char * any integral type 2-bit unsigned literal
dstt

void signed char * any integral type 2-bit unsigned literal
dstt

void unsigned short * any integral type 2-bit unsigned literal
dstt

 40
Motorola Confidential Proprietary

void short * any integral type 2-bit unsigned literal
dstt

void unsigned int * any integral type 2-bit unsigned literal
dstt

void int * any integral type 2-bit unsigned literal
dstt

void unsigned long * any integral type 2-bit unsigned literal
dstt

void long * any integral type 2-bit unsigned literal
dstt

void float * any integral type 2-bit unsigned literal
dstt

4.1.21 vec_expte(arg1)

Each element of the result is an estimate of 2 raised to the corresponding element of arg1.

Result arg1 Maps To
vector float vector float vexptefp

4.1.22 vec_floor(arg1)

Each element of the result is the largest representable floating point integer not greater than arg1.

Result arg1 Maps To
vector float vector float vrfim

4.1.23 vec_ld(arg1, arg2)

Each operation performs a 16-byte load at a 16-byte aligned address. arg1 is taken to be an integer
value, while arg2 is a pointer. The sum of arg1 and arg2 is truncated, if necessary, to give 16-byte
alignment; loading unaligned data into a vector register typically requires a permutation of the results of
two loads. This load is the one that will be generated for a loading dereference of a pointer to a vector
type. The arg2 type may also be a pointer to a const-qualified type. Plain char * is excluded in the
mapping for arg2.

Result arg1 arg2 Maps To
vector unsigned char any integral type vector unsigned char * lvx
vector unsigned char any integral type unsigned char * lvx
vector signed char any integral type vector signed char * lvx
vector signed char any integral type signed char * lvx
vector bool char any integral type vector bool char * lvx

vector unsigned short any integral type vector unsigned short * lvx
vector unsigned short any integral type unsigned short * lvx
vector signed short any integral type vector signed short * lvx
vector signed short any integral type short * lvx
vector bool short any integral type vector bool short * lvx

 41
Motorola Confidential Proprietary

vector pixel any integral type vector pixel * lvx
vector unsigned long any integral type vector unsigned long * lvx
vector unsigned long any integral type unsigned int * lvx
vector unsigned long any integral type unsigned long * lvx
vector signed long any integral type vector signed long * lvx
vector signed long any integral type int * lvx
vector signed long any integral type long * lvx
vector bool long any integral type vector bool long * lvx

vector float any integral type vector float * lvx
vector float any integral type float * lvx

4.1.24 vec_lde(arg1, arg2)

Each operation loads a single element into the position in the vector register corresponding to its
address, leaving the remaining elements of the register undefined. arg1 is taken to be an integer
value, while arg2 is a pointer. The arg2 type may also be a pointer to a const-qualified type. Plain
char * is excluded in the mapping for arg2.

Result arg1 arg2 Maps To
vector unsigned char any integral type unsigned char * lvebx
vector signed char any integral type signed char * lvebx

vector unsigned short any integral type unsigned short * lvehx
vector signed short any integral type short * lvehx

vector unsigned long any integral type unsigned int * lvewx
vector unsigned long any integral type unsigned long * lvewx
vector signed long any integral type int * lvewx
vector signed long any integral type long * lvewx

vector float any integral type float * lvewx

4.1.25 vec_ldl(arg1, arg2)

Each operation performs a 16-byte load at a 16-byte aligned address. arg1 is taken to be an integer
value, while arg2 is a pointer. The sum of arg1 and arg2 is truncated, if necessary, to give 16-byte
alignment; loading unaligned data into a vector register typically requires a permutation of the results of
two loads. These operations mark the cache line as least-recently-used. The arg2 type may also be a
pointer to a const-qualified type. Plain char * is excluded in the mapping for arg2.

Result arg1 arg2 Maps To
vector unsigned char any integral type vector unsigned char * lvxl
vector unsigned char any integral type unsigned char * lvxl
vector signed char any integral type vector signed char * lvxl
vector signed char any integral type signed char * lvxl
vector bool char any integral type vector bool char * lvxl

vector unsigned short any integral type vector unsigned short * lvxl
vector unsigned short any integral type unsigned short * lvxl
vector signed short any integral type vector signed short * lvxl
vector signed short any integral type short * lvxl
vector bool short any integral type vector bool short * lvxl

vector pixel any integral type vector pixel * lvxl

 42
Motorola Confidential Proprietary

vector unsigned long any integral type vector unsigned long * lvxl
vector unsigned long any integral type unsigned int * lvxl
vector unsigned long any integral type unsigned long * lvxl
vector signed long any integral type vector signed long * lvxl
vector signed long any integral type int * lvxl
vector signed long any integral type long * lvxl
vector bool long any integral type vector bool long * lvxl

vector float any integral type vector float * lvxl
vector float any integral type float * lvxl

4.1.26 vec_loge(arg1)

Each element of the result is an estimate of the logarithm to base 2 of the corresponding element of
arg1.

Result arg1 Maps To
vector float vector float vlogefp

4.1.27 vec_lvsl(arg1, arg2)

Each operation generates a permutations useful for aligning data from an unaligned address. The arg2
type may also be a pointer to a const or volatile qualified type. Plain char * is excluded in the mapping
for arg2.

Result arg1 arg2 Maps To
vector unsigned char any integral type unsigned char * lvsl
vector unsigned char any integral type signed char * lvsl
vector unsigned char any integral type unsigned short * lvsl
vector unsigned char any integral type short * lvsl
vector unsigned char any integral type unsigned int * lvsl
vector unsigned char any integral type unsigned long * lvsl
vector unsigned char any integral type int * lvsl
vector unsigned char any integral type long * lvsl
vector unsigned char any integral type float * lvsl

4.1.28 vec_lvsr(arg1, arg2)

Each operation generates a permutations useful for aligning data from an unaligned address. The arg2
type may also be a pointer to a const or volatile qualified type. Plain char * is excluded in the mapping
for arg2.

Result arg1 arg2 Maps To
vector unsigned char any integral type unsigned char * lvsr
vector unsigned char any integral type signed char * lvsr
vector unsigned char any integral type unsigned short * lvsr
vector unsigned char any integral type short * lvsr
vector unsigned char any integral type unsigned int * lvsr
vector unsigned char any integral type unsigned long * lvsr

 43
Motorola Confidential Proprietary

vector unsigned char any integral type int * lvsr
vector unsigned char any integral type long * lvsr
vector unsigned char any integral type float * lvsr

4.1.29 vec_madd(arg1, arg2, arg3)

Each element of the result is the sum of the corresponding element of arg3 and the product of the
corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3
Maps To

vector float vector float vector float vector float
vmaddfp

4.1.30 vec_madds(arg1, arg2, arg3)

Each element of the result is the 16-bit saturated sum of the corresponding element of arg3 and the
high-order 17 bits of the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3
Maps To

vector signed short vector signed short vector signed short vector signed short
vmhaddshs

4.1.31 vec_max(arg1, arg2)

Each element of the result is the larger of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmaxub
vector unsigned char vector unsigned char vector bool char vmaxub
vector unsigned char vector bool char vector unsigned char vmaxub
vector signed char vector signed char vector signed char vmaxsb
vector signed char vector signed char vector bool char vmaxsb
vector signed char vector bool char vector signed char vmaxsb

vector unsigned short vector unsigned short vector unsigned short vmaxuh
vector unsigned short vector unsigned short vector bool short vmaxuh
vector unsigned short vector bool short vector unsigned short vmaxuh
vector signed short vector signed short vector signed short vmaxsh
vector signed short vector signed short vector bool short vmaxsh
vector signed short vector bool short vector signed short vmaxsh

vector unsigned long vector unsigned long vector unsigned long vmaxuw
vector unsigned long vector unsigned long vector bool long vmaxuw
vector unsigned long vector bool long vector unsigned long vmaxuw
vector signed long vector signed long vector signed long vmaxsw
vector signed long vector signed long vector bool long vmaxsw
vector signed long vector bool long vector signed long vmaxsw

vector float vector float vector float vmaxfp

 44
Motorola Confidential Proprietary

4.1.32 vec_mergeh(arg1, arg2)

The even elements of the result are obtained left-to-right from the high elements of arg1. The odd
elements of the result are obtained left-to-right from the high elements of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmrghb
vector signed char vector signed char vector signed char vmrghb
vector bool char vector bool char vector bool char vmrghb

vector unsigned short vector unsigned short vector unsigned short vmrghh
vector signed short vector signed short vector signed short vmrghh
vector bool short vector bool short vector bool short vmrghh

vector pixel vector pixel vector pixel vmrghh
vector unsigned long vector unsigned long vector unsigned long vmrghw
vector signed long vector signed long vector signed long vmrghw
vector bool long vector bool long vector bool long vmrghw

vector float vector float vector float vmrghw

4.1.33 vec_mergel(arg1, arg2)

The even elements of the result are obtained left-to-right from the low elements of arg1. The odd
elements of the result are obtained left-to-right from the low elements of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vmrglb
vector signed char vector signed char vector signed char vmrglb
vector bool char vector bool char vector bool char vmrglb

vector unsigned short vector unsigned short vector unsigned short vmrglh
vector signed short vector signed short vector signed short vmrglh
vector bool short vector bool short vector bool short vmrglh

vector pixel vector pixel vector pixel vmrglh
vector unsigned long vector unsigned long vector unsigned long vmrglw
vector signed long vector signed long vector signed long vmrglw
vector bool long vector bool long vector bool long vmrglw

vector float vector float vector float vmrglw

4.1.34 vec_mfvscr(void)

The first six elements of the result are 0. The seventh element of the result contains the high-order 16
bits of the VSCR (including NJ). The eighth element of the result contains the low-order 16 bits of the
VSCR (including SAT).

Result Maps To
vector unsigned short mfvscr

 45
Motorola Confidential Proprietary

4.1.35 vec_min(arg1, arg2)

Each element of the result is the smaller of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vminub
vector unsigned char vector unsigned char vector bool char vminub
vector unsigned char vector bool char vector unsigned char vminub
vector signed char vector signed char vector signed char vminsb
vector signed char vector signed char vector bool char vminsb
vector signed char vector bool char vector signed char vminsb

vector unsigned short vector unsigned short vector unsigned short vminuh
vector unsigned short vector unsigned short vector bool short vminuh
vector unsigned short vector bool short vector unsigned short vminuh
vector signed short vector signed short vector signed short vminsh
vector signed short vector signed short vector bool short vminsh
vector signed short vector bool short vector signed short vminsh

vector unsigned long vector unsigned long vector unsigned long vminuw
vector unsigned long vector unsigned long vector bool long vminuw
vector unsigned long vector bool long vector unsigned long vminuw
vector signed long vector signed long vector signed long vminsw
vector signed long vector signed long vector bool long vminsw
vector signed long vector bool long vector signed long vminsw

vector float vector float vector float vminfp

4.1.36 vec_mladd(arg1, arg2, arg3)

Each element of the result is the low-order 16 bits of the sum of the corresponding element of arg3
and the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3
Maps To

vector unsigned short vector unsigned short vector unsigned short vector unsigned short
vmladduhm

vector signed short vector unsigned short vector signed short vector signed short
vmladduhm

vector signed short vector signed short vector unsigned short vector unsigned short
vmladduhm

vector signed short vector signed short vector signed short vector signed short
vmladduhm

4.1.37 vec_mradds(arg1, arg2, arg3)

Each element of the result is the 16-bit saturated sum of the corresponding element of arg3 and the
high-order 17 bits of the rounded product of the corresponding elements of arg1 and arg2. Note that
arg2 is unsigned, while arg1 is signed for the variant which maps to vmsumbm.

 46
Motorola Confidential Proprietary

Result arg1 arg2 arg3
Maps To

vector signed short vector signed short vector signed short vector signed short
vmhraddshs

4.1.38 vec_msum(arg1, arg2, arg3)

Each element of the result is the sum of the corresponding element of arg3 and the products of the
elements of arg1 and arg2 which overlap the positions of that element of arg3. The sum is
performed with 32-bit modular addition.

Result arg1 arg2 arg3
Maps To

vector unsigned long vector unsigned char vector unsigned char vector unsigned long
vmsumubm

vector unsigned long vector unsigned short vector unsigned short vector unsigned long
vmsumuhm

vector signed long vector signed char vector unsigned char vector signed long
vmsummbm

vector signed long vector signed short vector signed short vector signed long
vmsumshm

4.1.39 vec_msums(arg1, arg2, arg3)

Each element of the result is the sum of the corresponding element of arg3 and the products of the
elements of arg1 and arg2 which overlap the positions of that element of arg3. The sum is
performed with 32-bit saturating addition.

Result arg1 arg2 arg3
Maps To

vector unsigned long vector unsigned short vector unsigned short vector unsigned long
vmsumuhs

vector signed long vector signed short vector signed short vector signed long
vmsumshs

4.1.40 vec_mtvscr(arg1)

The VSCR is set by the elements in arg1 which occupy the last 32 bits.

Result arg1 Maps To
void vector unsigned char mtvscr
void vector signed char mtvscr
void vector bool char mtvscr
void vector unsigned short mtvscr
void vector signed short mtvscr
void vector bool short mtvscr
void vector pixel mtvscr
void vector unsigned long mtvscr
void vector signed long mtvscr

 47
Motorola Confidential Proprietary

void vector bool long mtvscr

4.1.41 vec_mule(arg1, arg2)

Each element of the result is the product of the corresponding high half-width elements of arg1 and
arg2.

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmuleub
vector signed short vector signed char vector signed char vmulesb

vector unsigned long vector unsigned short vector unsigned short vmuleuh
vector signed long vector signed short vector signed short vmulesh

4.1.42 vec_mulo(arg1, arg2)

Each element of the result is the product of the corresponding low half-width elements of arg1 and
arg2.

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmuloub
vector signed short vector signed char vector signed char vmulosb

vector unsigned long vector unsigned short vector unsigned short vmulouh
vector signed long vector signed short vector signed short vmulosh

4.1.43 vec_nmsub(arg1, arg2, arg3)

Each element of the result is the negative of the difference of the corresponding element of arg3 and
the product of the corresponding elements of arg1 and arg2.

Result arg1 arg2 arg3
Maps To

vector float vector float vector float vector float
vnmsubfp

4.1.44 vec_nor(arg1, arg2)

Each element of the result is the logical NOR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vnor
vector signed char vector signed char vector signed char vnor
vector bool char vector bool char vector bool char vnor

vector unsigned short vector unsigned short vector unsigned short vnor
vector signed short vector signed short vector signed short vnor
vector bool short vector bool short vector bool short vnor

vector unsigned long vector unsigned long vector unsigned long vnor
vector signed long vector signed long vector signed long vnor

 48
Motorola Confidential Proprietary

vector bool long vector bool long vector bool long vnor
vector float vector float vector float vnor

4.1.45 vec_or(arg1, arg2)

Each element of the result is the logical OR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vor
vector unsigned char vector unsigned char vector bool char vor
vector unsigned char vector bool char vector unsigned char vor
vector signed char vector signed char vector signed char vor
vector signed char vector signed char vector bool char vor
vector signed char vector bool char vector signed char vor
vector bool char vector bool char vector bool char vor

vector unsigned short vector unsigned short vector unsigned short vor
vector unsigned short vector unsigned short vector bool short vor
vector unsigned short vector bool short vector unsigned short vor
vector signed short vector signed short vector signed short vor
vector signed short vector signed short vector bool short vor
vector signed short vector bool short vector signed short vor
vector bool short vector bool short vector bool short vor

vector unsigned long vector unsigned long vector unsigned long vor
vector unsigned long vector unsigned long vector bool long vor
vector unsigned long vector bool long vector unsigned long vor
vector signed long vector signed long vector signed long vor
vector signed long vector signed long vector bool long vor
vector signed long vector bool long vector signed long vor
vector bool long vector bool long vector bool long vor

vector float vector bool long vector float vor
vector float vector float vector bool long vor
vector float vector float vector float vor

4.1.46 vec_pack(arg1, arg2)

Each high element of the result is the truncation of the corresponding wider element of arg1. Each
low element of the result is the truncation of the corresponding wider element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned short vector unsigned short vpkuhum
vector signed char vector signed short vector signed short vpkuhum
vector bool char vector bool short vector bool short vpkuhum

vector unsigned short vector unsigned long vector unsigned long vpkuwum
vector signed short vector signed long vector signed long vpkuwum
vector bool short vector bool long vector bool long vpkuwum

 49
Motorola Confidential Proprietary

4.1.47 vec_packpx(arg1, arg2)

Each high element of the result is the packed pixel from the corresponding wider element of arg1.
Each low element of the result is the packed pixel from the corresponding wider element of arg2.

Result arg1 arg2 Maps To
vector pixel vector unsigned long vector unsigned long vpkpx

4.1.48 vec_packs(arg1, arg2)

Each high element of the result is the saturated value of the corresponding wider element of arg1.
Each low element of the result is the saturated value of the corresponding wider element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned short vector unsigned short vpkuhus
vector signed char vector signed short vector signed short vpkshss

vector unsigned short vector unsigned long vector unsigned long vpkuwus
vector signed short vector signed long vector signed long vpkswss

4.1.49 vec_packsu(arg1, arg2)

Each high element of the result is the saturated value of the corresponding wider element of arg1.
Each low element of the result is the saturated value of the corresponding wider element of arg2. The
result elements are all unsigned.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned short vector unsigned short vpkuhus
vector unsigned char vector signed short vector signed short vpkshus
vector unsigned short vector unsigned long vector unsigned long vpkuwus
vector unsigned short vector signed long vector signed long vpkswus

4.1.50 vec_perm(arg1, arg2, arg3)

Each element of the result is selected independently by indexing the catenated bytes of arg1 and arg2
by the corresponding element of arg3.

Result arg1 arg2 arg3
Maps To

vector unsigned char vector unsigned char vector unsigned char vector unsigned char
vperm

vector signed char vector signed char vector signed char vector unsigned char
vperm

vector bool char vector bool char vector bool char vector unsigned char
vperm

vector unsigned short vector unsigned short vector unsigned short vector unsigned char
vperm

vector signed short vector signed short vector signed short vector unsigned char
vperm

vector bool short vector bool short vector bool short vector unsigned char
vperm

 50
Motorola Confidential Proprietary

vector pixel vector pixel vector pixel vector unsigned char
vperm

vector unsigned long vector unsigned long vector unsigned long vector unsigned char
vperm

vector signed long vector signed long vector signed long vector unsigned char
vperm

vector bool long vector bool long vector bool long vector unsigned char
vperm

vector float vector float vector float vector unsigned char
vperm

4.1.51 vec_re(arg1)

Each element of the result is an estimate of the reciprocal the corresponding element of arg1.

Result arg1 Maps To
vector float vector float vrefp

4.1.52 vec_rl(arg1, arg2)

Each element of the result is the result of rotating left the corresponding element of arg1 by the
number of bits in the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vrlb
vector signed char vector signed char vector unsigned char vrlb

vector unsigned short vector unsigned short vector unsigned short vrlh
vector signed short vector signed short vector unsigned short vrlh

vector unsigned long vector unsigned long vector unsigned long vrlw
vector signed long vector signed long vector unsigned long vrlw

4.1.53 vec_round(arg1)

Each element of the result is the nearest representable floating point integer to arg1, using IEEE
round-to-nearest rounding.

Result arg1 Maps To
vector float vector float vrfin

4.1.54 vec_rsqrte(arg1)

Each element of the result is an estimate of the reciprocal square root of the corresponding element of
arg1.

Result arg1 Maps To
vector float vector float vrsqrtefp

 51
Motorola Confidential Proprietary

4.1.55 vec_sel(arg1, arg2, arg3)

Each bit of the result is the corresponding bit of arg1 if the corresponding bit of arg3 is 0.
Otherwise, it is the corresponding bit of arg2.

Result arg1 arg2 arg3
Maps To

vector unsigned char vector unsigned char vector unsigned char vector unsigned char
vsel

vector unsigned char vector unsigned char vector unsigned char vector bool char
vsel

vector signed char vector signed char vector signed char vector unsigned char
vsel

vector signed char vector signed char vector signed char vector bool char
vsel

vector bool char vector bool char vector bool char vector unsigned char
vsel

vector bool char vector bool char vector bool char vector bool char
vsel

vector unsigned short vector unsigned short vector unsigned short vector unsigned short
vsel

vector unsigned short vector unsigned short vector unsigned short vector bool short
vsel

vector signed short vector signed short vector signed short vector unsigned short
vsel

vector signed short vector signed short vector signed short vector bool short
vsel

vector bool short vector bool short vector bool short vector unsigned short
vsel

vector bool short vector bool short vector bool short vector bool short
vsel

vector unsigned long vector unsigned long vector unsigned long vector unsigned long
vsel

vector unsigned long vector unsigned long vector unsigned long vector bool long
vsel

vector signed long vector signed long vector signed long vector unsigned long
vsel

vector signed long vector signed long vector signed long vector bool long
vsel

vector bool long vector bool long vector bool long vector unsigned long
vsel

vector bool long vector bool long vector bool long vector bool long
vsel

vector float vector float vector float vector unsigned long
vsel

vector float vector float vector float vector bool long
vsel

 52
Motorola Confidential Proprietary

4.1.56 vec_sl(arg1, arg2)

Each element of the result is the result of shifting the corresponding element of arg1 left by the
number of bits of the corresponding element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vslb
vector signed char vector signed char vector unsigned char vslb

vector unsigned short vector unsigned short vector unsigned short vslh
vector signed short vector signed short vector unsigned short vslh

vector unsigned long vector unsigned long vector unsigned long vslw
vector signed long vector signed long vector unsigned long vslw

4.1.57 vec_sld(arg1, arg2, arg3)

The result is obtained by selecting the top 16 bytes obtained by shifting left (unsigned) by the value of
arg3 bytes a 32-byte quantity formed by catenating arg1 with arg2.

Result arg1 arg2 arg3
Maps To

vector unsigned char vector unsigned char vector unsigned char 4-bit unsigned literal
vsldoi

vector signed char vector signed char vector signed char 4-bit unsigned literal
vsldoi

vector unsigned short vector unsigned short vector unsigned short 4-bit unsigned literal
vsldoi

vector signed short vector signed short vector signed short 4-bit unsigned literal
vsldoi

vector pixel vector pixel vector pixel 4-bit unsigned literal
vsldoi

vector unsigned long vector unsigned long vector unsigned long 4-bit unsigned literal
vsldoi

vector signed long vector signed long vector signed long 4-bit unsigned literal
vsldoi

vector float vector float vector float 4-bit unsigned literal
vsldoi

4.1.58 vec_sll(arg1, arg2)

The result is obtained by shifting arg1 left by a number of bits specified by the last 3 bits of the last
element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsl
vector unsigned char vector unsigned char vector unsigned short vsl
vector unsigned char vector unsigned char vector unsigned long vsl
vector signed char vector signed char vector unsigned char vsl
vector signed char vector signed char vector unsigned short vsl

 53
Motorola Confidential Proprietary

vector signed char vector signed char vector unsigned long vsl
vector bool char vector bool char vector unsigned char vsl
vector bool char vector bool char vector unsigned short vsl
vector bool char vector bool char vector unsigned long vsl

vector unsigned short vector unsigned short vector unsigned char vsl
vector unsigned short vector unsigned short vector unsigned short vsl
vector unsigned short vector unsigned short vector unsigned long vsl
vector signed short vector signed short vector unsigned char vsl
vector signed short vector signed short vector unsigned short vsl
vector signed short vector signed short vector unsigned long vsl
vector bool short vector bool short vector unsigned char vsl
vector bool short vector bool short vector unsigned short vsl
vector bool short vector bool short vector unsigned long vsl

vector pixel vector pixel vector unsigned char vsl
vector pixel vector pixel vector unsigned short vsl
vector pixel vector pixel vector unsigned long vsl

vector unsigned long vector unsigned long vector unsigned char vsl
vector unsigned long vector unsigned long vector unsigned short vsl
vector unsigned long vector unsigned long vector unsigned long vsl
vector signed long vector signed long vector unsigned char vsl
vector signed long vector signed long vector unsigned short vsl
vector signed long vector signed long vector unsigned long vsl
vector bool long vector bool long vector unsigned char vsl
vector bool long vector bool long vector unsigned short vsl
vector bool long vector bool long vector unsigned long vsl

4.1.59 vec_slo(arg1, arg2)

The result is obtained by shifting arg1 left by a number of bytes specified by shifting the value of the
last element of arg2 by 3 bits.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vslo
vector unsigned char vector unsigned char vector signed char vslo
vector signed char vector signed char vector unsigned char vslo
vector signed char vector signed char vector signed char vslo

vector unsigned short vector unsigned short vector unsigned char vslo
vector unsigned short vector unsigned short vector signed char vslo
vector signed short vector signed short vector unsigned char vslo
vector signed short vector signed short vector signed char vslo

vector pixel vector pixel vector unsigned char vslo
vector pixel vector pixel vector signed char vslo

vector unsigned long vector unsigned long vector unsigned char vslo
vector unsigned long vector unsigned long vector signed char vslo
vector signed long vector signed long vector unsigned char vslo
vector signed long vector signed long vector signed char vslo

vector float vector float vector unsigned char vslo
vector float vector float vector signed char vslo

 54
Motorola Confidential Proprietary

4.1.60 vec_splat(arg1, arg2)

Each element of the result is component arg2 of arg1.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char 5-bit unsigned literal vspltb
vector signed char vector signed char 5-bit unsigned literal vspltb
vector bool char vector bool char 5-bit unsigned literal vspltb

vector unsigned short vector unsigned short 5-bit unsigned literal vsplth
vector signed short vector signed short 5-bit unsigned literal vsplth
vector bool short vector bool short 5-bit unsigned literal vsplth

vector pixel vector pixel 5-bit unsigned literal vsplth
vector unsigned long vector unsigned long 5-bit unsigned literal vspltw
vector signed long vector signed long 5-bit unsigned literal vspltw
vector bool long vector bool long 5-bit unsigned literal vspltw

vector float vector float 5-bit unsigned literal vspltw

4.1.61 vec_splat_s8(arg1)

Each element of the result is the value obtained by sign-extending arg1. This permits values ranging
from -16 to 15 only.

Result arg1 Maps To
vector signed char 5-bit signed literal vspltisb

4.1.62 vec_splat_s16(arg1)

Each element of the result is the value obtained by sign-extending arg1. This permits values ranging
from -16 to 15 only.

Result arg1 Maps To
vector signed short 5-bit signed literal vspltish

4.1.63 vec_splat_s32(arg1)

Each element of the result is the value obtained by sign-extending arg1. This permits values ranging
from -16 to 15 only.

Result arg1 Maps To
vector signed long 5-bit signed literal vspltisw

4.1.64 vec_splat_u8(arg1)

Each element of the result is the value obtained by sign-extending arg1 and casting it to an unsigned
char value. This value will lie in the interval from 0 to 15 or in the interval from 240 to 255. Note: it
is necessary to use the generic name, since the specific operation vec_vspltisb returns a vector signed
char value.

 55
Motorola Confidential Proprietary

Result arg1 Maps To
vector unsigned char 5-bit signed literal vspltisb

4.1.65 vec_splat_u16(arg1)

Each element of the result is the value obtained by sign-extending arg1 and casting it to an unsigned
short value. This value will lie in the interval from 0 to 15 and 65520 to 65535. Note: it is necessary
to use the generic name, since the specific operation vec_vspltish returns a vector signed short value.

Result arg1 Maps To
vector unsigned short 5-bit signed literal vspltish

4.1.66 vec_splat_u32(arg1)

Each element of the result is the value obtained by sign-extending arg1 and casting it to an unsigned
long value. This value will lie in the interval from 0 to 15 and 4294967280 to 4294967295. Note: it is
necessary to use the generic name, since the specific operation vec_vspltisw returns a vector signed
long value.

Result arg1 Maps To
vector unsigned long 5-bit signed literal vspltisw

4.1.67 vec_sr(arg1, arg2)

Each element of the result is the result of shifting the corresponding element of arg1 right by the
number of bits of the corresponding element of arg2. Zero bits are shifted in from the left for both
signed and unsigned argument types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsrb
vector signed char vector signed char vector unsigned char vsrb

vector unsigned short vector unsigned short vector unsigned short vsrh
vector signed short vector signed short vector unsigned short vsrh

vector unsigned long vector unsigned long vector unsigned long vsrw
vector signed long vector signed long vector unsigned long vsrw

4.1.68 vec_sra(arg1, arg2)

Each element of the result is the result of shifting the corresponding element of arg1 right by the
number of bits of the corresponding element of arg2. Copies of the sign bit are shifted in from the left
for both signed and unsigned argument types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsrab
vector signed char vector signed char vector unsigned char vsrab

vector unsigned short vector unsigned short vector unsigned short vsrah
vector signed short vector signed short vector unsigned short vsrah

vector unsigned long vector unsigned long vector unsigned long vsraw

 56
Motorola Confidential Proprietary

vector signed long vector signed long vector unsigned long vsraw

4.1.69 vec_srl(arg1, arg2)

The result is obtained by shifting arg1 right by a number of bits specified by the last 3 bits of the last
element of arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsr
vector unsigned char vector unsigned char vector unsigned short vsr
vector unsigned char vector unsigned char vector unsigned long vsr
vector signed char vector signed char vector unsigned char vsr
vector signed char vector signed char vector unsigned short vsr
vector signed char vector signed char vector unsigned long vsr
vector bool char vector bool char vector unsigned char vsr
vector bool char vector bool char vector unsigned short vsr
vector bool char vector bool char vector unsigned long vsr

vector unsigned short vector unsigned short vector unsigned char vsr
vector unsigned short vector unsigned short vector unsigned short vsr
vector unsigned short vector unsigned short vector unsigned long vsr
vector signed short vector signed short vector unsigned char vsr
vector signed short vector signed short vector unsigned short vsr
vector signed short vector signed short vector unsigned long vsr
vector bool short vector bool short vector unsigned char vsr
vector bool short vector bool short vector unsigned short vsr
vector bool short vector bool short vector unsigned long vsr

vector pixel vector pixel vector unsigned char vsr
vector pixel vector pixel vector unsigned short vsr
vector pixel vector pixel vector unsigned long vsr

vector unsigned long vector unsigned long vector unsigned char vsr
vector unsigned long vector unsigned long vector unsigned short vsr
vector unsigned long vector unsigned long vector unsigned long vsr
vector signed long vector signed long vector unsigned char vsr
vector signed long vector signed long vector unsigned short vsr
vector signed long vector signed long vector unsigned long vsr
vector bool long vector bool long vector unsigned char vsr
vector bool long vector bool long vector unsigned short vsr
vector bool long vector bool long vector unsigned long vsr

4.1.70 vec_sro(arg1, arg2)

The result is obtained by shifting (unsigned) arg1 right by a number of bytes specified by shifting the
value of the last element of arg2 by 3 bits.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsro
vector unsigned char vector unsigned char vector signed char vsro
vector signed char vector signed char vector unsigned char vsro

 57
Motorola Confidential Proprietary

vector signed char vector signed char vector signed char vsro
vector unsigned short vector unsigned short vector unsigned char vsro
vector unsigned short vector unsigned short vector signed char vsro
vector signed short vector signed short vector unsigned char vsro
vector signed short vector signed short vector signed char vsro

vector pixel vector pixel vector unsigned char vsro
vector pixel vector pixel vector signed char vsro

vector unsigned long vector unsigned long vector unsigned char vsro
vector unsigned long vector unsigned long vector signed char vsro
vector signed long vector signed long vector unsigned char vsro
vector signed long vector signed long vector signed char vsro

vector float vector float vector unsigned char vsro
vector float vector float vector signed char vsro

4.1.71 vec_st(arg1, arg2, arg3)

The 16-byte value of arg1 is stored at a 16-byte aligned address formed by truncating the last four bits
of the sum of arg2 and arg3. arg2 is taken to be an integer value, while arg3 is a pointer. This is
not, by itself, an acceptable way to store aligned data to unaligned addresses. This store is the one
which will be generated for a storing dereference of a pointer to a vector type. Plain char * is excluded
in the mapping for arg3.

Result arg1 arg2 arg3
Maps To

void vector unsigned char any integral type vector unsigned char *
stvx

void vector unsigned char any integral type unsigned char *
stvx

void vector signed char any integral type vector signed char *
stvx

void vector signed char any integral type signed char *
stvx

void vector bool char any integral type vector bool char *
stvx

void vector bool char any integral type unsigned char *
stvx

void vector bool char any integral type signed char *
stvx

void vector unsigned short any integral type vector unsigned short *
stvx

void vector unsigned short any integral type unsigned short *
stvx

void vector signed short any integral type vector signed short *
stvx

void vector signed short any integral type short *
stvx

void vector bool short any integral type vector bool short *
stvx

void vector bool short any integral type short *
stvx

 58
Motorola Confidential Proprietary

void vector bool short any integral type unsigned short *
stvx

void vector pixel short any integral type vector pixel short *
stvx

void vector pixel short any integral type short *
stvx

void vector pixel short any integral type unsigned short *
stvx

void vector unsigned long any integral type vector unsigned long *
stvx

void vector unsigned long any integral type unsigned int *
stvx

void vector unsigned long any integral type unsigned long *
stvx

void vector signed long any integral type vector signed long *
stvx

void vector signed long any integral type int *
stvx

void vector signed long any integral type long *
stvx

void vector bool long any integral type vector bool long *
stvx

void vector bool long any integral type unsigned int *
stvx

void vector bool long any integral type unsigned long *
stvx

void vector bool long any integral type int *
stvx

void vector bool long any integral type long *
stvx

void vector float any integral type vector float *
stvx

void vector float any integral type float *
stvx

4.1.72 vec_ste(arg1, arg2, arg3)

A single element of arg1 is stored at the address formed by truncating the last 0 (char), 1 (short) or 2
(int, float) bits of the sum of arg2 and arg3. The element stored is the one whose position in the
register matches the position of the adjusted address relative to 16-byte alignment. If you don't know
the alignment of the sum of arg2 and arg3, you won't know which element is stored. Plain char * is
excluded in the mapping for arg3.

Result arg1 arg2 arg3
Maps To

void vector unsigned char any integral type unsigned char *
stvebx

void vector signed char any integral type signed char *
stvebx

 59
Motorola Confidential Proprietary

void vector bool char any integral type unsigned char *
stvebx

void vector bool char any integral type signed char *
stvebx

void vector unsigned short any integral type unsigned short *
stvehx

void vector signed short any integral type short *
stvehx

void vector bool short any integral type unsigned short *
stvehx

void vector bool short any integral type short *
stvehx

void vector pixel any integral type unsigned short *
stvehx

void vector pixel any integral type short *
stvehx

void vector unsigned long any integral type unsigned int *
stvewx

void vector unsigned long any integral type unsigned long *
stvewx

void vector signed long any integral type int *
stvewx

void vector signed long any integral type long *
stvewx

void vector bool long any integral type unsigned int *
stvewx

void vector bool long any integral type unsigned long *
stvewx

void vector bool long any integral type int *
stvewx

void vector bool long any integral type long *
stvewx

void vector float any integral type float *
stvewx

4.1.73 vec_stl(arg1, arg2, arg3)

The 16-byte value of arg1 is stored at a 16-byte aligned address formed by truncating the last four bits
of the sum of arg2 and arg3. arg2 is taken to be an integer value, while arg3 is a pointer. This is
not, by itself, an acceptable way to store aligned data to unaligned addresses. The cache line stored
into is marked LRU. Plain char * is excluded in the mapping for arg3.

Result arg1 arg2 arg3
Maps To

void vector unsigned char any integral type vector unsigned char *
stvxl

void vector unsigned char any integral type unsigned char *
stvxl

void vector signed char any integral type vector signed char *
stvxl

 60
Motorola Confidential Proprietary

void vector signed char any integral type signed char *
stvxl

void vector bool char any integral type vector bool char *
stvxl

void vector bool char any integral type unsigned char *
stvxl

void vector bool char any integral type signed char *
stvxl

void vector unsigned short any integral type vector unsigned short *
stvxl

void vector unsigned short any integral type unsigned short *
stvxl

void vector signed short any integral type vector signed short *
stvxl

void vector signed short any integral type short *
stvxl

void vector bool short any integral type vector bool short *
stvxl

void vector bool short any integral type unsigned short *
stvxl

void vector bool short any integral type short *
stvxl

void vector pixel any integral type vector pixel *
stvxl

void vector pixel any integral type unsigned short *
stvxl

void vector pixel any integral type short *
stvxl

void vector unsigned long any integral type vector unsigned long *
stvxl

void vector unsigned long any integral type unsigned int *
stvxl

void vector unsigned long any integral type unsigned long *
stvxl

void vector signed long any integral type vector signed long *
stvxl

void vector signed long any integral type int *
stvxl

void vector signed long any integral type long *
stvxl

void vector bool long any integral type vector bool long *
stvxl

void vector bool long any integral type unsigned int *
stvxl

void vector bool long any integral type unsigned long *
stvxl

void vector bool long any integral type int *
stvxl

void vector bool long any integral type long *
stvxl

 61
Motorola Confidential Proprietary

void vector float any integral type vector float *
stvxl

void vector float any integral type float *
stvxl

4.1.74 vec_sub(arg1, arg2)

Each element of the result is the difference between the corresponding elements of arg1 and arg2.
The arithmetic is modular for integer types.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsububm
vector unsigned char vector unsigned char vector bool char vsububm
vector unsigned char vector bool char vector unsigned char vsububm
vector signed char vector signed char vector signed char vsububm
vector signed char vector signed char vector bool char vsububm
vector signed char vector bool char vector signed char vsububm

vector unsigned short vector unsigned short vector unsigned short vsubuhm
vector unsigned short vector unsigned short vector bool short vsubuhm
vector unsigned short vector bool short vector unsigned short vsubuhm
vector signed short vector signed short vector signed short vsubuhm
vector signed short vector signed short vector bool short vsubuhm
vector signed short vector bool short vector signed short vsubuhm

vector unsigned long vector unsigned long vector unsigned long vsubuwm
vector unsigned long vector unsigned long vector bool long vsubuwm
vector unsigned long vector bool long vector unsigned long vsubuwm
vector signed long vector signed long vector signed long vsubuwm
vector signed long vector signed long vector bool long vsubuwm
vector signed long vector bool long vector signed long vsubuwm

vector float vector float vector float vsubfp

4.1.75 vec_subc(arg1, arg2)

Each element of the result is the value of the carry generated by subtracting the corresponding elements
of arg1 and arg2. The value is 0 if a borrow occurred and 1 if no borrow occurred.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned long vector unsigned long vsubcuw

4.1.76 vec_subs(arg1, arg2)

Each element of the result is the saturated difference between the corresponding elements of arg1 and
arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vsububs
vector unsigned char vector unsigned char vector bool char vsububs

 62
Motorola Confidential Proprietary

vector unsigned char vector bool char vector unsigned char vsububs
vector signed char vector signed char vector signed char vsubsbs
vector signed char vector signed char vector bool char vsubsbs
vector signed char vector bool char vector signed char vsubsbs

vector unsigned short vector unsigned short vector unsigned short vsubuhs
vector unsigned short vector unsigned short vector bool short vsubuhs
vector unsigned short vector bool short vector unsigned short vsubuhs
vector signed short vector signed short vector signed short vsubshs
vector signed short vector signed short vector bool short vsubshs
vector signed short vector bool short vector signed short vsubshs

vector unsigned long vector unsigned long vector unsigned long vsubuws
vector unsigned long vector unsigned long vector bool long vsubuws
vector unsigned long vector bool long vector unsigned long vsubuws
vector signed long vector signed long vector signed long vsubsws
vector signed long vector signed long vector bool long vsubsws
vector signed long vector bool long vector signed long vsubsws

4.1.77 vec_sum4s(arg1, arg2)

Each element of the result is the 32-bit saturated sum of the corresponding element in arg2 and all
elements in arg1 with positions overlapping those of that element.

Result arg1 arg2 Maps To
vector unsigned long vector unsigned char vector unsigned long vsum4ubs
vector signed long vector signed char vector signed long vsum4sbs
vector signed long vector signed short vector signed long vsum4shs

4.1.78 vec_sum2s(arg1, arg2)

The first and third elements of the result are 0. The second element of the result is the 32-bit saturated
sum of the first two elements of arg1 and the second element of arg2. The fourth element of the
result is the 32-bit saturated sum of the last two elements of arg1 and the fourth element of arg2.

Result arg1 arg2 Maps To
vector signed long vector signed long vector signed long vsum2sws

4.1.79 vec_sums(arg1, arg2)

The first three elements of the result are 0. The fourth element of the result is the 32-bit saturated sum
of all elements of arg1 and the fourth element of arg2.

Result arg1 arg2 Maps To
vector signed long vector signed long vector signed long vsumsws

 63
Motorola Confidential Proprietary

4.1.80 vec_trunc(arg1)

Each element of the result is the value of the corresponding element of arg1 truncated to an integral
value.

Result arg1 Maps To
vector float vector float vrfiz

4.1.81 vec_unpack2sh(arg1, arg2)

These operations form signed double-size elements by catenating each high element of arg1 with the
corresponding high element of arg2. If arg1 is a vector of 0's, this effectively is a signed unpack of
the unsigned value arg2. Note: it is necessary to use the generic name, since the specific operations
vec_vmrghb (vec_vmrghh) with these operand types have a result type the same as the operand type.

Result arg1 arg2 Maps To
vector signed short vector unsigned char vector unsigned char vmrghb
vector signed long vector unsigned short vector unsigned short vmrghh

4.1.82 vec_unpack2sl(arg1, arg2)

These operations form signed double-size elements by catenating each low element of arg1 with the
corresponding low element of arg2. If arg1 is a vector of 0's, this effectively is a signed unpack of
the unsigned value arg2. Note: it is necessary to use the generic name, since the specific operations
vec_vmrglb (vec_vmrglh) with these operand types have a result type the same as the operand type.

Result arg1 arg2 Maps To
vector signed short vector unsigned char vector unsigned char vmrglb
vector signed long vector unsigned short vector unsigned short vmrglh

4.1.83 vec_unpack2uh(arg1, arg2)

These operations form unsigned double-size elements by catenating each high element of arg1 with
the corresponding high element of arg2. If arg1 is a vector of 0's, this effectively is an unpack of
arg2. Note: it is necessary to use the generic name, since the specific operations vec_vmrghb
(vec_vmrghh) with these operand types have a result type the same as the operand type.

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmrghb
vector unsigned long vector unsigned short vector unsigned short vmrghh

4.1.84 vec_unpack2ul(arg1, arg2)

These operations form unsigned double-size elements by catenating each low element of arg1 with the
corresponding low element of arg2. If arg1 is a vector of 0's, this effectively is an unpack of arg2.
Note: it is necessary to use the generic name, since the specific operations vec_vmrglb (vec_vmrglh)
with these operand types have a result type the same as the operand type.

 64
Motorola Confidential Proprietary

Result arg1 arg2 Maps To
vector unsigned short vector unsigned char vector unsigned char vmrglb
vector unsigned long vector unsigned short vector unsigned short vmrglh

4.1.85 vec_unpackh(arg1)

Each element of the result is the result of extending the corresponding half-width high element of
arg1.

Result arg1 Maps To
vector signed short vector signed char vupkhsb
vector bool short vector bool char vupkhsb

vector unsigned long vector pixel vupkhpx
vector signed long vector signed short vupkhsh
vector bool long vector bool short vupkhsh

4.1.86 vec_unpackl(arg1)

Each element of the result is the result of extending the corresponding half-width low element of arg1.

Result arg1 Maps To
vector signed short vector signed char vupklsb
vector bool short vector bool char vupklsb

vector unsigned long vector pixel vupklpx
vector signed long vector signed short vupklsh
vector bool long vector bool short vupklsh

4.1.87 vec_xor(arg1, arg2)

Each element of the result is the logical XOR of the corresponding elements of arg1 and arg2.

Result arg1 arg2 Maps To
vector unsigned char vector unsigned char vector unsigned char vxor
vector unsigned char vector unsigned char vector bool char vxor
vector unsigned char vector bool char vector unsigned char vxor
vector signed char vector signed char vector signed char vxor
vector signed char vector signed char vector bool char vxor
vector signed char vector bool char vector signed char vxor
vector bool char vector bool char vector bool char vxor

vector unsigned short vector unsigned short vector unsigned short vxor
vector unsigned short vector unsigned short vector bool short vxor
vector unsigned short vector bool short vector unsigned short vxor
vector signed short vector signed short vector signed short vxor
vector signed short vector signed short vector bool short vxor
vector signed short vector bool short vector signed short vxor
vector bool short vector bool short vector bool short vxor

vector unsigned long vector unsigned long vector unsigned long vxor
vector unsigned long vector unsigned long vector bool long vxor

 65
Motorola Confidential Proprietary

vector unsigned long vector bool long vector unsigned long vxor
vector signed long vector signed long vector signed long vxor
vector signed long vector signed long vector bool long vxor
vector signed long vector bool long vector signed long vxor
vector bool long vector bool long vector bool long vxor

vector float vector bool long vector float vxor
vector float vector float vector bool long vxor
vector float vector float vector float vxor

 66
Motorola Confidential Proprietary

4.2 AltiVec Predicates

The second set of tables is organized alphabetically by predicate name and defines the AltiVec
predicates. Each table describes a single generic predicate. Each line shows a valid set of argument
types for that predicate, and the specific AltiVec instruction generated for that set of arguments. For
example, vec_any_lt(vector unsigned char, vector unsigned char) will use the
instruction Òvcmpgtb.Ó . The specific operations do not exist for predicates.

4.2.1 vec_all_eq(arg1, arg2)

Each predicate returns 1 if each element of arg1 is equal to the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpequb.
int vector unsigned char vector bool char vcmpequb.
int vector signed char vector signed char vcmpequb.
int vector signed char vector bool char vcmpequb.
int vector bool char vector unsigned char vcmpequb.
int vector bool char vector signed char vcmpequb.
int vector bool char vector bool char vcmpequb.
int vector unsigned short vector unsigned short vcmpequh.
int vector unsigned short vector bool short vcmpequh.
int vector signed short vector signed short vcmpequh.
int vector signed short vector bool short vcmpequh.
int vector bool short vector unsigned short vcmpequh.
int vector bool short vector signed short vcmpequh.
int vector bool short vector bool short vcmpequh.
int vector pixel vector pixel vcmpequh.
int vector unsigned long vector unsigned long vcmpequw.
int vector unsigned long vector bool long vcmpequw.
int vector signed long vector signed long vcmpequw.
int vector signed long vector bool long vcmpequw.
int vector bool long vector unsigned long vcmpequw.
int vector bool long vector signed long vcmpequw.
int vector bool long vector bool long vcmpequw.
int vector float vector float vcmpeqfp.

4.2.2 vec_all_ge(arg1, arg2)

Each predicate returns 1 if each element of arg1 is greater than or equal to the corresponding element
of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.

 67
Motorola Confidential Proprietary

int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgefp.

4.2.3 vec_all_gt(arg1, arg2)

Each predicate returns 1 if each element of arg1 is greater than the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgtfp.

 68
Motorola Confidential Proprietary

4.2.4 vec_all_in(arg1, arg2)

Each predicate returns 1 if each element of arg1 is less than or equal to the corresponding element of
arg2 and greater than or equal to the negative of the corresponding element of arg2. Otherwise, it
returns 0.

Result arg1 arg2 Maps To
int vector float vector float vcmpbfp.

4.2.5 vec_all_le(arg1, arg2)

Each predicate returns 1 if each element of arg1 is less than or equal to the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgefp.

4.2.6 vec_all_lt(arg1, arg2)

Each predicate returns 1 if each element of arg1 is less than the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.

 69
Motorola Confidential Proprietary

int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgtfp.

4.2.7 vec_all_nan(arg1)

Each predicate returns 1 if each element of arg1 is a NaN. Otherwise, it returns 0.

Result arg1 Maps To
int vector float vcmpeqfp.

4.2.8 vec_all_ne(arg1, arg2)

Each predicate returns 1 if each element of arg1 is not equal to the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpequb.
int vector unsigned char vector bool char vcmpequb.
int vector signed char vector signed char vcmpequb.
int vector signed char vector bool char vcmpequb.
int vector bool char vector unsigned char vcmpequb.
int vector bool char vector signed char vcmpequb.
int vector bool char vector bool char vcmpequb.
int vector unsigned short vector unsigned short vcmpequh.
int vector unsigned short vector bool short vcmpequh.
int vector signed short vector signed short vcmpequh.
int vector signed short vector bool short vcmpequh.
int vector bool short vector unsigned short vcmpequh.
int vector bool short vector signed short vcmpequh.
int vector bool short vector bool short vcmpequh.
int vector pixel vector pixel vcmpequh.
int vector unsigned long vector unsigned long vcmpequw.
int vector unsigned long vector bool long vcmpequw.
int vector signed long vector signed long vcmpequw.
int vector signed long vector bool long vcmpequw.
int vector bool long vector unsigned long vcmpequw.
int vector bool long vector signed long vcmpequw.
int vector bool long vector bool long vcmpequw.
int vector float vector float vcmpeqfp.

 70
Motorola Confidential Proprietary

4.2.9 vec_all_nge(arg1, arg2)

Each predicate returns 1 if each element of arg1 is not greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or that
one of the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgefp.

4.2.10 vec_all_ngt(arg1, arg2)

Each predicate returns 1 if each element of arg1 is not greater than the corresponding element of arg2.
Otherwise, it returns 0. Not greater than or equal can mean either less than or equal to or that one of
the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgtfp.

4.2.11 vec_all_nle(arg1, arg2)

Each predicate returns 1 if each element of arg1 is not less than or equal to the corresponding element
of arg2. Otherwise, it returns 0. Not greater than or equal can mean either greater than or that one of
the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgefp.

4.2.12 vec_all_nlt(arg1, arg2)

Each predicate returns 1 if each element of arg1 is not less than the corresponding element of arg2.
Otherwise, it returns 0. Not greater than or equal can mean either greater than or equal to or that one of
the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgtfp.

4.2.13 vec_all_numeric(arg1)

Each predicate returns 1 if each element of arg1 is numeric (not a NaN). Otherwise, it returns 0.

Result arg1 Maps To
int vector float vcmpeqfp.

 71
Motorola Confidential Proprietary

4.2.14 vec_any_eq(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is equal to the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpequb.
int vector unsigned char vector bool char vcmpequb.
int vector signed char vector signed char vcmpequb.
int vector signed char vector bool char vcmpequb.
int vector bool char vector unsigned char vcmpequb.
int vector bool char vector signed char vcmpequb.
int vector bool char vector bool char vcmpequb.
int vector unsigned short vector unsigned short vcmpequh.
int vector unsigned short vector bool short vcmpequh.
int vector signed short vector signed short vcmpequh.
int vector signed short vector bool short vcmpequh.
int vector bool short vector unsigned short vcmpequh.
int vector bool short vector signed short vcmpequh.
int vector bool short vector bool short vcmpequh.
int vector pixel vector pixel vcmpequh.
int vector unsigned long vector unsigned long vcmpequw.
int vector unsigned long vector bool long vcmpequw.
int vector signed long vector signed long vcmpequw.
int vector signed long vector bool long vcmpequw.
int vector bool long vector unsigned long vcmpequw.
int vector bool long vector signed long vcmpequw.
int vector bool long vector bool long vcmpequw.
int vector float vector float vcmpeqfp.

4.2.15 vec_any_ge(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.

 72
Motorola Confidential Proprietary

int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgefp.

4.2.16 vec_any_gt(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is greater than the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgtfp.

4.2.17 vec_any_le(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is less than or equal to the corresponding
element of arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.

 73
Motorola Confidential Proprietary

int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgefp.

4.2.18 vec_any_lt(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is less than the corresponding element of arg2.
Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpgtub.
int vector unsigned char vector bool char vcmpgtub.
int vector signed char vector signed char vcmpgtsb.
int vector signed char vector bool char vcmpgtsb.
int vector bool char vector unsigned char vcmpgtub.
int vector bool char vector signed char vcmpgtsb.
int vector unsigned short vector unsigned short vcmpgtuh.
int vector unsigned short vector bool short vcmpgtuh.
int vector signed short vector signed short vcmpgtsh.
int vector signed short vector bool short vcmpgtsh.
int vector bool short vector unsigned short vcmpgtuh.
int vector bool short vector signed short vcmpgtsh.
int vector unsigned long vector unsigned long vcmpgtuw.
int vector unsigned long vector bool long vcmpgtuw.
int vector signed long vector signed long vcmpgtsw.
int vector signed long vector bool long vcmpgtsw.
int vector bool long vector unsigned long vcmpgtuw.
int vector bool long vector signed long vcmpgtsw.
int vector float vector float vcmpgtfp.

4.2.19 vec_any_nan(arg1)

Each predicate returns 1 if at least one element of arg1 is a NaN. Otherwise, it returns 0.

Result arg1 Maps To
int vector float vcmpeqfp.

 74
Motorola Confidential Proprietary

4.2.20 vec_any_ne(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not equal to the corresponding element of
arg2. Otherwise, it returns 0.

Result arg1 arg2 Maps To
int vector unsigned char vector unsigned char vcmpequb.
int vector unsigned char vector bool char vcmpequb.
int vector signed char vector signed char vcmpequb.
int vector signed char vector bool char vcmpequb.
int vector bool char vector unsigned char vcmpequb.
int vector bool char vector signed char vcmpequb.
int vector bool char vector bool char vcmpequb.
int vector unsigned short vector unsigned short vcmpequh.
int vector unsigned short vector bool short vcmpequh.
int vector signed short vector signed short vcmpequh.
int vector signed short vector bool short vcmpequh.
int vector bool short vector unsigned short vcmpequh.
int vector bool short vector signed short vcmpequh.
int vector bool short vector bool short vcmpequh.
int vector pixel vector pixel vcmpequh.
int vector unsigned long vector unsigned long vcmpequw.
int vector unsigned long vector bool long vcmpequw.
int vector signed long vector signed long vcmpequw.
int vector signed long vector bool long vcmpequw.
int vector bool long vector unsigned long vcmpequw.
int vector bool long vector signed long vcmpequw.
int vector bool long vector bool long vcmpequw.
int vector float vector float vcmpeqfp.

4.2.21 vec_any_nge(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not greater than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not greater than or equal can mean either less than or that
one of the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgefp.

4.2.22 vec_any_ngt(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not greater than the corresponding element of
arg2. Otherwise, it returns 0. Not greater than can mean either less than or equal to or that one of the
elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgtfp.

 75
Motorola Confidential Proprietary

4.2.23 vec_any_nle(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not less than or equal to the corresponding
element of arg2. Otherwise, it returns 0. Not less than or equal can mean either greater than or that
one of the elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgefp.

4.2.24 vec_any_nlt(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not less than the corresponding element of
arg2. Otherwise, it returns 0. Not less than can mean either greater than or equal to or that one of the
elements is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpgtfp.

4.2.25 vec_any_numeric(arg1)

Each predicate returns 1 if at least one element of arg1 is numeric (not a NaN). Otherwise, it returns
0.

Result arg1 Maps To
int vector float vcmpeqfp.

4.2.26 vec_any_out(arg1, arg2)

Each predicate returns 1 if at least one element of arg1 is not less than or equal to the corresponding
element of arg2 or not greater than or equal to the negative of the corresponding element of arg2.
Otherwise, it returns 0. Not less than or equal can mean greater than or that either argument is a NaN.
Not greater than or equal can mean less than or that either argument is a NaN.

Result arg1 arg2 Maps To
int vector float vector float vcmpbfp.

 76
Motorola Confidential Proprietary

5. Future Directions

5.1 Assembly Language Interface

5.2 AltiVec Instruction Mnemonics

5.3 Compiler Implementation Notes

5.3.1 AltiVec Predicate mappings

In most cases, the predicates are implemented by supplying the operands to the instructions in the same
order as the predicate arguments. All exceptions to this rule are noted below.

5.3.1.1 vec_all_ge(arg1, arg2) and vec_any_ge(arg1, arg2)

To implement the predicates for all operand types except for vector float, supply the operands to the
instruction in reverse order.

5.3.1.2 vec_all_le(arg1, arg2) and vec_any_le(arg1, arg2)

To implement the predicates for operand types vector float, supply the operands to the instruction in
reverse order.

5.3.1.3 vec_all_lt(arg1, arg2) and vec_any_lt(arg1, arg2)

To implement the predicates for all operand types, supply the operands to the instruction in reverse
order.

5.3.1.4 vec_all_nan(arg1) and vec_any_nan(arg1)

To implement the predicates, supply the operand to the instruction twice.

5.3.1.5 vec_all_nle(arg1, arg2) and vec_any_nle(arg1, arg2)

To implement the predicates, supply the operands to the instruction in reverse order.

5.3.1.6 vec_all_nlt(arg1, arg2) and vec_any_nlt(arg1, arg2)

To implement the predicates, supply the operands to the instruction in reverse order.

5.3.1.7 vec_all_numeric(arg1) and vec_any_numeric(arg1)

To implement the predicates, supply the operand to the instruction twice.

 77
Motorola Confidential Proprietary

5.4 Debugger Implementation Notes

5.5 Coding Examples

