QuickTime 2.0 SDK:

Toolbox Changes

Apple Computer, Inc.

Apple Computer, Inc.

Apple, the Apple logo, Finder, and Macintosh are registered trademarks of Apple Computer, Inc.,

registered in the U.S.A. and other countries. Workgroup Server systemsis a trademark of Apple Computer,
Inc.

Mention of non-Apple productsis for information purposes and constitutes neither an endorsement nor a
recommendation. Apple assumes no responsibility with regard to the selection, performance, or use of these
products. All understandings, agreements, or warranties, if any, take place directly between the vendors and
the prospective users. Product specifications are subject to change without notice.

QuickTime 2.0 DK: Toolbox Changes

TABLE OF CONTENTS

IE= o] L= o) E 0o g1 = g £SO iii
ADOUL RIS UIE ...t s Vii
Chapter 1 MOVIie TOOIDOXccueiieiiiisiesie s 1
Preloading TraCKScooieiieeeee ettt ne e b e s nes 1
[0SSOSR 1
Dz = Y S 1 (= 10 SRR 2
TraCk REFEIENCES........eciecee et 2
Timecode MediaHandIer ..o e 2

Data Handler COMPONENES.........cccueiieiicie ettt e st re e e sreenesneennas 3
MoVie TOOIDOX REFEIENCEcceeeeieeieee e es 3
Functions for Getting and Playing MOVIESccevveveieeveee e 3

MOVIE FUNCLIONS ...ttt sne e 3

MOVIE FUNCLIONS ...ttt 8

Enhancing Movie Playback Performance..........ccccccooeveiveieececcicseen, 8

Working with Progress and Cover FUNCLIONS............ccccveveeveeneecie e, 11

Functions That Modify MoVvie Properties........couvieereeinneeniesce e 12
Working With Movie Spatial CharacteristiCs........ccoccvveevenceneeieneee. 12

Locating aMovie' s Tracks and Media Structurescccccevevve e, 14

Working With Track REFEreNnCescocevereineeniie e 15

Functions for Editing MOVIEScceiiiiriiieesesesese s 19
Adding Samplesto Media StrUCIUrES..........ooveveeveceeseeee e 19
MEIAFUNCLIONS.cceiiiieie ettt st e sreenne e sreennas 21
Selecting Data Handlers..........oooveeevice e 21

Timecode MediaHandler FUNCLIONS...........cccccevveieiievece e 22

Chapter 2 Image Compression ManagErcccoveerereereerieeie e 35
Image Compression Manager REFENENCEcovieeieeie e 35
Image Compression Manager ROULINEScovvierreerieneesee e see e 35
Working With SEQUENCES.........ccooeeiiie e 35

Chapter 3 Image Compressor COMPONENTS.......cccoovererirerenireeeeeeree e 41
Image Compressor Components REFEIENCE..........cceiveiiee e 42
DALA TYPES ...ttt be e e e e s e ean e e nn e e nnneeea 42

The Compressor Capability SITUCIUre..........coeverieieieese e 42

The Decompression Parameters StruCture..........cocceeeeeveeneneeniesieseenenn 42

10 o 44
INAIFECt FUNCLIONS ...ttt 44

Image Compression Manager Utility FUNCLIONS..........ccoceveeiininnieieceeneene 46
Chapter 4 Sequence Grabber COmMpPOoNeNntsS........ccoceverirevineneee e 49
Sequence Grabber ComponentS REFENENCE..........ccoovreiierereree e 49
Sequence Grabber Component FUNCLIONS...........ccocoriiereneneeeese e 49
Configuring Sequence Grabber COmMpoNentscccccvvvereereeseereeeeenn 49

Controlling Sequence Grabber COmpoNeNnts...........ceocvveereereeseereeeeenn 55

Working With Channel CharacteristiCsocvvvevvivereere e 55

Working with Sequence Grabber OQULPULSccoeeereeieneninenenienees 57

December 21, 1994 Pageiii

QuickTime 2.0 SDK: Toolbox Changes

Chapter 5 Sequence Grabber Channel Components..........cocvcvvienenenenenenienn 67
Sequence Grabber Components REFENENCE...........ooererireiireeeee e 67
Sequence Grabber Channel Component FUNCLIONScccccveeeveeneececeesie e 67
Configuration Functions for All Channel Components............ccccue....... 67

Chapter 6 Video Digitizer COMPONENTS......cceriiiieriirie e 69
Video Digitizer ComponentS REFEIENCEccoccvvierieie e 69
Video Digitizer Component FUNCLIONSccccuviiieiie e 69
Controlling DIgItiZationcceeceiiie i 69

ULHITY FUNCLIONS ..o e 71

Chapter 7 Movie Data Exchange COmMpPONENtS........cccooviereninenieeieeneseesiesee e 73
(D1 C= ol F o o g = 1 o o H SRR 73
Audio CD IMpPort COMPONENT.........cueiueeeerieerieeeeseeseeseeseeseeeeseesseessesseesseesseseesseensens 73
Movie Data Exchange ComponentS REFEIENCEcccooivirinenecieeee e 74
IMPOItiNg MOVIE DalA........cccueieeeieee et sne e 74
Chapter 8 Derived Media Handler COMpPoNentscceevereineeienieeneeniesee e 75
Derived Media Handler Components REFEFENCE.ccvcveveeieseiseece e 75
FUNCLIONS ...t ettt ns 75
Managing Y our MediaHandler Componentcccccceeveeviieevveciieennen. 75

Graphics Data Managementcccocveeieeiieciee s 76

Base Media Handler Utility FUNCLIONS..........ccccoverieniiniecie e 77

Chapter 9 Data Handler COMPONENTS........coiriririiieresese e 79
About Data Handler COMPONENES.........oouiiieierierie et eee s 81
Data Handler COMPONENES.........coieieeiierieeie e see e sree e 81

Using Data Handler COMPONENESccoiuieiieiieeiie et ene e 84
Selecting aDataHandIEr ..o 85
Selecting by Component Type ValUecooiivineeiecienencnc e 85

Interrogating a Data Handler’s Capabilities...........cooveeieneiiiininenns 86

Managing Data REFEIENCEScoviveieere e 87
RErieViNg MOVIE Data.........ccccueeiuieiieiiie et 87
SLOrNG MOVIE DELA.......ccueiiiiiiiiieie e 88
Managing the Data Handlercccooeeiiece e 88
Creating a Data Handler COmMPONENTcoeeirieieieresese e 89
General INFOrMELIONc.coiiiiiierie e 89
Macintosh Data Handler COMPONENLScccveireeiercieesie e 90
Sample Macintosh Data Handler ... 90

Windows Data Handler COMPONENES.........ccoeoueieereerienienieeeeseese e sree e 100
Sample Windows Data Handlercccoevveenieneneneee e 100

Reference to Data Handler COMPONENTS.........ccocuveieeiieciie s 128
T o 128
Selecting aDataHandler ..o 128

Working With Data REFEIENCES ..o 134

Reading MOVIE Da@cccviierieeeseere e 139

WItiNG MOVIE D@a@........ooviieiiierieeieeeeesie e 146

Managing Data Handler COmpPONeNnts..........coccveeereenesieeseeneseeseenenns 153

CompPIEtion FUNCHION.........coiiiieiieeeeeee e 155

Pageiv December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Chapter 10 QuickTime MusiC ArchiteCtureccccocevevieviecce e 157
QuickTime Music ArchiteCture OVEIVIEWc.ceccueeiuiecieeesiee e ectee e 157
General TEMINOIOGYccoveiiieiie ettt s e b e e snaeereesaeeenns 159
Advantages of QuickTime MusiC ArChiteCtUrecocevvveeveeie e 162
Components of QUICKTime MUSIC ArChITECIUIE..........ccoverirenereeeeereee e 163
LI 1= = Y S 163

INL01 LSl AN L0 1o= o] RS 164

MUSIC COMPONENEveeeeeeeeieeesieeieesiee e eeeseeeseesseesseeeesseesseeneesseesseeneesseenseeneenns 165

EVeNnt SEqUENCE FOIMEALviiiiiie ettt e s 168
LTS a1 = I V7= | 170

L0 (] V< o | OO PRRR 171
EXtENded NOtE EVENL ...ttt e e 172

(R Ss VL< | TR 173

[Lo Y = = g V7= | SR 174
(000100l 1= g VL= o | A 175
Extended Controller EVENL...........ooiiiieiee ettt s e e 176

(g1] o1 V7= o | SRR 177
ComPONENT INEEITACES ..o 178
LIS 1= = Y S 178
SEAUENCE DAL@....ccceeiieiiieciiee ettt 179

SeqUENCE CONLIO ..ot 182

INL01 LSl AN 1 (0 1o= o] OO 190

Note Channel Allocation and USE...........coccvveeeiiiiiiei i 190
Miscellaneous INterface TOOISoccveee e 208

System ConfiQUIalionccceeiieiieeiie e eree 213

Music Component INEEITACE.coieereeereereee e 220
SYNENESIZEN ACCESS.....ceeiiieieeieeeeee ettt 220

INSErUMENE CONEFOL ..ot 230

s N 00 ==\, 242

SYNthESIZEN TIMING ..o 252

Conversion of Standard MIDIoooi i 254
Music Configuration ULHITYcoveeeieiice e 255
N o] 01 T [SRS 257
General MIDI Instrument NUMDEL'S.........ocvvi e 257
General MIDI DrumKit NUMDEIS........ccviie et e st e e s e s s seaaeea s s eareneeaans 259
GeNneral MIDI Kt INGIMES.......viiiiiiiie ettt ciee et e e s st e e s e sbae e s s sssbaeessesreeeeaans 259
1o 15> G 261

December 21, 1994 Page v

QuickTime 2.0 DK: Toolbox Changes

ABOUT THIS GUIDE

Thisisthe delta guide for QuickTime 2.0 for the Macintosh. This document describes
how developers can take advantage of the new features in QuickTime 2.0. Before reading
this document, you should be familiar with QuickTime and with the existing QuickTime
technical documentation.

This document is organized much like the Inside Macintosh books on QuickTime. There
are separate chapters for each part of QuickTime—the chapter titles correspond to
chaptersin the current books. Within these chapters, the section headings aso correspond
to existing sections wherever possible. In some cases, this document contains new
chapters and sections to address completely new areas of functionality.

Briefly, this document contains the following chapters:

- Chapter 1, “The Movie Toolbox,” describes new Movie Toolbox featuresin
QuickTime 2.0, including new support for track references and timecode tracks.

- Chapter 2, “Image Compression Manager,” discusses new |mage Compression
Manager functionality, especialy the new support for scheduled asynchronous
decompression operations.

- Chapter 3, “Image Compressor Components,” describes how compressor and
decompressor components have changed in order to support the new image-
compression features of QuickTime 2.0.

- Chapter 4, “ Sequence Grabber Components,” provides information about new
sequence-grabber features; in particular, QuickTime 2.0 introduces the concept of a
sequence grabber output.

- Chapter 5, “ Sequence Grabber Channel Components,” describes how sequence
grabber channel components have changed in order to support new sequence-
grabber functionality.

- Chapter 6, “Video Digitizer Components,” discusses new video digitizer component
features, including support for timecode tracks.

- Chapter 7, “Movie Data Exchange Components,” presents information about new
dataimport and export features of QuickTime 2.0.

- Chapter 8, “Derived Media Handler Components,” discusses changes that affect
derived media handler components.

- Chapter 9, “Data Handler Components,” describes the interface that must be
supported by QuickTime data handler components. While data handler components
have been a part of QuickTime since its inception, thisisthefirst timethat Apple
has described the interface supported by these components.

December 21, 1994 Page vii

QuickTime 2.0 SDK: Toolbox Changes

- Chapter 10, “QuickTime Music Architecture,” describes QuickTime's new support
for music in QuickTime movies. Thisis an entirely new part of QuickTime. With
the QuickTime Music Architecture your application can allow usersto play, edit,
cut, copy and paste movie music data in the same way they work with text and
graphic elements today.

- Appendix, displays the General MIDI Kit Names, DrumKit Numbers,
and Instrument Numbers.

Page viii December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 1 MOVIE TOOLBOX

This chapter discusses the changes to the Movie Toolbox. The following sections discuss
major new areas of functionality. The reference section provides the details of how to use
these new features.

PRELOADING TRACKS

There are occasions when it may be useful for you to preload some or all of atrack into
memory. For example, if you are developing an application that plays several movies at
once, you may want to load the smaller moviesinto memory in order to reduce CD-ROM
seek activity. Text tracks, which are typically rather small, are also good candidates for
preloading; in many cases you can load a movi€' s entire text track into memory. Another
good use of preloading isto preload small music tracks that play over scene changes,
giving the movie a more continuous feel.

QuickTime 2.0 expands your options for preloading tracks. In the past, applications could
usethe Load. . . I nt oRAMfunctions to preload a movie, track, or media. Now, you can
establish preloading guidelines as part of atrack’s definition. The Movie Toolbox then
automatically preloads the track, according to those guidelines, every time the movieis
played, and without any special effort by applications. Y ou establish these preloading
guidelines by calling the new Set Tr ackLoadSet t i ngs function (see “Enhancing Movie
Playback Performance,” later in this chapter, for more information about this function).
Note that the preloading information is preserved in flattened movies.

HINTS

QuickTime 2.0 defines several new movie and media playback hints:

hi nt sDont Pur ge Instructs the Movie Toolbox not to dispose of
movie data after playing it. The Movie Toolbox
leaves the data in memory, in a purgeable handle.
This can enhance the playback of small movies that
are looping. However, it may consume large
amounts of memory and affect the performance of
the Memory Manager. Use this hint carefully.

hi nt sl nacti ve Tellsthe Movie Toolbox that the movieisnot in an
active window. This can allow the Movie Toolbox
to more efficiently allocate scarce system resources.
The movie controller component uses this hint for
all moviesit manages.

These new hints work with the Set Movi ePl ayHi nt s and Set Medi aPl ayHi nt s functions.

December 21, 1994 Page 1

QuickTime 2.0 SDK: Toolbox Changes

DATA REFERENCES

The Movie Toolbox now fully supports a mediathat refers to datain more than onefile.
In the past, a mediawas restricted to asingle datafile. By allowing asingle mediato refer
to more than onefile, the Movie Toolbox allows better playback performance and easier
editing, primarily by reducing the number of tracksin amovie. Use the new

Set Medi aDef aul t Dat aRef | ndex function to control which of amedia sfiles you access
when you add new samples. See “ Adding Samples to Media Structures,” later in this
chapter, for a complete description of this new function.

Track References

While QuickTime has always allowed you to create movies that contain more than one
track, you have not been able to specify relationships between those tracks. Track
references are anew feature of QuickTime that allow you to relate amovie' s tracks to
one another. The QuickTime track-reference mechanism supports many-to-many
relationships. That is, any movie track may contain one or more track references, and any
track may be related to one or more other tracks in the movie.

Track references can be useful in avariety of ways. In QuickTime 2.0, track references
are used to relate timecode tracks to other movie tracks (see “ Timecode Media Handler,”
elsawhere in this chapter, for more information about timecode tracks). Y ou might
consider using track references to identify relationships between video and sound tracks,
identifying the track that contains dialog and the track that contains background sounds,
for example. Another use of track references is to associate one or more text tracks that
contain subtitles with the appropriate audio track or tracks.

Every movie track contains alist of its track references. Each track reference identifies
another, related track. That related track isidentified by itstrack identifier. The track
reference itself contains information that allows you to classify the references by type.
Thistype information is stored in an GSType datatype. You are free to specify any type
value you want—note, however, that Apple has reserved all lower-case type values.

Y ou may create as many track references as you want, and you may create more than one
reference of a given type. Each track reference of a given typeis assigned an index value.
These index values start at 1 for each different reference type. The Movie Toolbox
maintains these index values so that they always start at 1 and count by 1.

See “Working With Track References,” later in this chapter, for detailed descriptions of
the Movie Toolbox functions that allow you to work with track references.

Timecode Media Handler

QuickTime 2.0 introduces support for timecode tracks. Timecode tracks allow you to
store external timecode information, such as SMPTE timecode, in your QuickTime
movies. QuickTime now provides a new timecode media handler that interprets the data
in these tracks.

Page 2 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

See “ Timecode Media Handler Functions,” later in this chapter, for detailed descriptions
of the timecode media handler.

DATA HANDLER COMPONENTS

QuickTime 2.0 includes a new, memory-based data handler. This data handler component
works with movie data that is stored in memory, in ahandle, rather than in afile. This
data handler has a component subtype value of Handl eDat aHandl er SubType (' hndl *).

To create amovie that uses the handle data handler, set the data reference type to

Handl eDat aHandl er SubType when you call the NewTr ackMedi a function. Note that the
movie datain memory is not automatically saved with the movie. If you want to save the
datathat isin memory, usethe Fl at t enMovi e Or | nsert Tr ackSegnent functionsto copy
the datafrom memory to afile.

The handle data handler does not use aliases, and therefore does not use alias handles.
Rather, it uses 4-byte memory handles. If you pass a handle value of ni | , the data handler
allocates and manages the handle for you. If you pass anon-ni | handle value, the data
handler uses your handle. It is then your responsibility to manage the handle, and dispose
of it when appropriate. Note that a single handle may be shared by several data handler
components. Whenever necessary, the data handler resizes the handle to accommodate
new data.

Although data handler components have been existing since QuickTime 1.0, their
interface is publicly defined for the first timein QuickTime 2.0. If you are interested in
developing a data handler, refer to the chapter “ Data Handler Components’ later in this
document.

MOVIE TOOLBOX REFERENCE

This section contains reference material on new or changed Movie Toolbox functions.

Functions for Getting and Playing Movies

Movie Functions

NewM ovieFromUser Proc

The NewMbvi eFr onlser Pr oc function creates a movie in memory from
data that you provide. Y our application defines afunction that deliversthe
movie data to the Movie Toolbox. The Movie Toolbox calls your function,
specifying the amount of data required and the location for the data.

December 21, 1994 Page 3

QuickTime 2.0 SDK: Toolbox Changes

pascal OSErr NewMovi eFromlser Proc (Movie *t heMovi e,
short newMovi eFl ags,
Bool ean *dat aRef VasChanged,
Get Movi eUPP get Proc,
voi d *ref Con,
Handl e def aul t Dat aRef,
OSType dat aRef Type) ;

t heMovi e Contains a pointer to afield that is to receive the
new movie sidentifier. If the function cannot 1oad
the movie, the returned identifier issettoni | .

newMbvi eFl ags Controls the operation of the
NewMbvi eFr omUser Pr oc function. The following
flags are valid (be sure to set unused flags to 0):

newMbvi eActi ve Controls whether the new movieis
active. Set thisflag to 1 to make the
new movie active. Y ou can make a
movie active or inactive by calling
the set Movi eAct i ve function.

newMbvi eDont Resol veDat aRef s
Controls how completely the Movie
Toolbox resolves data referencesin
the movie resource. If you set this
flag to O, the toolbox triesto
completely resolve all data
references in the resource. This may
involve searching for files on remote
volumes. If you set thisflag to 1, the
Movie Toolbox only looksin the
specified data reference.

If the Movie Toolbox cannot
completely resolve al the data
references, it still returnsavalid
movie identifier. In this case, the
Movie Toolbox also sets the current
error value to

coul dNot Resol veDat aRef .

newMovi eDont AskUnr esol vedDat aRef s
Controls whether the Movie Toolbox
asks the user to locate files. If you set
thisflag to 0, the Movie Toolbox
asks the user to locate files that it
cannot find on available volumes. If
the Movie Toolbox cannot locate a
file even with the user’ s help, the
function returns avaid movie
identifier and sets the current error
value to coul dNot Resol veDat aRef .

Page 4 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

newMbvi eDont Aut oAl t er nat e

Controls whether the Movie Toolbox
automatically selects enabled tracks
from alternate track groups. If you
set thisflag to 1, the Movie Toolbox
does not automatically select tracks
for the movie—you must enable
tracks yourself.

dat aRef WasChanged Contains a pointer to a Boolean value. The Movie

get Proc

r ef Con

def aul t Dat aRef

dat aRef Type

interface;

December 21, 1994

Toolbox sets the Boolean to indicate whether it had
to change any data references while resolving them.
The toolbox sets the Boolean valueto true if any
references were changed. Use the

Updat eMovi eResour ce function to preserve these
changes.

Set the dat aRef WasChanged parameter toni | if
you do not want to receive this information.

Contains a pointer to afunction in your application.
Thisfunction is responsible for providing the movie
data to the Movie Tool box.

Contains a reference constant (defined as avoid
pointer). The Movie Toolbox provides this value to
the function identified by the get Pr oc parameter.

Specifies the default data reference. This parameter
contains a handle to the information that identifies
the file to be used to resolve any data references and
as a starting point for any Alias Manager searches.

The type of information stored in the handle
depends upon the value of the dat aRef Type
parameter. For example, if your application is
loading the movie from afile, you would refer to
thefile'saliasin the def aul t Dat aRef parameter,
and set the dat aRef Type parameter tor Al i asType.

If you do not want to identify a default data
reference, set the parameter toni | .

Specifies the type of datareference. If the data
reference is an alias, you must set the parameter to
rAliasType (" alis'),indicating that the reference
isan dias.

Y our application must define a function that provides the movie datato
the Movie Toolbox. Y ou specify that function to the Movie Toolbox with
the get Pr oc parameter. That function must support the following

Page 5

QuickTime 2.0 SDK: Toolbox Changes

pascal OSErr MyGet Movi eProc (Il ong offset, |ong size,
void *dataPtr, void *refCon);

of f set Specifies the offset into the movie resource (not the
moviefile). Thisis the location from which your
function retrieves the movie data.

si ze Specifies the amount of data requested by the
Movie Toolbox, in bytes.

dat aPtr Specifies the destination for the movie data.

ref Con Contains areference constant (defined as avoid

pointer). Thisisthe same value you provided to the
Movie Toolbox when you called the
NewMbvi eFr onUser Pr oc function.

Normally, when amovieisloaded from afile (say, by means of the
Newbvi eFr onFi | e function), the Movie Toolbox usesthat file as the
default data reference. Since the Newbvi eFr omser Pr oc function does
not require afile specification, your application is free to specify afileto
be used as the default data reference using the def aul t Dat aRef and

dat aRef Type parameters.

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the movie's graphics world based
upon the current graphics port. Be sure that your application’s graphics
world isvalid before you call this function.

ERROR CODES

par aner r -50 Invalid parameter specified

noMovi eFound —2048 Toolbox cannot find a moviein the moviefile
Memory Manager errors

Resource Manager errors

NewM ovieFromFile

Page 6

The NewMbvi eFr onFi | e function now works with some files that do not
contain movie resources. In some cases, the datain afileis aready
sufficiently well-formatted for QuickTime or its components to
understand. For example, the AIFF movie data import component can
understand AlFF sound files and import the sound datainto a QuickTime
movie. When the NewMbvi eFr onfFi | e function encounters afile that does
not contain a movie resource, the function now tries to find amovie
import component that can understand the data and create a movie. For
more information about new capabilities of movie data import
components, see the chapter “Movie Data Exchange Components”
elsewhere in this document.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

ConvertMovieT oFile

This function now supportsa“Save As...” dialog box. The dialog allows
the user to specify the file name and type. Supported typesinclude
standard QuickTime movies, flattened movies, single-fork flattened
movies, and any format that is supported by a movie data export
component. Figure 1 shows a sample “ Save As...” dialog box.

|'= movies ¥ | = movies

EE Gun fo Heapen
fapipy Mapie
RV a
pfarasing hel
panan {aiiing

Desktop

: Cancel
Export File As:

sample export

-

Mouie to Picture w |

Figurel Sample*“Save As...” dialog box

Y our application controls whether this dialog appears by setting the value
of thef | ags parameter to the Conver t Movi eToFi | e function. The
function supports the following flags:

showUser Set ti ngsDi al og
Controls whether the “Save As...” dialog can
appear. Set thisflag to 1 to usethe “ Save As...”
diaog.

novi eToFi | eOnl yExport
Restricts the user to export file formats. If you want
to require the user to export the movie datausing a
movie data export component, set thisflag to 1. The
dialog then displays only file types that are
supported by movie data export components.

December 21, 1994 Page 7

err =

*/

QuickTime 2.0 SDK: Toolbox Changes

The following code shows how to call this function.

Convert Movi eToFi l e (theMovi e, /* identifies movie */
nil, /* all tracks */
nil, /* no output file */
0, /* no file type */
0, /* no creator */
-1, /* script */
nil, /* no resource ID */

creat eMovi eFi | eDel eteCurFil e
showUser Set ti ngsDi al og
novi eToFi | eOnl yExport,

0); /* no specific component

Movie Functions

FlattenM ovie and FlattenM ovieData

The Movie Toolbox, viathe new Set Tr ackLoadSet t i ngs function, now
allows you to set amovie's preloading guidelines when you create the
movie. The preload information is preserved when you flatten the movie
(using either the FI at t enMbvi e Or Fl at t enMovi eDat a functions). In
flattened movies, the tracks that are to be preloaded are stored at the start
of the movie, rather than being interleaved with the rest of the movie data.
Thisimproves preload performance.

For more information about preloading, see the discussion of the
Set TrackLoadSet t i ngs function in “Enhancing Movie Playback
Performance.”

Enhancing Movie Playback Performance

SetTrackL oadSettings

Page 8

The Set Tr ackLoadSet t i ngs function allows you to specify a portion of a
track that isto be loaded into memory whenever it is played.

pascal void SetTrackLoadSettings (Track theTrack
Ti meVal ue prel oadTi ne,
Ti meVal ue prel oadDuration
| ong prel oadFl ags,
| ong defaul tHints);

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

December 21,

t heTr ack

pr el oadTi ne

pr el oadDur ati on

pr el oadFl ags

Specifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

Specifies the starting point of the portion of the
track to be preloaded. Set this parameter to —1 if you
want to preload the entire track (in this case the
function ignores the pr el oadDur at i on parameter).

Specifies the amount of the track to be preloaded,
starting from the time specified in the pr el oadTi ne
parameter. If you are preloading the entire track, the
function ignores this parameter.

Controls when the Movie Toolbox preloads the
track. The function supports the following flag
values:

pr el oadAl ways Specifies that the Movie Toolbox

should always preload this track,
even if the track is disabled.

pr el oadOnl yI f Enabl ed

defaul tHi nts

Specifies that the Movie Toolbox
should preload this track only when
the track is enabled.

Set this parameter to 0 if you do not want to preload
the track.

Specifies playback hints for the track. Y ou may
specify any of the supported hints flags. See
“Hints,” earlier in this chapter, for some flags that
are new with QuickTime 2.0.

The Set Tr ackLoadSet t i ngs allows you to control how the Movie
Toolbox preloads the tracks in your movie. By using these settings, you
make this information part of the movie, so that the preloading takes place
every time the movie is opened, without an application having to call the
LoadTr ackl nt oRAMfunction. Consequently, you should use this feature
carefully, so that your movies do not consume large amounts of memory

when played.

1994

Page 9

QuickTime 2.0 SDK: Toolbox Changes

SPECIAL CONSIDERATIONS

The Movie Toolbox transfers this preload information when you call the
CopyTrackSet ti ngs function. In addition, the preload information is
preserved when you flatten a movie (using either the FI at t enMovi e Or
Fl at t enMovi eDat a functions). In flattened movies, the tracks that are to
be preloaded are stored at the start of the movie, rather than being
interleaved with the rest of the movie data. Thisimproves preload
performance.

ERROR CODES

i nval i dTrack —2009 Thistrack is corrupted or invalid

GetTrackL oadSettings

Page 10

The Get Tr ackLoadSet t i ngs function allows you to retrieve atrack’s
preload information.

pascal void GetTrackLoadSettings (Track theTrack,
Ti meVal ue *prel oadTi e,
Ti meVal ue *prel oadDur ati on,
| ong *prel oadFl ags,
| ong *defaul tH nts);

t heTr ack Specifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

pr el oadTi me Specifies afield to receive the starting point of the
portion of the track to be preloaded. The Movie
Toolbox returns avalue of —1 if the entire track isto
be preloaded.

prel oadDuration Specifiesafield to receive the amount of the track
to be preloaded, starting from the time specified in
the pr el oadTi ne parameter. If the entire track isto
be preloaded, this value is meaningless.

pr el oadFl ags Specifies afield to receive the flags that control
when the Movie Toolbox preloads the track. The
function supports the following flag values:

pr el oadAl ways Specifies that the Movie Toolbox
always preloads this track.

prel oadOnl yI f Enabl ed
Specifies that the Movie Toolbox
preloads this track only when the
track is enabled.

December 21, 1994

QuickTime 2.0

ERROR CODES

DK: Toolbox Changes

def aul tHints Specifies afield to receive the playback hints for the
track.
i nval i dTrack —2009 Thistrack is corrupted or invalid

Working with Progress and Cover Functions

SetM ovieDrawingCompleteProc

The Set Movi eDr awi ngConpl et ePr oc function allows you to assign a
drawing-complete function to amovie. The Movie Toolbox calls this
function based upon guidelines you establish when you assign the function
to the movie.

pascal voi d Set Movi eDr awi ngConpl et eProc (Movi e t heMvi e,
[ong fl ags,
Movi eDr awi ngConpl et eProcPt r
proc, long refCon);

t heMovi e Specifies the movie for this operation. Y our
application obtains this identifier from such
functions as NewMovi e, NewMbvi eFr onFi | e, and
NewMbvi eFr onHandl e.

fl ags Contains information that controls when your
drawing complete function is called. The following
values are supported:

novi eDr awi ngCal | WhenChanged
Specifies that the Movie Toolbox
should call your drawing-complete
function only when the movie has
changed.

novi eDr awi ngCal | Al ways
Specifies that the Movie Toolbox
should call your drawing-complete
function every time your application
calsthe Movi esTask function.

proc Contains a pointer to your drawing-complete
function. Set this parameter to ni | if you want to
remove your function.

ref Con Contains a value that the Movie Toolbox provides
to your drawing-complete function.

December 21, 1994 Page 11

QuickTime 2.0 SDK: Toolbox Changes

DESCRIPTION
Y our drawing-complete function must support the following interface:

t ypedef pascal OSErr MyMovi eDr awi ngConpl et eProc
(Movi e theMovie, |ong refCon);

t heMovi e Specifies the movie for this operation.
r ef Con Contains the reference constant you supplied when
your application called the
Set Movi eDr awi ngConpl et ePr oc function.
ERROR CODES

i nval i dvbvi e —2010 Your moviereferenceis bad

Functions That Modify Movie Properties

Working With Movie Spatial Characteristics

SetMovieColorTable

The Set Movi eCol or Tabl e function allows you to associate a color table
with amovie.

pascal OSErr Set Movi eCol or Tabl e (Mvi e t heMovi e,
CTabHandl e ctab);

t heMovi e Specifies the movie for this operation. Y our
application obtains thisidentifier from such
functions as NewMbvi e, NewMovi eFr onFi | e, and
NewMovi eFr omHandl e.

ctab Contains a handle to the color table. Set this
parameter to ni | to remove the movie's color table.

DESCRIPTION
The Movie Toolbox makes a copy of the color table, so it isyour
responsibility to dispose of the color table when you are done with it. If
the movie already has a color table, the Movie Toolbox uses the new table
to replace the old one.

The CopyMovi eSet ti ngs function copies the movie's color table, along
with the other settings information.

Page 12 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

The color table you supply may be used to modify the palette of indexed
display devices at playback time. If you are using the movie controller, be
sure to set the ncFl agsUseW ndowPal et t e flag. If you are not using the
movie controller, you should retrieve the movie's color table (using the
Get Movi eCol or Tabl e function) and supply it to the Palette Manager.

ERROR CODES

i nval i dMovi e —2010 Your moviereferenceis bad
Memory Manager errors

GetMovieColor Table

The Get Movi eCol or Tabl e function allows you to retrieve amovie's color
table.

pascal OSErr Get Movi eCol or Tabl e (Mvi e t heMvi e,
CTabHandl e *ct ab);

t heMovi e Specifies the movie for this operation. Y our
application obtains thisidentifier from such
functions as NewMbvi e, Newhbvi eFr onFi | e, and
NewMbvi eFr onHandl e.

ctab Contains a pointer to afield that isto receive a
handle to the movie's color table. If the movie does
not have a color table, the Movie Toolbox sets the
fieldtoni | .

DESCRIPTION

The Movie Toolbox returns a copy of the color table, soit isyour
responsibility to dispose of the color table when you are done with it.

ERROR CODES

i nval i dvbvi e —2010 Your moviereferenceis bad
Memory manager errors

December 21, 1994 Page 13

QuickTime 2.0 SDK: Toolbox Changes

Locating a Movie's Tracks and Media Structures

GetMovielndTrackType

Page 14

The Get Movi el ndTr ack Type function allows you to search for all of a
movi€' s tracks that share a given mediatype or media characteristic.

pascal Track Get Movi el ndTrackType (Movie theMvie,

t heMbvi e

i ndex

trackType

flags

| ong i ndex, OSType trackType,
long flags);

Specifies the movie for this operation. Y our
application obtains thisidentifier from such
functions as NewMovi e, NewMbvi eFr onFi | e, and
NewMbvi eFr onHandl e.

Specifies the index value of the track for this
operation. Thisis not that same as the track’ s index
value in the movie. Rather, this parameter is an
index into the set of tracks that meet your other
selection criteria.

Contains either amediatype or amedia
characteristic value. The Movie Toolbox applies
this value to the search, and returns information
about tracks that meet this criterion. Y ou indicate
whether you have specified a media type or
characteristic value by setting the f | ags parameter

appropriately.

Contains flags that control the search operation. The
following flags are valid (note that you may not set
both novi eTr ackMedi aType and

nmovi eTrackChar act eri sti c to 1):

nmovi eTr ackMedi aType

Indicates that thet r ackType
parameter contains a mediatype
value. Set thisflag to 1 if you are
supplying a media type value (such
asVi deoMedi aType).

novi eTrackCharacteri stic

Indicates that thet r ackType
parameter contains a media
characteristic value. Set thisflagto 1
if you are supplying amedia
characteristic value (such as

Vi sual Medi aChar act eri sti c).

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

novi eTr ackEnabl edOnl y
Specifies that the Movie Toolbox
should only search enabled tracks.
Set thistrack to 1 to limit the search
to enabled tracks.

DESCRIPTION

The Movie Toolbox returns the track identifier that corresponds to the
track that meets your selection criteria. If the Movie Toolbox cannot find a
matching track, in returnsavalue of ni | .

Note that thei ndex parameter does not work the same way that is doesin
the Get Movi el ndTr ack function. With the Get Movi el ndTr ackType
function, the index parameter specifies an index into the set of tracks that
meet your other selection criteria. For example, in order to find the third
track that supports the sound characteristic, you could call the functionin
the following manner:

t heTrack = Get Movi el ndTrackType (theMovi e,
31
Audi oMedi aChar acteristic,
novi eTrackCharacteristic);

ERROR CODES

par aner r -50 Invalid parameter specified
i nval i dvbvi e —2010 Your moviereferenceis bad

Working With Track References

Track references allow you to relate tracks to one another. This can be useful for
identifying the text track that contains the subtitles for amovie' s audio track, and relating
the text track to a particular audio track. See “Track References,” earlier in this chapter,
for more information about track references.

The AddTr ackRef er ence function allows you to relate one track to another. The

Del et eTr ackRef er ence function removes that relationship. The Set Tr ackRef er ence
and Get Tr ackRef er ence functions allow you to modify an existing track reference so
that it identifies a different track. The Get Next Tr ackRef er enceType and

Get Tr ackRef er enceCount functions allow you to scan all of atrack’strack references.

AddTrackReference

The AddTr ackRef er ence function allows you to add a new track
reference to atrack.

pascal OSErr AddTrackReference (Track theTrack,
Track ref Track,
CSType ref Type,
| ong *addedl ndex) ;

December 21, 1994 Page 15

QuickTime 2.0 SDK: Toolbox Changes

t heTr ack Identifies the track for this operation. Y our

ERROR CODES

DeleteTrackR

application obtains this track identifier from such
Movie Toolbox functions as NewiVbvi eTr ack and
Cet Movi eTr ack.

ref Track Specifies the track to be identified in the track
reference.

ref Type Specifies the type of reference.

added| ndex Contains a pointer to along. The Movie Toolbox

returns the index value assigned to the new track
reference. If you do not want thisinformation, set
this parameter to ni | .

i nval i dTrack —2009 Thistrack is corrupted or invalid
Memory Manager errors

eference

DESCRIPTION

The Del et eTr ackRef er ence function allows you to remove a track
reference from atrack.

pascal OSErr Del et eTrackReference (Track theTrack,
OSType ref Type, |ong index);

t heTr ack Identifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

ref Type Specifies the type of reference.

i ndex Specifies the index value of the reference to be
deleted. Y ou obtain thisindex value when you
create the track reference.

This function deletes atrack reference from atrack. If there are additional
track references with higher index values, the Movie Toolbox
automatically renumbers those references, decrementing their index values
by 1.

ERROR CODES

Page 16

par aner r —50 Invalid parameter specified
i nval i dTrack —2009 Thistrack is corrupted or invalid
Memory Manager errors

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

SetTrackReference

The Set Tr ackRef er ence function allows you to modify an existing track
reference. Y ou may change the track reference so that it identifiesa
different track in the movie.

extern pascal OSErr SetTrackReference (Track theTrack,
Track refTrack,
OSType ref Type, |ong index);

t heTr ack Identifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

ref Track Specifies the track to be identified in the track
reference. The Movie Toolbox uses this information
to update the existing track reference.

ref Type Specifies the type of reference.
i ndex Specifies the index value of the reference to be

changed. Y ou obtain this index value when you
create the track reference.

ERROR CODES

par aner r —50 Invalid parameter specified

i nval i dTrack —2009 Thistrack is corrupted or invalid
GetTrackReference

The Get Tr ackRef er ence function allows you to retrieve the track
identifier contained in an existing track reference.

pascal Track GetTrackReference (Track theTrack,
CSType ref Type, |ong index);

t heTr ack Identifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

ref Type Specifies the type of reference.
i ndex Specifies the index value of the reference to be

changed. Y ou obtain this index value when you
create the track reference.

December 21, 1994 Page 17

DESCRIPTION

QuickTime 2.0 SDK: Toolbox Changes

This function returns the track identifier that is contained in the specified
track reference. If the Movie Toolbox cannot locate the track reference
corresponding to your specifications, it returnsavalue of ni | .

GetNextTrackReferenceType

DESCRIPTION

The Get Next Tr ackRef er enceType function allows you to determine all
of the track reference typesthat are defined for a given track.

pascal OSType Cet Next TrackRef erenceType (Track theTrack,
OSType ref Type);

t heTr ack |dentifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

ref Type Specifies the type of reference. Set this parameter to
0 to retrieve the first track reference type. On
subsequent requests, use the previous value returned
by this function.

This function returns an operating-system data type containing the next
track reference type value defined for the track. Thereis no implied
ordering of the returned values. When you reach the end of the track’s
reference types, this function sets the returned value to 0. Y ou can use this
value to stop your scanning loop.

GetTrackReferenceCount

Page 18

The Get Tr ackRef er enceCount function allows you to determine how
many track references of a given type exist for atrack.

pascal |ong Get Tr ackRef erenceCount (Track theTrack,
CSType ref Type);

t heTr ack Identifies the track for this operation. Y our
application obtains this track identifier from such
Movie Toolbox functions as NewMbvi eTr ack and
Get Movi eTr ack.

ref Type Specifies the type of reference. The Movie Toolbox
determines the number of track references of this

type.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

This function returns long integer that contains the number of track
references of the specified type in the track. If there are no references of
the type you have specified, the function returns a value of 0.

Functions for Editing Movies

Adding Samples to Media Structures

SetM ediaDefaultDataRefl ndex

DESCRIPTION

ERROR CODES

The Set Medi aDef aul t Dat aRef | ndex function allows you to specify
which of amedia's data references is to be accessed during an editing
session.

pascal OSErr Set Medi aDef aul t Dat aRef | ndex (Medi a t heMedi a,
short index);

t heMedi a Specifies the mediafor this operation. Y our
application obtains this mediaidentifier from such
Movie Toolbox functions as NewTr ack Medi a and
Get TrackMedi a.

i ndex Specifies the data reference to access. Values of the
i ndex parameter range from 1 to the number of data
references in the media (you can determine the
number of data references by calling the
Get Medi aDat aRef Count function). Once set, the
default data reference index persists. Set this
parameter to O to revert to the media’ s default.

Since the Movie Toolbox has never allowed you to create tracks that have
datain several files, there has not been a mechanism for controlling which
data reference is affected by a media editing session. The

Set Medi aDef aul t Dat aRef | ndex function alows you to specify the index
of the data reference to be edited. After calling this function, you can start
editing that data reference by calling the Begi nMedi aEdi t s function.

i nval i dMedi a —2008 The mediais corrupted or invalid
badDat aRef | ndex —2050 Datareferenceindex valueisinvalid

December 21, 1994 Page 19

QuickTime 2.0 SDK: Toolbox Changes

SetM ediaPreferredChunkSize

The Set Medi aPr ef er r edChunkSi ze function allows you to specify a
maximum chunk size for amedia.

pascal OSErr Set Medi aPreferredChunkSi ze (Medi a theMedi a,
| ong maxChunksSi ze) ;

t heMedi a Specifies the mediafor this operation. Y our
application obtains this mediaidentifier from such
Movie Toolbox functions as NewTr ack Medi a and
Get TrackMedi a.

maxChunkSi ze Specifies the maximum chunk size, in bytes.
DESCRIPTION

The term chunk refers to the collection of sample data that is added to a
movie when you call the AddMedi aSanpl e function. When QuickTime
loads a movie for playback, it loads the data a chunk at atime.
Consequently, both the size and number of chunksin amovie can affect
playback performance. The Movie Toolbox tries to optimize playback
performance by consolidating adjacent sample references into asingle
chunk (up to the limit you prescribe with this function).

ERROR CODES

noMedi aHandl er —2006 Media has no media handler
i nval i dMedi a —2008 The mediais corrupted or invalid

GetMediaPreferredChunkSize

The Get Medi aPr ef er r edChunkSi ze function allows you to retrieve the
maximum chunk size for amedia.

pascal OSErr Get Medi aPreferredChunkSi ze (Medi a t heMedi a,
| ong *maxChunkSi ze);

t heMedi a Specifies the mediafor this operation. Y our
application obtains this mediaidentifier from such
Movie Toolbox functions as NewTr ack Medi a and
Get Tr ackMedi a.

maxChunkSi ze Specifies afield to receive the maximum chunk
Size, in bytes.

Page 20 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

ERROR CODES

noMedi aHandl er
i nval i dMedi a

Media Functions

—2006 Mediahas no media handler
—2008 The mediais corrupted or invalid

Selecting Data Handlers

GetDataHandler

The GetDataHandler function allows you to retrieve the best data handler
component to use with a given data reference.

pascal

dat aRef

dat aHandl er SubType

flags

December 21, 1994

Conponent Get Dat aHandl er (Handl e dat aRef,

OSType dat aHandl er SubType,
l ong flags);

Contains a handle to the data reference. The type of
information stored in the handle depends upon the
data reference type specified by the

dat aHandl er SubType parameter.

| dentifies both the type of data reference and, by
implication, the component subtype value assigned
to the data handler components that deal with data
references of that type.

Indicates the way in which you intend to use the
data handler component. Note that not all data
handlers necessarily support all services—for
example, some data handler components may not
support streaming writes.

The following flags are defined (set the appropriate
flagsto 1):

kDat aHCanRead Specifies that you intend to use the

data handler component to read data.

kDat aHCanW i t e Specifies that you intend to use the

data handler component to write
data.

kDat aHCanSt r eanmi ngWite

Indicates that you intend to do
streaming writes (as part of amovie-
capture operation, for example).

Page 21

QuickTime 2.0 SDK: Toolbox Changes

DESCRIPTION

Once you have used this function to get information about the best data
handler component for your data reference, you can open and use the
component using Component Manager functions. See “Data Handler
Components,” earlier in this chapter, for more information.

If the function returns avaue of ni | , the Movie Toolbox was unable to
find an appropriate data handler component. For more information about
the error, call the Get Movi esEr ror Movie Toolbox function.

Given that even the most-appropriate data handler component may not
support al of the functionality you desire, you should query that
component’ s capabilities before you start reading or writing movie data.

ERROR CODES

Memory Manager errors

Timecode Media Handler Functions

This section discusses the functions and structures that allow you to use the timecode
media handler.

The timecode media handler allows QuickTime moviesto store timing information that is
derived from the movie' s original source material. Every QuickTime movie contains
QuickTime-specific timing information, such as frame duration. Thisinformation affects
how QuickTime interprets and plays the movie.

The timecode media handler allows QuickTime movies to store additional timing
information that is not created by or for QuickTime. This additional timing information
would typically be derived from the original source material, say as a SMPTE timecode.
In essence, you can think of the timecode media handler as providing alink between the
“digital” QuickTime-specific timing information and the original “analog” timing
information from the source material.

Aswith any movie data, a movie' stimecode is stored in atimecode track. Timecode
tracks contain

- Source identification information (this identifies the source, say, a given videotape)

- Timecode format information (this specifies the characteristics of the timecode and
how to interpret the timecode information)

- Frame numbers (these allow QuickTime to map from a given movie time—in terms
of QuickTime time values—to its corresponding timecode value)

Apple has defined the information that is stored in the track in amanner that is
independent of any specific timecode standard. The format of thisinformation is
sufficiently flexible to accommodate all know timecode standards, including, for
example, SMPTE timecode. The timecode format information provides QuickTime the
parameters for understanding the timecode and converting QuickTime time values into
timecode time values (and vice versa).

Page 22 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

One key timecode attribute relates to the technique used to synchronize timecode values
with video frames. Most video source material is recorded at whole-number frame rates.
For example, both PAL and SECAM video contains exactly 25 frames per second.
However, some video source material is not recorded at whole-number frame rates. In
particular, NTSC color video contains 29.97 frames per second (though it is typically
referred to as 30 frames-per-second video). However, NTSC timecode val ues correspond
to the full 30 frames-per-second rate (thisis a holdover from NTSC black-and-white
video). For such video sources, you need a mechanism that corrects the skew that will
develop over time between timecode values and actual video frames.

A common method for maintaining synchronization between timecode values and video
datais called dropframe. Contrary to its name, the dropframe technique actually skips
timecode values at a predetermined rate in order to keep the timecode and video data
synchronized. It does not actually drop video frames. In NTSC color video, which uses
the dropframe technique, the timecode values skip two frame values every minute, except
for minute values that are evenly divisible by ten. So NTSC timecode values, which are
expressed as HH:MM:SS.FF (hours, minutes, seconds, frames) skip from 00:00:59:29 to
00:01:00:02 (skipping 00:01:00:00 and 00:01:00:01). Thereisaflag in the timecode
definition structure that indicates whether the timecode uses the dropframe technique.

Y ou can have the Movie Toolbox display the timecode when amovieis played. Use the
TCSet Ti meCodeFl ags function to turn the timecode display on and off. Note that the
timecode track must be enabled for this display to work.

Y ou store the timecode’ s source identification information in a user dataitem. Create a
user dataitem with atype value of TCSour ceRef NaneType (' nane'). Store the source
information as atext string. This information might contain the name of the videotape
from which the movie was created, for example. Be sure to note the index value that you
assign to the user dataitem. You will need it in order to create timecode sample
descriptions. For more information about working with user data, see Inside Macintosh:
QuickTime.

The timecode media handler provides functions that allow you to manipulate the source
identification information. The following sample code demonstrates one way to set the
source tape name in atimecode media s sample description.

voi d set Ti meCodeSour ceNane (Medi a ti meCodeMedi a,
Ti meCodeDescri pti onHandl e t cdH,
Str255 tapeNanme, ScriptCode tapeNanmeScri pt)

{
User Dat a srcRef;

i f (NewUserDat a(&srcRef) == noErr) {
Handl e nameHandl e;
i f (PtrToHand(&t apeNane[1], &naneHandl e, tapeNane[0]) == noErr) {
i f (AddUser Dat aText (srcRef, naneHandl e, 'nane', 1,
t apeNaneScript) == noErr) {
TCSet Sour ceRef (Get Medi aHandl er (ti neCodeMedi a),
t cdH,
srcRef);

}
Di sposeHandl e(nanmeHandl e) ;

December 21, 1994 Page 23

QuickTime 2.0 SDK: Toolbox Changes

}
Di sposeUser Dat a(srcRef);

Y ou create a timecode track and mediain the same manner that you create any other
track. Call the NewMbvi eTr ack function to create the timecode track, and use the
NewTr ackMedi a function to create the track’ s media. Be sure to specify a mediatype
value of Ti neCodeMedi aType When you call the NewTr ackMedi a function.

Y ou define the relationship between a timecode track and one or more movie tracks using
the Movie Toolbox’s new track reference functions (see “ Track References’” and
“Functions for Working With Track References’” elsewhere in this chapter for more
information). Y ou then proceed to add samples to the track, as appropriate.

Each sample in the timecode track provides timecode information for a span of movie
time. The sample includes duration information. As aresult, you typically add each
timecode sample after you have created the corresponding content track or tracks.

The timecode media sample description contains the control information that allows
QuickTime to interpret the samples. Thisincludes the timecode format information. The
actual sample data contains a frame number that identifies one or more content frames
that use this timecode. Stored as along, this value identifies the first frame in the group of
frames that use this timecode. In the case of a movie made from source material that
contains no edits, you would only need one sample. When the source material contains
edits, you typically need one sample for each edit, so that QuickTime can re-sync the
timecode information with the movie. Those samples contain the frame numbers of the
frames that begin each new group of frames.

The timecode description structure defines the format and content of a timecode media
sampl e description.

typedef struct Ti meCodeDescription {

| ong descSi ze; /* size of the structure */

| ong dat aFor nat ; /* sanple type */

| ong resvdl; /* reserved--set to 0 */

short resvdz; /* reserved--set to 0 */

short dat aRef | ndex; /* data reference index */

| ong fl ags; /* reserved--set to 0 */

Ti meCodeDef ti meCodeDef ; /* tinmecode format information */
| ong srcRef[1]; /* source information */

} Ti meCodeDescription, *TimeCodeDescriptionPtr
**Ti meCodeDescri pti onHandl e;

Field Descriptions

descSi ze Specifies the size of the sample description, in bytes.

dat aFor mat Indicates the sample description type (Ti neCodeMedi aType, Or
"tned').

resvdl Reserved for use by Apple. Set thisfield to O.

Page 24 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

resvd2 Reserved for use by Apple. Set thisfield to O.

dat aRef | ndex Contains an index value indicating which of the media’ s data
references contains the sample data for this sample description.

fl ags Reserved for use by Apple. Set thisfield to O.

t i meCodeDef Contains a timecode definition structure that defines timecode

format information.

sr cRef Contains the timecode' s source information. Thisis formatted as a
user dataitem that is stored in the sample description. The media
handler provides functions that alow you to get and set this data.

The timecode definition structure contains the timecode format information. This
structure is defined as follows:

t ypedef struct Ti neCodeDef {

| ong fl ags; /* timecode control flags */

Ti neScal e f Ti meScal e; /* timecode's tine scale */

Ti meVal ue frameDurati on; /* how |l ong each frame |asts */
unsi gned char nunfr ames; /* nunber of frames per second */

} Ti meCodeDef;

Field Descriptions

flags Contains flags that provide some timecode format information. The
following flags are defined:

t cDr opFr ane Indicates that the timecode “drops’ frames
occasionally in order to stay in sync. Some
timecodes run at other than a whole number of
frames per second. For example, NTSC video runs
at 29.97 frames per second. In order to
resynchronize between the timecode rate and a 30
frames-per-second playback rate, the timecode will
drop aframe at a predictable time (in much the
same way that leap years keep the calendar in sync).
Set thisflag to 1 if the timecode uses the dropframe
technique.

t c24Hour Max Indicates that the timecode values wrap at 24 hours.
Set thisflag to 1 if the timecode hour value wraps
(that is, returnsto O) at 24 hours.

t cNegTi mesOK Indicates that the timecode supports negative time
values. Set thisflag to 1 if the timecode allows
negative values.

t cCount er Indicates that the timecode should be interpreted as
asimple counter, rather than asatime value. This
allows the timecode to contain either time
information or counter (such as a tape counter)
information. Set thisflag to 1 if the timecode
contains counter information.

December 21, 1994 Page 25

f Ti meScal e

frameDur ati on

numfr ames

QuickTime 2.0 SDK: Toolbox Changes

Contains the time scale for interpreting the f r aneDur at i on field.
Thisfield indicates the number of time units per second.

Specifies how long each frame lasts, in the units defined by the
f Ti neScal e field.

Indicates the number of frames stored per second. In the case of
timecodes that are interpreted as counters, thisfield indicates the
number of frames stored per timer “tick.”

The best way to understand how to format and interpret the timecode definition structure

isto consider an example. If you were creating amovie from an NTSC video source
recorded at 29.97 frames per second, using SMPTE timecode, you would format the
timecode definition structure as follows:

Ti meCodeDef . fl ags t cDr opFrane |
Ti meCodeDef . f Ti meScal e = 2997;

Ti meCodeDef . f raneDurati on = 100;
Ti meCodeDef . nunfr anes 30

t c24Hour Max;
/* units */
/* relates units to franes */
/* whol e frames per second */

The movie' s natural frame rate of 29.97 frames per second is obtained by dividing the
f Ti meScal e value by the f rameDur at i on (2997[]100). Note that thef | ags field
indicates that the timecode uses the dropframe technigue to resync the movie's natural
frame rate of 29.97 frames per second with its playback rate of 30 frames per second.

Given atimecode definition, you can freely convert from frame numbers to time values
and from time values to frame numbers. For atime value of 00:00:12:15

(HH:MM:SS.FF), you would obtain a frame number of 375 (12*30 + 15). The timecode
media handler provides a number of routines that allow you to perform these conversions.

When you use the timecode media handler to work with time values, the media handler
uses timecode records to store the time values. The timecode record allows you to
interpret the time information as either atime value (HH:MM:SS:FF) or a counter value.

The timecode record is defined as follows;

t ypedef uni on Ti neCodeRecord {
Ti meCodeTi e t;
Ti meCodeCount er C; [*
*/
} Ti meCodeRecord;

t ypedef struct Ti neCodeTi ne {

unsi gned char hour s; [*
unsi gned char m nut es; /*
unsi gned char seconds; [*
unsi gned char frames; [*

} Ti meCodeTi ne;
t ypedef struct Ti neCodeCounter {

| ong counter;
} Ti meCodeCounter;

Page 26

value interpreted as tinme */
val ue interpreted as counter

hours */
m nutes */
seconds */
frames */

tine:
tine:
tine:
tine:

counter val ue */

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Note that, when you are working with timecodes that allow negative time values, the
m nut es field of the Ti neCodeTi me structure (Ti meCodeRecor d. t . mi nut es) indicates
whether the time value is positive or negative. If thet ct NegFl ag bit of the mi nut es field

isset to 1, thetime value is negative.

TCGetCurrentTimeCode

The TCGet Cur r ent Ti meCode function retrieves the timecode and source
identification information for the current frame.

pascal Handl er Error TCCet Current Ti neCode (Medi aHandl er nh,

frameNum

t cdef

tcrec

srcRef H

ERROR CODES

i nval i dTi ne

TCGetTimeCodeAtTime

[ong *frameNum

Ti meCodeDef *tcdef,

Ti meCodeRecord *tcrec,
UserData *srcRefH);

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

Contains a pointer to afield that isto receive the
current frame number. Set thisfield to ni | if you do
not want to retrieve the frame number.

Contains a pointer to atimecode definition
structure. The media handler returns the movie's
timecode definition information. Set this parameter
toni | if you do not want this information.

Contains a pointer to a timecode record structure.
The media handler returns the current time value.
Set this parameter to ni | if you do not want this
information.

Contains a pointer to afield that isto receive a
handle containing the source information. It is your
responsibility to dispose of this handle when you
aredone with it. Set thisfield toni | if you do not
want this information.

—2015 Thistimevaueisinvalid

The TCGet Ti meCodeAt Ti me function returns atrack’s timecode
information corresponding to a specific mediatime.

December 21, 1994

Page 27

ERROR CODES

TCTimeCodeT oFrameNumber

QuickTime 2.0 SDK: Toolbox Changes

pascal Handl er Error TCGet Ti neCodeAt Ti me (Medi aHandl er mh,

nmedi aTi ne

frameNum

t cdef

tcrec

srcRef H

i nval i dTi me

Ti meVal ue nedi aTi ne,

l ong *frameNum

Ti meCodeDef *tcdef,

Ti meCodeRecord *tcdat a,
UserData *srcRef H);

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand| er
function.

Specifies the time value for which you want to
retrieve timecode information. Thistime valueis
expressed in the media’ s time coordinate system.

Contains a pointer to afield that isto receive the
current frame number. Set thisfield to ni | if you do
not want to retrieve the frame number.

Contains a pointer to atimecode definition
structure. The media handler returns the movie's
timecode definition information. Set this parameter
toni | if you do not want this information.

Contains a pointer to a timecode record structure.
The media handler returns the current time value.
Set this parameter to ni | if you do not want this
information.

Contains a pointer to afield that isto receive a
handle containing the source information. It isyour
responsibility to dispose of this handle when you
are done with it. Set thisfield toni | if you do not
want this information.

—2015 Thistimevaueisinvalid

Memory Manager errors

Page 28

The TCTi mreCodeToFr ameNunber function converts a timecode time value
into its corresponding frame number.

pascal Handl er Error TCTi meCodeToFranmeNunber

(Medi aHandl er mh,

Ti meCodeDef *tcdef,

Ti meCodeRecord *tcrec,
[ong *frameNunber);

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

mh Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHandl er
function.

t cdef Contains a pointer to the timecode definition

structure to use for the conversion.

tcrec Contains a pointer to the timecode record structure
containing the time value to convert.

f rameNunber Contains a pointer to afield that isto receive the
frame number that corresponds to the time valuein
thet cr ec parameter.

ERROR CODES

par ankr r -50 Invalid parameter specified

TCFrameNumber ToTimeCode

The TCFr ameNunber ToTi meCode function converts a frame number into
its corresponding timecode time val ue.

pascal Handl er Error TCFrameNunber ToTi mneCode (Medi aHandl er
mh, |ong franmeNunber,
Ti meCodeDef *tcdef,
Ti meCodeRecord *tcrec);

mh Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

f rameNunber Specifies the frame number that is to be converted.

t cdef Contains a pointer to the timecode definition
structure to use for the conversion.

tcrec Contains a pointer to the timecode record structure
that isto receive the time value.

ERROR CODES
par aner r —50 Invalid parameter specified

TCTimeCodeT oString

The TCTi meCodeTosSt ri ng function converts atime value into atext string
(HH:MM:SS.FF). If the timecode uses the dropframe technique, the
separators are semi-colons (;) rather than colons (:).

December 21, 1994 Page 29

pascal

t cdef

tcrec

tcStr

ERROR CODES

par ankrr

T CSetSour ceRef

QuickTime 2.0 SDK: Toolbox Changes

Handl er Error TCTi meCodeToSt ri ng(Medi aHandl er mnh,

Ti nreCodeDef *tcdef,
Ti nreCodeRecord *tcrec,
StringPtr tcStr);

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

Contains a pointer to the timecode definition
structure to use for the conversion.

Contains a pointer to the timecode record structure
to use for the conversion.

A pointer to atext string that isto receive the
converted time value.

—50 Invalid parameter specified

The TCSet Sour ceRef function allows you to change the source
information in the timecode media sampl e reference.

pascal

t cdH

srefH

ERROR CODES

par ankrr

Handl er Error TCSet Sour ceRef (Medi aHandl er mh,

Ti meCodeDescri pti onHandl e
tcdH, UserData srefH);

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHandl er
function.

Specifies a handle containing the timecode media
sample reference that is to be updated.

Specifies a handle to the source information to be
placed in the sample reference. It isyour
application’ s responsibility to dispose of this handle
when you are done with it.

-50 Invalid parameter specified

Memory Manager errors

Page 30

December 21, 1994

QuickTime 2.0

DK: Toolbox Changes

T CGetSour ceRef

ERROR CODES

The TCGet Sour ceRef function allows you to retrieve the source
information from the timecode media sample reference.

pascal Handl er Error TCCGet Sour ceRef (Medi aHandl er nh,
Ti meCodeDescri pti onHandl e
tcdH, UserData *srefH);

mh Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

t cdH Specifies a handle containing the timecode media

sample reference for this operation.

srefH Specifies a pointer to a handle that will receive the
source information. It isyour application’s
responsibility to dispose of this handle when you
are done with it.

par aner r —50 Invalid parameter specified
Memory Manager errors

TCSetTimeCodeFlags

The TCSet Ti neCodeFl ags function allows you to change the flags that
affect how the Movie Toolbox handles the timecode information.

pascal Handl er Error TCSet Ti neCodeFl ags (Medi aHandl er nh,
long flags, |ong flagsMask);

nh Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHandl er
function.

flags Specifies the new flag values. The following flags
are defined:

t cdf ShowTi meCode Controlsthe display of timecode
information. Set thisflag to 1 to
cause timecode information to be
displayed when the movie plays. Set
thisflag to O to turn off the display.

December 21, 1994 Page 31

fl agsMask

TCGetTimeCodeFlags

QuickTime 2.0 SDK: Toolbox Changes

Note that the timecode track must be
enabled in order for the timecode
information to be displayed.

Specifies which of the flag values are to change.
The media handler modifies only those flag values
that correspond to bitsthat are set to 1 in this
parameter. Use the flag values from the f | ags
parameter. For example, in order to turn off
timecode display, you would set the

t cdf ShowTi meCode flagto 1 inthef| agsMask
parameter, and to O inthe f | ags parameter.

The TCGet Ti neCodeFl ags function allows you to retrieve the timecode

control flags.

pascal Handl erError TCCGet Ti meCodeFl ags (Medi aHandl er mh,

flags

TCSetDisplayOptions

| ong *fl ags;

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

Contains a pointer to afield that isto receive the
control flags. The following flags are defined:

t cdf ShowTi meCode Controlsthe display of timecode

information. If thisflagissetto 1,
the timecode information is
displayed when the movieis played.

Note that the timecode track must be
enabled in order for the timecode
information to be displayed.

The TCSet Di spl ayOpt i ons function alows you to set the text
characteristics that apply to timecode information that is displayed in a

movie.

pascal Handl erError TCSet Di spl ayOpti ons (Medi aHandl er mh,

Page 32

TCText Opti onsPtr textOptions);

Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand! er
function.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

t ext Qpti ons Contains a pointer to atext options structure. This
structure contains font and style information.

DESCRIPTION

Y ou provide the text style information in atext options structure. This
structure is defined as follows (for more information about working with
text characteristics, see Inside Macintosh: Text):

typedef struct TCText Options {

short t xFont ; [* font */

short t xFace; /* font style */

short t xSi ze; /[* font size */

RGBCol or f oreCol or; /* foreground color */
RGBCol or backCol or; /* background col or */

} TCText Options, *TCTextOptionsPtr;

t xFont Specifies the number of the font.

t xFace Specifiesthe font’s style (bold, italic, and so on).
t xSi ze Specifiesthe font’s size.

f or eCol or Specifies the foreground color.

backCol or Specifies the background color.

TCGetDisplayOptions

The TCGet Di spl ayOpt i ons function allows you to retrieve the text
characteristics that apply to timecode information that is displayed in a
movie.

pascal Handl er Error TCGet Di spl ayOQpti ons (Medi aHandl er mh,
TCText Opti onsPtr textOptions);

nh Specifies the timecode media handler. Y ou obtain
thisidentifier by calling the Get Medi aHand| er
function.
t ext Opti ons Contains a pointer to atext options structure. This
structure will receive font and style information.
ERROR CODES
par aner r -50 Invalid parameter specified

December 21, 1994 Page 33

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 2 IMAGE COMPRESSION MANAGER

This chapter discusses new features in the Image Compression Manager.

QuickTime 2.0 introduces the concept of scheduled asynchronous decompression
operations. Decompressor components can now allow applications to queue
decompression operations and specify when those operations should take place. See the
chapter “Image Compressor Components’ for more information.

The Image Compression Manager provides a new function,
Deconpr essSequenceFr ameWen, that allows your application to schedule an
asynchronous decompression operation. This function is described later in this chapter.

Asdiscussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0 also
introduces timecode tracks to QuickTime movies. Both the Image Compression Manager
and compressor components have been enhanced to support timecode information. The
Image Compression Manager now provides the Set DSequenceTi neCode function, which
allows you to set the timecode value for aframethat is to be decompressed. For more
information about timecodes and the timecode media handler, see the “Movie Toolbox”
chapter earlier in this document.

IMAGE COMPRESSION MANAGER REFERENCE

Image Compression Manager Routines

Working With Sequences

Decompr essSequenceFrameW hen

The Deconpr essSequenceFr ameWen function allows you to queue a
frame for decompression and specify the time at which the Image
Compression Manager is to perform the decompression.

pascal OSErr DeconpressSequenceFranmeWen (| mgeSequence
seql D, Ptr data,
| ong dat aSi ze,
CodecFl ags i nFl ags,
CodecFl ags *out Fl ags,
| CMConpl eti onProcRecordPtr
asyncConpl eti onProc, const
| CVFrameTi mePtr franmeTine);

December 21, 1994 Page 35

QuickTime 2.0 SDK: Toolbox Changes

seql D Contains the unique sequence identifier that was
returned by the Deconpr essSequenceBegi n
function.

dat a Points to the compressed image data. This pointer

must contain a 32-bit clean address. If you use a
dereferenced, locked handle, you must call the
Memory Manager’s St ri pAddr ess function before
you use that pointer with this parameter.

i nFl ags Contains flags providing further control
information. See Inside Macintosh: QuickTime for
information about CodecFl ags fields. The
following flags are valid for this function:

codecFl agNoScr eenUpdat e
Controls whether the decompressor
updates the screen image. If you set
thisflag to 1, the decompressor does
not write the current frame to the
screen, but does write the frameto its
offscreen image buffer (if one was
allocated). If you set thisflag to 0,
the decompressor writes the frame to
the screen.

codecFl agDont O f scr een
Controls whether the decompressor
uses the offscreen buffer during
sequence decompression. Thisflagis
only used with sequences that have
been temporally compressed. If this
flag is set to 1, the decompressor
does not use the offscreen buffer
during decompression. Instead, the
decompressor returns an error. This
allows your application to refill the
offscreen buffer. If thisflag is set to
0, the decompressor uses the
offscreen buffer if appropriate.

Page 36 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

codecFl agOnl yScr eenUpdat e
Controls whether the decompressor
decompresses the current frame. If
you set thisflag to 1, the
decompressor writes the contents of
its offscreen image buffer to the
screen, but does decompress the
current frame. If you set thisflag to
0, the decompressor decompresses
the current frame and writes it to the
screen. You can set thisflagto 1
only if you have allocated an
offscreen image buffer for use by the
decompressor.

out Fl ags Contains status flags. The decompressor updates
these flags at the end of the decompression
operation. See Inside Macintosh: QuickTime for
information about CodecFl ags constants. The
following flags may be set by this function:

codecFl agUsedNewl mageBuf f er
Indicates to your application that the
decompressor used the offscreen
image buffer for the first time when
it processed this frame. If thisflagis
set to 1, the decompressor used the
image buffer for this frame and this
isthe first time the decompressor
used the image buffer in this
sequence.

codecFl agUsedl mageBuf f er
Indicates whether the decompressor
used the offscreen image buffer. If
the decompressor used the image
buffer during the decompress
operation, it setsthisflag to 1.
Otherwise, it setsthisflag to 0.

codecFl agDont UseNewl nageBuf f er
Forces an error to be returned when a
new image buffer would have to be
allocated instead of allocating the
new buffer.

codecFl agl nter| aceUpdat e
Updates the screen interlacing even
and odd scan lines to reduce tearing
artifacts (if the decompressor
supports this mode).

December 21, 1994 Page 37

DESCRIPTION

QuickTime 2.0 SDK: Toolbox Changes

asyncConpl eti onProc

Points to a completion function structure. The
compressor calls your completion function when an
asynchronous decompression operation is complete.
Y ou can cause the decompression to be performed

asynchronously by specifying a completion
function. See Inside Macintosh: QuickTime for
more information about completion functions.

If you specify asynchronous operation, you must
not read the decompressed image until the
decompressor indicates that the operation is
complete by calling your completion function. Set
asyncConpl et i onProc toni | to specify
synchronous decompression. If you set
asyncConpl et i onProc to—1, the operation is
performed asynchronously but the decompressor
does not call your completion function.

franmeTi me Points to a structure that contains the frame’ stime
information, including the time at which the frame
should be displayed, its duration, and the movie's
playback rate.

This function accepts the same parameters as the

Deconpr essSequenceFr ame function, with the addition of thef r ameTi ne
parameter. This parameter pointsto an | CVFr aneTi ne structure, which
contains the frame’ s time information. This structure is discussed in
“Image Compressor Components,” later in this document.

SPECIAL CONSIDERATIONS

ERROR CODES

Page 38

If the current decompressor component does not support this function, the
Image Compression Manager returns an error code of codecCant WienErr .
If the decompressor cannot service your request at a particular time (say,
it's queueisfull), the Image Compression Manager returns an error code
of codecCant QueueEr r . The best way to determine whether a
decompressor component supports this function isto go ahead and call the
function—a component’ s ability to honor the request may change based
on screen depth, clipping settings, and so on.

noErr 0
par aner r 50
menful | Err -108

noCodecErr -8961

codecSpool Err —8966

codecCant WhenEr r
-8974

codecCant QueueErr
—-8975

No error

Invalid parameter specified

Not enough memory available

Could not find the specified decompressor
Error loading or unloading data

Decompressor can’t honor this request

Decompressor can’'t queue this frame

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

SetDSequenceTimeCode

DESCRIPTION

The Set DSequenceTi neCode function allows you to set the timecode
value for the frame that is about to be decompressed.

pascal OSErr Set DSequenceTi meCode (| nageSequence seql D,
const Ti neCodeDef *ti nmeCodeFor mat,
const Ti meCodeTi me *ti neCodeTi ne);

seql D Contains the unique sequence identifier that was
returned by the Deconpr essSequenceBegi n
function.

t i meCodeFor mat Contains a pointer to atimecode definition

structure. Y ou provide the appropriate timecode
definition information for the next frame to be
decompressed.

ti meCodeTi me Contains a pointer to atimecode record structure.
Y ou provide the appropriate time value for the next
frame in the current sequence.

QuickTime' s video media handler uses this function to set the timecode
information for amovie. When amovie that contains timecode
information starts playing, the media handler calls this function as it
processes the movie' sfirst frame.

Note that the Image Compression Manager passes the timecode
information straight through to the image decompressor component. That
is, the Image Compression Manager does not make a copy of any of this
timecode information. As aresult, you must make sure that the data
referred to by thet i meCodeFor mat and t i neCodeTi me parametersisvalid
until the next decompression operation compl etes.

ERROR CODES

noErr 0 No error

par aner r -50 Invalid parameter specified

menful | Err -108 Not enough memory available
noCodecErr —8961 Could not find the specified decompressor

December 21, 1994 Page 39

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 3 IMAGE COMPRESSOR COMPONENTS

In QuickTime 2.0 the Image Compression Manager has been enhanced to support
scheduled asynchronous decompression operations. By calling the new

Deconpr essSequenceFr ameWen Image Compression Manager function, applications
can schedule decompression requests in advance. This allows decompressor components
that also support this functionality to provide reliable playback performance under a
wider range of conditions.

Apple has modified its Cinepak, Video, Animation, Component Video, and Graphics
decompressors to support scheduled asynchronous decompression to 8-, 16-, and 32-bit
destinations (the Cinepak decompressor also supports 4-bit grayscale destinations).

If you want to support this functionality, you must modify your decompressor component
in the following ways:

- Report your component’s new capabilities in its compressor capability structure
(there are two new flags)

- Modify your component’s CDBandDeconpr ess function to accept scheduled
asynchronous decompression requests and process them correctly

- Implement the new CDCodecFI ush function; this function allows the Image
Compression Manager to instruct you to empty your input queue

- Optionally, implement logic to manage the cursor during decompression operations
All of these changes are discussed in detail in the reference section that follows.

Asdiscussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0 also
introduces timecode tracks to QuickTime movies. Both the Image Compression Manager
and compressor components have been enhanced to support timecode information. Image
COMpressor components may now support the CbCodec Set Ti meCode function, which
allows the Image Compression Manager to set the timecode value for aframe that isto be
decompressed. For more information about timecodes and the timecode media handler,
see the “Movie Toolbox” chapter earlier in this document.

December 21, 1994 Page 41

QuickTime 2.0 SDK: Toolbox Changes

IMAGE COMPRESSOR COMPONENTS REFERENCE

Data Types

The Compressor Capability Structure

There are two new decompressor capability flags (your component sets
theseflagsinthef | ags field of the compressor capability structure
[CodecCapabi | i ti es]):

codecCanAsyncWien Indicates whether your decompressor component
supports scheduled asynchronous decompression.
Set thisflag to 1 if your component can support the
scheduled variant of the CDBandDeconpr ess
function. Note that you must also set the
codecCanAsync flagto 1.

codecCansShi el dCur sor
Indicates whether your decompressor component
can shield the cursor during decompression. If your
component can manage the cursor’s display, set this
flag to 1. Y our component can use the Image
Compression Manager’s
| C\VBhi el dSequenceCur sor function to manage the
cursor. Thisfunction is described later in this
chapter in “Image Compression Manager Utility
Functions.”

Otherwise, set this flag to 0—the Image
Compression Manager then manages the cursor for
youl.

The Decompression Parameters Structure

Apple has modified the definition of the decompression parameters structure. The
franeTi ne field has been added. Thisfield contains a pointer to an | CVFr aneTi ne
structure. This structure contains aframe’s time information for scheduled asynchronous
decompression operations.

The decompression parameters structure is now defined as follows (the f r aneTi ne field
is near the bottom):

typedef struct {
| mageSequence sequencel D, /* uni que sequence |ID
(predeconpress,
banddeconpress) */
| mageDescri pti onHandl e i mageDescription; /* handle to inmage
description
structure
(predeconpress,

Page 42 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Ptr
| ong
| ong
| ong
*/
| ong
| ong
CodecFl ags
CodecCapabi litiesPtr

Pr ogr essProcRecord

Conpl eti onProcRecord

Dat aPr ocRecord

CG af Ptr

Pi xMap

Bi t MapPt r
Pi xMapPt r
Rect

Mat ri xRecor dPt r

CodecQ

short

| CMFr aneTi mePt r

*/
| ong

} CodecDeconpressPar ans;

December 21, 1994

dat a;
bufferSi ze;
f ranmeNunber ;
start Li ne;

st opLi ne;
condi ti onFl ags;
cal | er Fl ags;
*capabilities;

/*
/*
/*
/*

/*
/*
/*
/*

pr ogr essProcRecord;

conpl eti onProcRecord;

dat aPr ocRecor d;

port;

dst Pi xMap;

maskBits;
mat t ePi xMap;
srcRect ;

*matri x;

accuracy,

t ransf er Mode;

frameTi ne

reserved[1];

/*

/*

/*

/*

/*

/*
/*
/*

/*

/*

/*

/*

/*

banddeconpress) */
conpressed i nage data */
size of data buffer */
frame identifier */
starting line for band

ending line for band */
condition flags */
control flags */

poi nter to conpressor
capability structure
(predeconpress,
banddeconpress) */

progress function
structure */

conpl etion function
structure */

dat a- | oadi ng function
structure */
pointer to color
graphi cs port for
(predeconpress,
banddeconpress) */
destination pixel nmap
(predeconpress,
banddeconpress) */
update mask */

bl end matte pi xel
source rectangl e
(predeconpress,
banddeconpress) */
pointer to matrix }
structure
(predeconpress,
banddeconpress) */
desired accuracy
(predeconpress,
banddeconpress */
transfer node
(predeconpress,
banddeconpress) */
tinme information
(schedul ed deconpress)

i mage

map */

reserved */

Page 43

QuickTime 2.0 SDK: Toolbox Changes

The new field is used as follows:

franmeTi ne Contains a pointer to an | CVFr aneTi ne structure.
This structure contains time information relating to
scheduled asynchronous decompression operations.

The | CVFr aneTi e structure is defined as follows:

struct | CVFrameTi neRecord {

I nt 64Bi t val ue; /[* time to display frame */

| ong scal e; /* tinme scale */

voi d *base; /* reference to time base
*/

| ong dur ati on; /* display duration */

Fi xed rate; /* novie's playback rate */

The structure’ sfields are defined as follows;

val ue Specifies the time at which the frame isto be
displayed. The scal e field specifies the units for
this value; the base field refers to the time base.

scal e Indicates the units for the frame's display time.

base Refers to the time base.

duration Specifies the duration for which the frameisto be
displayed.

rate Indicates the time base effective rate.

Functions

Indirect Functions

CDPreDecompr ess

If your decompressor component supports scheduled asynchronous
decompression operations, be sure to set the codecCanAsyncWien flagto 1
inthef1 ags field of your component’s compressor capabilities structure.

Page 44 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CDBandDecompr ess

For scheduled asynchronous decompression operations, the Image
Compression Manager supplies areference to an | CVFr ameTi e structure
in this function’ s decompression parameters structure parameter. The

| CMFr ameTi me structure contains time information governing the
scheduled decompression operation, including the time at which the frame
must be displayed. See “ The Decompression Parameters Structure,” earlier
in this chapter, for a compl ete description of this structure.

When your component has finished the decompression operation, it must
call the application’s completion function. In the past, your component
called that function directly. For scheduled asynchronous decompression
operations, your component should call the Image Compression
Manager’s| Cvbeconpr essConpl et e function, which is described later in
this chapter.

If your component does not support scheduled asynchronous
decompression, return an error code of codecCant WhenEr r . If your
component’s queue is full, return an error code of codecCant QueueErr .

For other asynchronous decompression operations, the Image
Compression Manager setsthe f r aneTi ne field in the decompression
parameters structuretoni | .

CDCodecFlush

DESCRIPTION

Y our component receives the ChCodecFl ush function whenever the Image
Compression Manager needs to empty your component’ s input queue.

pascal Component Result CDCodecFl ush;

Y our component should empty its queue of scheduled asynchronous
decompression requests. For each request, your component must call the

| CMDeconpr essConpl et e function. Be sure to set the err parameter to —1,
indicating that the request was canceled. Also, you must set both the
codecConpl et i onSour ce and codecConpl et i onDest flagsto 1.

SPECIAL CONSIDERATIONS

Y our component’s CDCodecFl ush function may be called at interrupt
time.

December 21, 1994 Page 45

QuickTime 2.0 SDK: Toolbox Changes

CDCodecSetTimeCode

Y our component receives CDCodec Set Ti neCode function whenever an
application calls the Image Compression Manager’'s

Set DSequenceTi meCode function. That function allows an application to
set the timecode for a frame that is to be decompressed.

pascal OSErr CDCodecSet Ti meCode (I nmageSequence seql D,
const Ti neCodeDef *ti nmeCodeFor mat,
const Ti meCodeTi me *ti neCodeTi ne);

seql D Contains the unique sequence identifier that was
returned by the Deconpr essSequenceBegi n
function.

t i meCodeFor mat Contains a pointer to atimecode definition

structure. This structure contains the timecode
definition information for the next frame to be
decompressed.

ti meCodeTi me Contains a pointer to atimecode record structure.
This structure contains the time value for the next
frame in the current sequence.
DESCRIPTION

The timecode information you receive applies to the next frame to be
decompressed.

Image Compression Manager Utility Functions

| CM DecompressComplete

Y our component must call the | CMDeconpr essConpl et e function
whenever it finishes a scheduled asynchronous decompression operation.

pascal void | CVMDeconpressConpl ete (I nageSequence seql D,
OSErr err, short flag,
| CMConpl eti onProcRecordPtr
conpl etionRtn);

seql D | dentifies the frame' s sequence.

Page 46 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

err Indicates whether the operation succeeded or failed.
Set this parameter to O for successful operations.
For failed operations, set a reasonable result code.
For canceled operations (for example, when the
Image Compression Manager calls your
component’s CDCodecFl ush function), set this
parameter to —1.

flag Indicates which part of the operation is compl ete.
The following flags are defined:

codecConpl eti onSour ce
Y our component is done with the
source buffer. Set thisflag to 1 when
you are done with the processing
associated with the source buffer.

codecConpl et i onDest
Y our component is done with the
destination buffer. Set thisflagto 1
when you are done with the
processing associated with the
destination buffer.

Note that you may set more than one
of these flagsto 1.

conpl eti onRtn Contains a pointer to a completion function
structure. That structure identifies the application’s
completion function, and contains a reference
constant associated with the frame.

Y our component obtains the completion function
structure as part of the decompression parameters
structure provided by the Image Compression
Manager at the start of the decompression
operation.

DESCRIPTION
Y our component must call this function at the end of scheduled
asynchronous decompression operations. For other types of

decompression operations, you may still call the application’s completion
function directly.

December 21, 1994 Page 47

QuickTime 2.0 SDK: Toolbox Changes

| CM ShieldSequenceCur sor

DESCRIPTION

Y our component may call the | cvshi el dSequenceCur sor function to
manage the display of the cursor during decompression operations.

pascal OSErr | CMVshi el dSequenceCursor (I mageSequence seql D);

seql D | dentifies the current sequence.

For correct image display behavior, the cursor must be shielded (hidden)
during decompression. By default, the Image Compression Manager
handles the cursor for you, hiding it at the beginning of a decompression
operation and revealing it at the end.

With the advent of scheduled asynchronous decompression, however, the
Image Compression Manager cannot do as precise ajob of managing the
cursor, because it does not when scheduled operations actually begin and
end. While the Image Compression Manager can still manage the cursor, it
must hide the cursor when each request is queued, rather than when the
request is serviced. This may result in the cursor remaining hidden for
long periods of time.

In order to achieve better cursor behavior, you can choose to manage the
cursor in your decompressor component. If you so choose, you can use the
| C\VBhi el dSequenceCur sor function to hide the cursor—the Image
Compression Manager displays the cursor when you call the

| CMDeconpr essConpl et e function. In this manner, the cursor is hidden
only when your component is decompressing and displaying the frame.

SPECIAL CONSIDERATIONS

Page 48

Thisfunction isinterrupt-safe.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 4 SEQUENCE GRABBER COMPONENTS

This chapter discusses new features of sequence grabber components.

The sequence grabber now allows you to assign a specific file to each channel. This
allows you to collect datainto more than onefile at atime. This can result in improved
performance by defining the files for different channels on different devices. These
destination containers are referred to as sequence grabber outputs. See “Working with
Sequence Grabber Outputs,” later in this chapter, for a complete discussion.

The sequence grabber now uses data handler components when writing movie data. This
provides greater flexibility, especially when working with special storage devices (such
as networks).

Asdiscussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0
introduces timecode tracks to QuickTime movies. The sequence grabber automatically
creates timecode tracks if the source video data contains timecode information. In order
to support timecode tracks, the sequence grabber also provides two functions that let you
identify the source information associated with video data that contains timecode
information. For more information about timecodes and the timecode media handler, see
the “Movie Toolbox” chapter earlier in this document.

SEQUENCE GRABBER COMPONENTS REFERENCE

Sequence Grabber Component Functions

Configuring Sequence Grabber Components

SGSetDataRef

The SGSet Dat aRef function allows you to specify the destination for a
record operation using a data reference, and to specify other options that
govern the operation. This function is similar to the SGSet Dat aCut put
function, and provides you an alternative way to specify the destination.

pascal Component Result SGSet Dat aRef (SeqG abConponent s,
Handl e dat aRef,
OSType dat aRef Type,
| ong wher eFl ags) ;

December 21, 1994 Page 49

QuickTime 2.0 SDK: Toolbox Changes

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’s OpenDef aul t Conponent Of
OpenConponent function.

dat aRef Contains a handle to the information that identifies
the destination container.

dat aRef Type Specifies the type of datareference. If the data
referenceis an alias, you must set the parameter to
rAliasType (" alis'),indicating that the reference
isandias.

wher eFl ags Contains flags that control the record operation.
Y ou must set either the seqG abToDi sk flag or the
seqG abToMenory flag to 1 (set unused flagsto 0):

seqG abToDi sk Instructs the sequence grabber
component to write the recorded data
to aQuickTime moviein the
container specified by the dat aRef
parameter. If you set thisflag to 1,
the sequence grabber writes the data
to the container asthe datais
recorded. Set thisflag to O if you set
the seqG abToMenory flag to 1 (only
one of these two flags may be set to
1).

seqG abToMenory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dat aRef parameter. Thistechnique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set thisflag to 1 to record to
memory. Set thisflag to O if you set
the seqGr abToDi sk flagto 1 (only
one of these two flags may be set
to 1).

Page 50 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

seqG abDont UseTenpMenory

seqG abAppendToFi |

seqG abDont AddMovi

Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set thisflag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

e

Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dat aRef parameter.
By default, the sequence grabber
component del etes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set thisflag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resourcein that file.

eResource

Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dat aRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set thisflagto 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to afile, if you so desire.

seqG abDont MakeMovi e

December 21, 1994

Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set thisflag to

1, the sequence grabber still calls
your data function, but does not write
any datato the moviefile.

Page 51

DESCRIPTION

ERROR CODES

QuickTime 2.0 SDK: Toolbox Changes

seqG abDat aPr ocl sl nt err upt Saf e
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

If you are performing a preview operation, you do not need to use the
SGSet Dat aRef function.

not EnoughMenoryToGrab ~ —9403 Insufficient memory for operation
not EnoughDi skSpaceToG ab 9404 Insufficient disk space for
operation

File Manager errors

Memory Manager errors

SGGetDataRef

Page 52

The SGGet Dat aRef function alows you to determine the data reference
that is currently assigned to a sequence grabber component and the control
flags that would govern arecord operation.

pascal Component Result SGGet Dat aRef (SeqG abConponent s,
Handl e *dat aRef,
CSType *dat aRef Type,
| ong *wher eFl ags) ;

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’ s OpenDef aul t Conponent Or
OpenConponent function.

dat aRef Contains a pointer to a handle that is to receive the
information that identifies the destination container.

dat aRef Type Specifies apointer to afield that isto receive the
type of datareference.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

wher eFl ags Contains a pointer to along integer that isto receive
flags that control the record operation. The
following flags are defined (unused flags are set to
0):

seqG abToDi sk

seqG abToMenory

Instructs the sequence grabber
component to write the recorded data
to aQuickTime moviein the
container specified by the dat aRef
parameter. If thisflag isset to 1, the
sequence grabber writes the data to
the container as the data is recorded.

Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the

dat aRef parameter. Thistechnique
provides better performance than
recording directly to the moviefile,
but limits the amount of data you can
record. If thisflagisset to 1, the
sequence grabber component is
recording to memory.

seqG abDont UseTenpMenory

December 21, 1994

Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. If thisflag is set to
1, the sequence grabber component
and its channel components do not
use temporary memory.

Page 53

QuickTime 2.0 SDK: Toolbox Changes

seqG abAppendToFi | e
Directs the sequence grabber
component to add the recorded data
to the datafork of the container
specified by the dat aRef parameter.
By default, the sequence grabber
component del etes the container and
creates a new file containing one
movie and its movie resource. If this
flag is set to 1, the sequence grabber
component appends the recorded
datato the data fork of the container
and creates anew movie resourcein
that file.

seqG abDont AddMovi eResour ce
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dat aRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. If thisflagissetto 1,
the sequence grabber component
does not add the movie resource to
the container. Y ou are then
responsible for adding the resource
to afile, if you so desire.

seqG abDont MakeMovi e
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If thisflagisset to 1,
the sequence grabber still calls your
data function, but does not write any
data to the container.

seqG abDat aPr ocl sl nt err upt Saf e
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

Page 54 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION
Y ou set these characteristics by calling the SGSet Dat aRef function, which
is described in the previous section. If you have not set these
characteristics before calling the SGGet Dat aRef function, the returned data
is meaningless.

ERROR CODES

Memory Manager errors

Controlling Sequence Grabber Components

SGGetMode

The SGGet Mbde function provides a convenient mechanism for
determining whether a sequence grabber component isin preview mode or
record mode.

pascal Component Result SGCGet Mbde (SeqG abComponent s,
Bool ean *previ ewibde,
Bool ean *recor divbde) ;

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’s OpenDef aul t Conponent Of
OpenConponent function.

previ ewlbde Contains a pointer to a Boolean. The sequence
grabber component setsthisfieldtot r ue if the
component isin preview mode.

recor dMbde Contains a pointer to a Boolean. The sequence
grabber component setsthisfieldtot r ue if the
component is in record mode.

Working With Channel Characteristics

The sequence grabber now supports two new functions, SGChannel Set Dat aSour ceName
and SGChannel Get Dat aSour ceNane, that allow you to work with the source
identification information associated with a timecode media. For more information about
timecodes and the timecode media handler, see the “Movie Toolbox” chapter earlier in
this document.

December 21, 1994 Page 55

QuickTime 2.0 SDK: Toolbox Changes

SGChannelSetDataSour ceName

The SGChannel Set Dat aSour ceName function allows you to set the source
information relating to the timecode data created for atrack. Y ou must set
thisinformation before you start digitizing.

pascal Conponent Result SGChannel Set Dat aSour ceNane
(SGChannel c,
const Str255 nane,
Scri pt Code scri pt Tag);

c Specifies the reference that identifies the channel
for this operation. This must be a video channel.

name |dentifies a string that contains the source
identification information.

scri pt Tag Specifies the language of the source identification
information.

DESCRIPTION

This source information identifies the source of the video data (say, a
videotape name). The sequence grabber stores this information with the
track’ s timecode information. If the source does not contain timecode
information, or the digitizer does not provide the information, the
sequence grabber does not save this information.

Thisfunction is supported only by video channels.

SGChannelGetDataSour ceName

The SGChannel Get Dat aSour ceName function allows you to get the source
information relating to the timecode data created for atrack.

pascal Component Result SGChannel Get Dat aSour ceNane
(SGChannel ¢, Str255 nane,
Scri pt Code *scri ptTag);

c Specifies the reference that identifies the channel
for this operation. This must be a video channel.

name Identifies a string that is to receive the source
identification information. Set this parameter to ni |
if you do not want to retrieve the name

scri pt Tag Specifiesafield that is to receive the source

information’ s language code. Set this parameter to
ni | if you do not want this information.

Page 56 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Working with Sequence Grabber Outputs

In order to allow sequence grabber components to capture to more than one data
reference at atime, QuickTime 2.0 introduces the concept of a sequence grabber output.
A sequence grabber output ties a sequence grabber channel to a specified data reference.

If you are capturing to asingle movie file, you can continue to use the SGSet Dat aCut put
function (or the new SGSet Dat aRef function) to specify the sequence grabber’s
destination. However, if you want to capture movie data into several different files or data
references, you must use sequence grabber outputs to do so. Even if you are using
outputs, you must still use the SGSet Dat aCut put function or the SGSet Dat aRef function
to identify where the sequence grabber should create the movie resource.

Y ou are responsible for creating outputs, assigning them to sequence grabber channels,
and disposing of them when you are done. Sequence grabber components provide a
number of functions for managing outputs. the SGNewQut put function creates a new
output; the SGDi sposeQut put function disposes of an output; the SGSet Qut put Fl ags
function configures the output; the SGSet Channel Cut put function assigns an output to a
channel; and the SGGet Dat aCut put St or ageSpaceRenai ni ng function determines how
much space is | eft in the output.

SGNewOutput

The sGNewcut put function creates a new sequence grabber output. You
specify the output’ s destination container using a data reference.

pascal Component Result SGNewQut put (SeqG abConponent s,
Handl e dat aRef,
OSType dat aRef Type,
| ong wher eFl ags,
SGQut put *out put);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’'s OpenDef aul t Conponent Of
OpenConponent function.

dat aRef Contains a handle to the information that identifies
the destination container.

dat aRef Type Specifies the type of datareference. If the data
reference is an alias, you must set the parameter to
rAliasType (" alis'),indicating that the reference
isandias.

wher eFl ags Contains flags that control the record operation.

Y ou must set either the seqG abToDi sk flag or the
seqG abToMenory flag to 1 (set unused flagsto 0):

December 21, 1994 Page 57

QuickTime 2.0 SDK: Toolbox Changes

seqG abToDi sk Instructs the sequence grabber
component to write the recorded data
to aQuickTime moviein the
container specified by the dat aRef
parameter. If you set thisflag to 1,
the sequence grabber writes the data
to the container asthe datais
recorded. Set thisflag to O if you set
the seqG abToMenory flag to 1 (only
one of these two flags may be set to
1).

seqG abToMenory Instructs the sequence grabber
component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the
dat aRef parameter. Thistechnique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set thisflag to 1 to record to
memory. Set thisflagto O if you set
the seqGr abToDi sk flagto 1 (only
one of these two flags may be set
to 1).

seqG abDont UseTenpMenory
Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set thisflag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

Page 58 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

seqG abAppendToFi | e
Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dat aRef parameter.
By default, the sequence grabber
component del etes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set thisflag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resourcein that file.

seqG abDont AddMovi eResour ce
Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dat aRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set thisflagto 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to afile, if you so desire.

seqG abDont MakeMovi e
Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set thisflag to
1, the sequence grabber still calls
your data function, but does not write
any datato the moviefile.

seqG abDat aPr ocl sl nt err upt Saf e
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

December 21, 1994 Page 59

QuickTime 2.0 SDK: Toolbox Changes

out put Contains a pointer to a sequence grabber output.
The sequence grabber component returns an output
identifier. Y ou can then use this identifier with other
sequence grabber component functions.

DESCRIPTION
Once you have created the sequence grabber output, you can use the
SGSet Channel Qut put function to assign the output to a sequence grabber
channdl.

ERROR CODES
par ankr r -50 Invalid parameter specified

File Manager errors
Memory Manager errors

SGDisposeOutput

The SGDi sposeut put function disposes of an existing output.

pascal Conponent Result SGDi sposeCut put (SeqG abConponent s,
SGQut put out put) ;

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’ s OpenDef aul t Conponent Or
OpenConponent function.

out put | dentifies the sequence grabber output for this
operation. Y ou obtain thisidentifier by calling the
SGNewCut put function.
DESCRIPTION
If any sequence grabber channels are using this output, the sequence
grabber component assigns them to an undefined output (and any data
captured subsequently islost until you assign a new output to the channel).

Note that you cannot dispose of an output when the sequence grabber
component is in record mode.

ERROR CODES

cant DoThat | nCurrent Mode —9402 Request invalid in current mode

Page 60 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

SGSetChannelOutput

DESCRIPTION

ERROR CODES

The SGSet Channel Qut put function allows you to assign an output to a
channdl.

pascal Conponent Result SGSet Channel CQut put (SegqG abConponent
s, SCChannel c,
SGQut put out put);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’ s OpenDef aul t Conponent Or
OpenConponent function.

c | dentifies the channel for this operation. Provide
your connection identifier. Y ou connect to a
channel component by calling the SGNewChannel or
SGNewChannel Fr omConponent functions.

out put | dentifies the sequence grabber output for this
operation. Y ou obtain thisidentifier by calling the
SGNewQut put function.

Note that when you call the SGSet Dat aRef 0Or SGSet Dat aCut put
functions the sequence grabber component sets every channel to the
specified file or container. If you want to use different outputs, you must
use this function to assign the channels appropriately.

One output may be assigned to one or more channels.

badSGChannel —9406 Invalid channel specified

December 21, 1994 Page 61

SGSetOutputFlags

QuickTime 2.0 SDK: Toolbox Changes

Page 62

The SGSet Qut put Fl ags function allows you to configure an existing
sequence grabber output.

pascal Conponent Result SGSet Qut put Fl ags (SeqG abComponent s,

out put

wher eFl ags

SGCQut put out put,
| ong wher eFl ags) ;

Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’ s OpenDef aul t Conponent Or
OpenConponent function.

| dentifies the sequence grabber output for this
operation. You obtain thisidentifier by calling the
SGNewQut put function.

Contains flags that control the record operation.
Y ou must set either the seqG abToDi sk flag or the
seqG abToMenory flag to 1 (set unused flags to 0):

seqG abToDi sk Instructs the sequence grabber

component to write the recorded data
to aQuickTime moviein the
container specified by the dat aRef
parameter. If you set thisflag to 1,
the sequence grabber writes the data
to the container asthe datais
recorded. Set thisflag to O if you set
the seqG abToMenory flag to 1 (only
one of these two flags may be set to
1).

seqG abToMenory Instructs the sequence grabber

component to store the recorded data
in memory until the recording
process is complete. The sequence
grabber then writes the recorded data
to the container specified by the

dat aRef parameter. Thistechnique
provides better performance than
recording directly to the container,
but limits the amount of data you can
record. Set thisflag to 1 to record to
memory. Set thisflag to O if you set
the seqG abToDi sk flagto 1 (only
one of these two flags may be set

to 1).

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

seqG abDont UseTenpMenory

seqG abAppendToFi |

seqG abDont AddMovi

Prevents the sequence grabber
component from using temporary
memory during the record operation.
By default, the sequence grabber
component and its channel
components use as much temporary
memory as necessary to perform the
record operation. Set thisflag to 1 to
prevent the sequence grabber
component and its channel
components from using temporary
memory.

e

Directs the sequence grabber
component to add the recorded data
to the data fork of the container
specified by the dat aRef parameter.
By default, the sequence grabber
component del etes the container and
creates a new file containing one
movie and the corresponding movie
resource. Set thisflag to 1 to cause
the sequence grabber component to
append the recorded data to the data
fork of the container and create a
new movie resourcein that file.

eResource

Prevents the sequence grabber
component from adding the new
movie resource to the container
specified by the dat aRef parameter.
By default, the sequence grabber
component creates a new movie
resource and adds that resource to
the container. Set thisflagto 1 to
prevent the sequence grabber
component from adding the movie
resource to the container. You are
then responsible for adding the
resource to afile, if you so desire.

seqG abDont MakeMovi e

December 21, 1994

Prevents the sequence grabber
component from creating a movie.
By default, the sequence grabber
component creates a new movie
resource and adds the captured data
to that movie. If you set thisflag to

1, the sequence grabber still calls
your data function, but does not write
any datato the moviefile.

Page 63

QuickTime 2.0 SDK: Toolbox Changes

seqG abDat aPr ocl sl nt err upt Saf e
Specifies that your data function is
interrupt-safe, and may be called at
interrupt time. This allows the
sequence grabber component to
present the captured data as soon as
possible. Note that not all sequence
grabber channel components may
use this feature.

ERROR CODES

par aner r —50 Invalid parameter specified
cant DoThat | nCurrent Mode —9402 Request invalid in current mode

Page 64 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

SGGetDataOutputStor ageSpaceRemaining

The SGGet Dat aCut put St or ageSpaceRenai ni ng function, besides having
the longest name in captivity, allows you to determine the amount of space
remaining in the file associated with an output.

pascal Component Result SGCet Dat aCut put St or ageSpaceRenmai ni ng
(SeqG abConponent s,
SGCQut put out put,
unsi gned | ong *space);

s Specifies the component instance that identifies
your connection to the sequence grabber
component. Y ou obtain this value from the
Component Manager’ s OpenDef aul t Conponent Or
OpenConponent function.

out put | dentifies the sequence grabber output for this
operation. Y ou obtain thisidentifier by calling the
SGNewQut put function.

space Contains a pointer to an unsigned long. The
sequence grabber component returns a value that
indicates the number of bytes of space remainingin
the file associated with the output.

DESCRIPTION

Use this function in place of the SGGet St or ageSpaceRemai ni ng function
in cases where you are working with more than one outpui.

ERROR CODES

par aner r —50 Invalid parameter specified

December 21, 1994 Page 65

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 5 SEQUENCE GRABBER CHANNEL
COMPONENTS

This chapter discusses the changes to sequence grabber channel components.

There are a couple of new functions that allow the sequence grabber to request that your
channel component observe a specified datarate.

SEQUENCE GRABBER COMPONENTS REFERENCE

Sequence Grabber Channel Component Functions

Configuration Functions for All Channel Components

SGChannel SetRequestedDataRate

The SGChannel Set Request edDat aRat e function allows the sequence
grabber component to specify the maximum rate at which it would like to
receive data from your channel component.

pascal Component Result SGChannel Set Request edDat aRat e
(SGChannel c,
| ong byt esPer Second) ;

c | dentifies the channel connection for this operation.

byt esPer Second Specifies the maximum data rate requested by the
sequence grabber component. The sequence grabber
component sets this parameter to O to remove any
data-rate restrictions.

DESCRIPTION
The data rate supplied by the sequence grabber component represents a
requested datarate. Y our component may not be able to observe that rate
under all conditions. The sequence grabber component can accommodate
your component occasionally exceeding this suggested rate.

ERROR CODES

badConponent Sel ect or 0x80008002 Function not
supported

December 21, 1994 Page 67

QuickTime 2.0 SDK: Toolbox Changes

SGChanne GetRequestedDataRate

The SGChannel GetRequestedDataRate function allows the sequence
grabber component to retrieve the current maximum data rate value from
your channel component.

pascal Component Result SGChannel Get Request edDat aRat e
(SGChannel c,
| ong *byt esPer Second) ;

c | dentifies the channel connection for this operation.

byt esPer Second Pointsto afield that is to receive the maximum data
rate requested by the sequence grabber component.
Set thisfield to O if the sequence grabber has not set
any restrictions.

ERROR CODES

Page 68

badConponent Sel ect or 0x80008002 Function not
supported

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 6 VIDEO DIGITIZER COMPONENTS

This chapter discusses changes to video digitizer components.

Thereis anew function, VDSet Dat aRat e, that instructs your video digitizer component to
observe a specified rate of data delivery.

Asdiscussed in the “Movie Toolbox” chapter of this document, QuickTime 2.0
introduces timecode tracks to QuickTime movies. Video digitizers may return timecode
information for an incoming video signal by responding to the new VDGet Ti meCode
function described in this chapter. For more information about timecodes and the
timecode media handler, see the “Movie Toolbox” chapter earlier in this document.

VIDEO DIGITIZER COMPONENTS REFERENCE

Video Digitizer Component Functions

Controlling Digitization

VDSetDataRate

The vDSet Dat aRat e function instructs your video digitizer component to
limit the rate at which it delivers compressed, digitized video data.

pascal Vi deoDigitizerError VDSet Dat aRate
(Vi deoDi gi ti zer Component ci ,
| ong byt esPer Second) ;

ci Specifies the video digitizer component for the
request. Applications contains this reference from
the Component Manager’s QpenConponent
function.

byt esPer Second Specifies the maximum data rate requested by the

application. Applications set this parameter to 0 to
remove any data-rate restrictions.

December 21, 1994 Page 69

DESCRIPTION

Page 70

QuickTime 2.0 SDK: Toolbox Changes

Thisfunction isvalid only for video digitizer components that can deliver
compressed video (that is, components that support the

VDConpr essOneFr aneAsync function). Components that support data-rate
limiting set the codecl nf oDoesRat eConst r ai n flag to 1 in the

conpr essFl ags field of the VDConpr essi onLi st structure returned by the
component in response to the VDGet Conpr essi onTypes function.

Y our video digitizer component should return this data-rate limit in the
byt esPer Second parameter of the existing VDGet Dat aRat e function.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Utility Functions

VDGetTimeCode

The vDGet Ti neCode function instructs your video digitizer component to
return timecode information for the incoming video signal.

pascal Vi deoDigitizerError VDGet Ti mneCode

ci

at Ti e

t i nreCodeFor nat

ti meCodeTi ne

DESCRIPTION

(Vi deoDi gi ti zer Conponent ci,
Ti meRecord *at Ti ne,

const Ti neCodeDef

*ti meCodeFor nat ,

const Ti necodeTi ne

*ti meCodeTi ne) ;

Specifies the video digitizer component for the
request. Applications contains this reference from
the Component Manager’ s QpenConponent
function.

Specifies alocation to receive the QuickTime movie
time value corresponding to the timecode
information.

Contains a pointer to atimecode definition
structure. Y our video digitizer component returns
the movie’ s timecode definition information.

Contains a pointer to atimecode record structure.

Y our video digitizer component returns the time
value corresponding to the movie time contained in
the at Ti me parameter.

Typicaly, applications call this function once, at the beginning of a

capture session.

For more information about the timecode data structures, see the “Movie
Toollbox” chapter elsewhere in this document.

December 21, 1994

Page 71

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 7 MOVIE DATA EXCHANGE COMPONENTS

This chapter discusses new features in movie data exchange components.

DIRECT IMPORTATION

Some movie data import components can create a movie from afile without having to
write to a separate disk file. Examplesinclude MPEG and AIFF import components—
datain files of these types can be played directly by the appropriate media handler
components, without any data conversion. In such cases it isinappropriate for the user to
have to specify adestination file, given that there is no need for such afile.

If you import component can operate in this manner, set the canMovi el nport | nPl ace
flag to 1 in your component flags when you register your component. The standard file
dialog uses this flag to determine how to import files. The OpenMovi eFi | e and
NewMbvi eFr onFi | e functions use this flag to open some kinds of files as movies.

AUDIO CD IMPORT COMPONENT

The Audio CD import component now creates AIFF files, rather than moviefiles. These
files a'so contain movie resources, so you can open them as movies.

December 21, 1994 Page 73

QuickTime 2.0 SDK: Toolbox Changes

MOVIE DATA EXCHANGE COMPONENTS REFERENCE

Importing Movie Data

Moviel mportGetFileType

The Movi el npor t Get Fi | eType allows your movie data import component
to tell the Movie Toolbox the appropriate file type for the most-recently
imported moviefile.

pascal Conponent Result Mvi el nmport Get Fi | eType
(Movi el nport Corponent ci
OSType *fil eType);

ci | dentifies the Movie Toolbox’ s connection to your
movie data import component.

fileType Contains a pointer to an osType field. Your
component should place the file type value that best
identifies the movie data just imported. For
example, Apple’'s Audio CD movie data import
component setsthisfieldto' Al FF' whenever it
creates an AIFF fileinstead of amoviefile.

DESCRIPTION
Y ou should implement this function only if your movie dataimport
component creates files other than QuickTime movies. By default, the
Movie Toolbox makes new files movies, unless you override that default
by providing this function.

ERROR CODES

badConponent Sel ect or 0x80008002 Function not
supported

Page 74 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 8 DERIVED MEDIA HANDLER COMPONENTS

This chapter discusses new features in derived media handler components.

DERIVED MEDIA HANDLER COMPONENTS REFERENCE

Functions

Managing Your Media Handler Component

Medialdle

Thereisaminor change to the Medi al dI e function that is related to the
new media handler support for partial screen redrawing (for more
information on this feature see the discussion of the Medi aGet Dr awi ngRgn
function elsewhere in this chapter).

From time to time, your derived media handler component may determine
that only a portion of the available drawing area needs to be redrawn. Y ou
can signal that condition to the base media handler component by setting
the nPar ti al Drawflag to 1 in the flags your component returns to the
Movie Toolbox from your Medi al di e function. Y ou return these flags
using the f | agsQut parameter.

Whenever you set thisflag to 1, the Movie Toolbox calls your
component’s Medi aGet Dr awi ngRgn function in order to determine the
portion of the image that needs to be redrawn.

As an example, consider afull-screen animation. Only rarely isthe entire
image in motion. Typically, only asmall portion of the screen image
moves. By using partia redrawing, you can significantly improve the
playback performance of such amovie.

December 21, 1994 Page 75

QuickTime 2.0 SDK: Toolbox Changes

Graphics Data Management

MediaGetDrawingRgn

DESCRIPTION

The Medi aGet Dr awi ngRgn function allows your derived media handler
component to specify a portion of the screen that must be redrawn. This
region is defined in the movie' s display coordinate system.

pascal Conponent Result Medi aGet Drawi ngRgn (Conmponent | nst ance
ci, RgnHandl e *parti al Rgn);

ci | dentifies the Movie Toolbox’ s connection to your
derived media handler.
partial Rgn Points to a handle that defines the screen region to

be redrawn. Note that your component is
responsible for disposing of this region once
drawing is complete. Since the base media handler
will use thisregion during redrawing, it is best to
dispose of it when your component is closed.

The Movie Toolbox calls this function in order to determine what part of
the screen needs to be redrawn. By default, the Movie Toolbox redraws
the entire region that belongs to your component. If your component
determines that only a portion of the screen has changed, and has indicated
thisto the Movie Toolbox by setting the nPar ti al Drawflag to 1 in the

fl agsQut parameter of the Medi al dI e function, the Movie Toolbox calls
your component’s Medi aGet Dr awi ngRgn function. Y our component
returns aregion that defines the changed portion of the screen.

ERROR CODES

Page 76

badConponent Sel ect or 0x80008002 Function not
supported
Memory Manager errors

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Base Media Handler Utility Functions

M ediaFor ceUpdate

The MediaForceUpdate function allows your derived media handler
component to influence when the base media handler updates the screen.

pascal Component Result Medi aForceUpdat e (Conponent | nst ance
ci, long forceUpdat eFl ags);

ci |dentifies your derived media handler’ s connection
to the base media handler.

f or ceUpdat eFl ags Specifies what you want the base media handler to
do. The following flags are defined (be sure to set
unused flags to 0):

f or ceUpdat eRedr aw Instructs the base media handler to
call your derived mediahandler’s
Medi al dI e function during the next
Movi esTask execution. Thisallows
your media handler to update the
screen based on non-time-rel ated
events (typically you would get
control only at sample changes). For
example, you might want to
highlight some text (say, a sample
number) whenever the user stops the
movie, even though this may not
correspond to a sample change.

f or ceUpdat eNewBuf f er)
I nstructs the base media handler to

alocate a new off-screen buffer. This
can be useful if you need to change
the buffer’ s characteristics. The base
media handler reallocates the buffer
the next time the Movi esTask
function is called.

December 21, 1994 Page 77

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 9 DATA HANDLER COMPONENTS

This chapter discusses data handler components. Data handler componentsallow the
rest of QuickTime to retrieve time-based data from external storage devices and, in some
cases, store time-based data on those devices.

This chapter is divided into the following sections:

- “About Data Handler Components” provides a general introduction to components
of thistype

- “Using Data Handler Components’ discusses how QuickTime uses these
components

- “Creating a DataHandler Component” describes how to create one of these
components

- “Reference to Data Handler Components’ presents detailed information about the
functions that are supported by these components

- “Summary of Data Handler Components’ contains a condensed listing of the
constants, data structures, and functions supported by these components

This chapter addresses devel opers of data handler components, though it contains
information for both developers and users of these components. If you plan to create a
data handler component, you should read the entire chapter. If you are writing an
application that uses components of this type, you should read the first two sections
(“About Data Handler Components’ and “Using Data Handler Components’), and then
use the reference section as appropriate.

Furthermore, note that data handler components exist both in QuickTime for the
Macintosh and QuickTime for Windows. Given that the architectures of these two
systems are very similar, much of the background information is common to both
environments—you will typically find this background information in Inside Macintosh.
However, while the basic functionality and structure of these componentsis quite similar
in both environments, there are some important technical differences. For example, the
techniques you would use to create a component for Windows are quite different from
those you would use on the Macintosh. Therefore, whenever appropriate, this chapter
refers you to the specific Inside Macintosh or QuickTime for Windows documentation for
additional information that is particular to these two environments.

Note: This chapter describes the interface provided by data handler components. Note
that thisinterface is supported only in QuickTime and QuickTime for Windows
versions 2.0 or newer. In addition, unless noted otherwise, the data handler
components supplied by Apple support the entire interface described in this note.

December 21, 1994 Page 79

QuickTime 2.0 SDK: Toolbox Changes

As components, data handler components rely on the facilities of the Component
Manager. In order to create or use any component, your application must also use the
Component Manager. If you are not familiar with the Component Manager, see
“Component Manager” in Inside Macintosh: More Macintosh Toolbox. If you are
developing for QuickTime for Windows, you should also take alook at QuickTime for
Windows: Components and Decompressors. In addition, you should be familiar with the

Movie Toolbox. See “Movie Toolbox” in Inside Macintosh: QuickTime for more
information.

Note: Throughout this chapter, the terms data handler and handler refer to data
handler components.

Page 80 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

ABOUT DATA HANDLER COMPONENTS

This section provides background information about data handler components. After
reading this section you should understand why these components exist and whether you
need to create or use a data handler component.

Data Handler Components

Data handler components store and retrieve time-based data on behalf of other
QuickTime components, typically media handler components. Figure 1 shows the logical
rel ationships between applications, the Movie Toolbox, other QuickTime components,
and data handlers during movie playback.

December 21, 1994 Page 81

QuickTime 2.0 SDK: Toolbox Changes

An Application

&
@

Movie Toolbox

!

Video
| - Media Handler

Tt

ot [W
J 4

Data Handler

Data Handler

t_._t

Control Fl ow

B

Data Flow »
MovieFile

Figure 1. Playingamovie

Figure 2 shows the components that get involved in capturing movie data.

Page 82

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

An Application

U

Sequence
grabber

component

|
Ul

Data Handler ‘

S

Video channel Sound channel Movie File
component component
Video digitizer Sound input
component device
t t Control Flow
IHIH f Data Flow

Figure2: Capturing movie data

Data handlersisolate the rest of QuickTime from the details of how to store or retrieve
time-based data from a particular storage medium. The data handler’ s primary function is
to store or retrieve data at the time requested by the client program.

Data handlers do not know anything about the content of the data they process. It isthe
responsibility of the client (for example, a QuickTime media handler component) to
process the data. In the case of amovie' s video data, for example, the QuickTime media
handler takes the data from a data handler and uses the facilities of the Image
Compression Manager to display the movie data on the computer screen. See Inside
Macintosh: QuickTime Components for more information about QuickTime media
handler components.

December 21, 1994 Page 83

QuickTime 2.0 SDK: Toolbox Changes

While data handlers do not work with the content of the data they process, these
components must be aware of all of the details involved in storing and retrieving data
from the storage medium that they support. For example, Apple provides several data
handlers. One supports data access from HFS volumes. Another, the memory-based data
handler, allows QuickTime to retrieve movies from memory handles. These two data
handler components use very different mechanisms to store and retrieve movie data. Asa
further example, in order to play movies from a multimedia server, you would need to use
adata handler that understands the network protocols and data formats necessary to
communicate with that server.

Asisthe case throughout QuickTime, all data handlersidentify their movie-data
containers with data references. The term container refers to the system element that
contains the movie data and can be any element that can contain data. For example, a
container may be an in-memory data structure, alocal disk file, or afile on a networked
multimedia server. Data references identify the location of the container and its type.

Different container types may require different types of references. For example, filesare
identified using aliases, while memory-based movies are identified by handles. The data
reference data typeis flexible enough to accommodate all these cases. It is up to each
data handler component to specify the type of reference it requires, and to verify that the
references supplied by client applications are valid. Data handler components use the
component subtype value to specify the reference type they support.

Because the methods for accessing data on different devices may differ substantially,
QuickTime supports multiple data handlers and a sel ection mechanism for choosing an
appropriate handler. Whenever an application opens a movie container, the Movie
Toolbox determines the most appropriate data handler component to use in order to
access that container. The Movie Toolbox makes this determination by querying the
various data handlers installed on the user’s computer. If your application uses the Movie
Toolbox, this selection processis transparent to your program. If you are developing a
data handler, your component must support the selection functions (see “ Reference to
Data Handler Components,” later in this chapter, for more information).

USING DATA HANDLER COMPONENTS

This section discusses how applications use data handler components. Y ou should read
this section if you are writing an application that uses these components or if you are
creating your own data handler.

This section is divided into the following topics:

- “Selecting aData Handler” discusses the facilities that are available to help your
application choose the best data handler for a given context

- “Managing Data References’ describes how your application goes about gaining
access to a container using a data handler component

- “Retrieving Movie Data’ talks about how your application reads movie data

Page 84 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

- “Storing Movie Data’ discusses how your application can write movie datausing a
data handler component

- “Managing the Data Handler” discusses your application’s responsibilities while
maintaining its connection with a data handler

Note that, if your application uses the Movie Toolbox to read and write movie data, you
do not need to worry about the details of working with data handler components. The
Movie Toolbox handles al of the data handler interactions for you. The information in
this section isintended for devel opers whose applications need to work directly with data
handler components.

Selecting a Data Handler

Before you can use a data handler component, your application must open a connection to
that component. The easiest way to open a connection to a data handler component is to
call the Move Toolbox’s Get Dat aHandl er function. Y ou supply a data reference, and the
Movie Toolbox selects an appropriate data handler component for you. For more
information about this function, see the chapter “Movie Toolbox” in Inside Macintosh:
QuickTime.

Alternatively, you may use the Component Manager to open your connection. Call the
Component Manager’s OpenDef aul t Conponent Or QpenConponent function to do so.

In order to help devel opers choose the best data handler for a specific situation while still
making it easy for an application to find a usable data handler, Apple has defined two
separate and complementary mechanisms for selecting data handler components. The
goal of these selection mechanismsisto ensure that your application is working with a
data handler component that can process data from the movie container in question. Both
mechanisms rely on characteristics of the current data reference in order to make the
selection.

Selecting by Component Type Value

At the most basic level, your application can use the Component Manager’ s built-in
selection mechanismsto find a data handler component for a data reference. Y ou may use
the Component Manager’s Fi ndNext Conponent function in order to retrieve alist of al
data handler components that meet your needs. Y ou specify your request by supplying
the component’ s characteristics in a component description record—in particular, in the

conponent Type, conponent Subt ype, conmponent Manuf act ur er , and conponent Fl ags
fields.

December 21, 1994 Page 85

QuickTime 2.0 SDK: Toolbox Changes

All data handler components have a component type value of ' dhi r' , which is defined
by the dat aHandl er Type constant. Data handler components use the value of the
component subtype field to indicate the type of data reference they support. Asaresult of
this convention, note that all data handlers that share a component subtype value must be
able to recognize and work with data references of the same type. For example, file
system data handlers aways carry a component subtype value of * al i s' , which indicates
that their data references are file system aliases (note that thisis true for QuickTime on
the Macintosh and under Windows, even though there is not, properly, afile system alias
under Windows). Apple' s memory-based data handler for the Macintosh has a component
subtype value of ' hndl ' .

Apple has not defined any special manufacturer field values or component flags values
for data handler components. Y ou may use the manufacturer field to select data handlers
supplied by a specific vendor. To do so, you would need to determine the appropriate
manufacturer field value for that vendor.

Interrogating a Data Handler’s Capabilities

While you can use the Component Manager’ s selection mechanismsto find a data
handler component that can recognize data references of a specific type, your application
must interact with the data handler in order to determine whether it can support a specific
datareference. Apple has defined two functions that allow you to query a data handler
component in order to find out whether it can work with a data reference. By using these
two functions, your application can choose a data handler that is best-suited to its specific
needs.

Before you can use either of these functions, your application must open a connection to
the data handler component, using the Component Manager.

Using the Dat aHCanUseDat aRef function, you supply a datareference to the data handler
component. The component then reports what it can do with that datareference. The
returned value indicates the level and, to some extent, the quality of service the data
handler can provide (for example, whether the component can read data from or write
datato the datareference, and whether the component uses any special support when
working with that data reference).

Because calling the Dat aHCanUseDat aRef function in several data handlers can get time
consuming, Apple has also defined afunction that hel ps narrow the search somewhat.
Using the Dat aHGet Vol uneLi st function, your application can obtain alist of all of the
file system volumes that a data handler can support. In response to your request, the data
handler returnsalist of all of the volumesit can support, along with flags indicating the
level and quality of service the data handler can provide for containers on that volume.

For more information on these functions, see “ Selecting a Data Handler,” later in this
chapter.

Page 86 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Managing Data References

Once you have selected a data handler component, you must provide a data reference to
the data handler. Use the Dat aHSet Dat aRef function to supply a data reference to a data
handler. Once you have assigned a data reference to the data handler, your application
may start reading and/or writing movie data from that data reference. The

Dat aHGet Dat aRef function allows your application to obtain a data handler’s current
data reference.

Data handlers also provide afunction that allows your application to determine whether
two data references are equivalent (that is, refer to the same movie container). Y our
application provides a data reference to the Dat aHConpar eDat aRef function. The data
handler returns a Boolean value indicating whether that data reference matches the data
handler’s current data reference.

For more information on these functions, see “Working With Data References,” later in
this chapter.

Retrieving Movie Data

Before your application can read data using a data handler component, you must open a
read path to the current data reference. Use the Dat aHOpenFor Read function to request
read access to the current data reference. Once you have gained read access to the data
reference, data handlers provide both high- and low-level read functions.

The high-level function, Dat aHGet Dat a, provides an easy-to-use, synchronous read
interface. Being a synchronous function, Dat aHGet Dat a does not return control to your
application until the data handler has read and delivered the data you request.

If you need more control over the read operation, you can use the low-level function,

Dat aHSchedul eDat a, to issue asynchronous read requests. When you call this function,
you provide detailed information specifying when you need the data from the request.
The data handler returns control to your application immediately, and then processes the
request when appropriate. When the data handler completes the request, it calls your data-
handler completion function to report that the request has been satisfied (see “ Completion
Function” for more information on the data-handler completion function).

Besides simply scheduling read requests that must be satisfied during a movie's playback,
another use of the Dat aHSchedul eDat a function isto prepare a movie for playback
(commonly referred to as pre-rolling the movie). The Dat aHSchedul eDat a function uses
severa specia valuesto indicate a pre-roll operation. Y our application calls the

Dat aHSchedul eDat a function one or more times to schedule the pre-roll read requests,
and then uses the Dat aHFi ni shDat a function to tell the data handler to start delivering
the requested data.

For more information on these functions and about pre-roll operations, see “Reading
Movie Data,” later in this chapter.

December 21, 1994 Page 87

QuickTime 2.0 SDK: Toolbox Changes

Storing Movie Data

Before your application can write data using a data handler component, you must open a
write path to the current data reference. Use the Dat aHOpenFor W i t e function to request
write access to the current data reference. Once you have gained write access to the data
reference, data handler components provide both high- and low-level write functions.

Note: QuickTime for Windows does not support writing movie data.

The high-level function, Dat aHPut Dat a, allows you to easily append data to the end of
the container identified by a data reference. Except when capturing movie data using the
sequence grabber component, the Movie Toolbox uses this call when writing data to
movie files. However, this function does not allow your application to write to any
location other than the end of the container. In addition, thisis a synchronous operation,
so control is not returned to your program until the write is complete. Asaresult, this
function is not well-suited to high-performance write operations, such as would be
required to capture amovie.

If you need a more flexible write facility, or one with higher performance characteristics,
you can use the Dat aHw i t e function. This function is intended to support high-speed
writes, suitable for movie capture operations. For example, Appl€e' s sequence grabber
component uses this data handler function to capture movies.

When you call this function, you provide detailed information specifying the location in
the container that is to receive the data. The data handler returns control to your
application immediately, and then processes the request asynchronously. When the data
handler completes the request, it calls your data-handler completion function to report
that the request has been satisfied (see “ Completion Function” for more information on
the data-handler completion function).

In addition to the Dat aHwW i t e function, data handler components provide several other
“helper” functions that allow you to create new movie containers and prepare them for a
movie capture operation.

For more information on all of these functions, see “Writing Movie Data,” later in this
chapter.

Managing the Data Handler

Data handler components provide a number of functions that your application can use to
manage its connection to the handler. The most important among these is Dat aHTask,
which provides processor time to the handler. Y our application should call this function
often so that the handler has enough time to do its work.

Other functions in this category provide playback hints to the data handler and allow your
application to influence how the component handles its cached data.

For more information on these functions, see “Managing Data Handler Components,”
later in this chapter.

Page 88 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CREATING A DATA HANDLER COMPONENT

This section discusses the details of creating a data handler component and includes
source code for a simple data handler component. After reading this section, you will
understand all of the special requirements of these components. The functional interface
that your component must support is described in “ Reference to Data Handler
Components,” later in this chapter.

Y ou should consider developing your own data handler component if you are planning to
provide a new type of movie container or a container that requires special data handling
techniques. For example, if you are planning to develop a networked multimedia server,
you would most likely need to develop a new data handler that could support the special
protocols required by your server. By encapsulating that protocol support in a data
handler, QuickTime applications can access the movie data on your server without having
to implement any special support. In thisway, your server becomes a seamless part of the
user’s system.

Before reading this section, you should be familiar with how to create components. See
“Component Manager” in Inside Macintosh: More Macintosh Toolbox for a complete
discussion of components, how to use them, and how to create them on the Macintosh.
For further information about using the Component Manager with QuickTime for
Windows, see QuickTime for Windows: Components and Decompressors.

General Information

All data handler components have a component type value of ' dhi r' , which is defined
by the dat aHand! er Type constant. Data handler components use the value of the
component subtype field to indicate the type of data reference they support. As aresult of
this convention, note that all data handlers that share a component subtype value must be
able to recognize and work with data references of the same type. For example, file
system data handlers aways carry a component subtype value of ' al i s' , which indicates
that their data references are file system aliases (note that thisis true for QuickTime on
the Macintosh and under Windows, even though there is not, properly, afile system alias
under Windows). Apple's memory-based data handler for the Macintosh has a component
subtype value of ' hndl ' .

#def i ne dat aHandl er Type ' dhlr'
#define rAliasType "alis'

Apple has not defined any special manufacturer field values or component flags values
for data handler components. Developers may use the manufacturer field value to select
your data handler from among all the data handlers that support a given type of data
reference.

Apple has defined afunctional interface for data handler components. For information
about the functions that your component must support, see “Reference to Data Handler
Components” later in this chapter. Y ou can use the following constants to refer to the
request codes for each of the functions that your component must support:

December 21, 1994 Page 89

enum {

kDat aCGet Dat aSel ect or
kDat aPut Dat aSel ect or
kDat aFl ushDat aSel ect or
kDat aCpenFor Wit eSel ect or
kDat aCl oseFor Wit eSel ect or
kDat aOpenFor ReadSel ect or
kDat aCl oseFor ReadSel ect or
kDat aSet Dat Ref Sel ect or
kDat aCGet Dat aRef Sel ect or
kDat aConpar eDat aRef Sel ect or
*/
kDat aTaskSel ect or
kDat aSchedul eDat aSel ect or
kDat aFi ni shDat aSel ect or
kDat aFl ushCacheSel ect or
kDat aResol veDat aRef Sel ect or
*/
kDat aGet Fi | eSi zeSel ect or
kDat aCanUseDat aRef Sel ect or
kDat aGet VournreLi st Sel ect or
kDat aWi t eSel ect or
kDat aPr eext endSel ect or
kDat aSet Fi | eSi zeSel ect or
kDat aGet Fr eeSpaceSel ect or
kDat aCr eat eFi | eSel ect or

kDat aCGet Pr ef err edBl ockSi zeSel ect or

Dat aHGet Pr ef err edBl ockSi ze */
kDat aCGet Devi cel ndexSel ect or

*/
/* 28 and 29 unused */
kDat aGet Schedul eAheadTi neSel ect or
kDat aSet OSFi | eRef Sel ect or
kDat aGet OSFi | eRef Sel ect or
kDat aPl aybackH nt sSel ect or
s

3+0x100

QuickTime 2.0 SDK: Toolbox Changes

2, /* Dat aHGet Data */

3, /* Dat aHPut Data */

4, /* Dat aHFl ushData */

5, /* Dat aHOpenForWite */
6, /* DataHC oseForWite */
8, /* Dat aHOpenFor Read */

9, / * Dat aHCl oseFor Read */
10, / * Dat aHSet Dat aRef */
11, [* Dat aHGet Dat aRef */
12, [* Dat aHComnpar eDat aRef
13, /* Dat aHTask */

14, / * Dat aHSchedul eDat a */
15, /* Dat aHFi ni shData */
16, / * Dat aHFl ushCache */
17, / * Dat aHResol veDat aRef
18, /* Dat aHGet Fi | eSi ze */
19, / * Dat aHCanUseDat aRef */
20, / * Dat aHGet Vol unelLi st */
21, /* DataHWite */

22, [/ * Dat aHPr eext end */

23, /* Dat aHSet Fi | eSi ze */
24, /* Dat aHGet Fr eeSpace */
25, /* DataHCreateFile */
26, /*

27, / * Dat aHGet Devi cel ndex
30, /*

Dat aHGet Schedul eAheadTi ne */
516, / * Dat aHSet OSFi | eRef */
517, [* Dat aHGet OSFi | eRef */

/* Dat aHPl aybackHi nts */

Macintosh Data Handler Components

This section provides sample code for aworking Macintosh data handler component.

Sample Macintosh Data Handler

#i ncl ude <Al i ases. h>
#i ncl ude <Fil es. h>
#i ncl ude <OSUtils. h>

Page 90

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

#i ncl ude “Dat aHandl er Pr ot ot ypes. h”
/1l these selectors belong in the header file

enum { Dat aGet Dat aSel ect or 2 };
enum { Dat aPut Dat aSel ect or 3 };
enum { Dat aOpenFor WiteSel ector = 5 };
enum { Dat aCl oseForWiteSel ector = 6 };
enum { Dat aOpenFor ReadSel ector = 8 };
enum { Dat aCl oseFor ReadSel ector = 9 };
enum { Dat aSet Al i asSel ector = 10 };

enum { Dat aGet Al i asSel ector = 11 };

enum { Dat aConpar eAl i asSel ector = 12 };
enum { Dat aTaskSel ector = 13 };

enum { Dat aSchedul eDat aSel ector = 14 };
enum { Dat aCanUseDat aRef = 19 };

enum { Dat aGet Vol uneLi st Sel ector = 20 };

// data structures

typedef struct {

Conponent | nst ance sel f;
Al i asHandl e alias;
short r eadFr ef ;
short writeFref;

} Dat aHandl er d obal sRecord, *DataHandl er d obal s;
/1 function declarations

pascal Component Result nai n(Conrponent Par anet ers *par ans,
Handl e storage);

Conponent Functi onUPP DHSel ect or Lookup(short sel ector);

pascal Component Result DHOpen(Dat aHandl er d obal s st orage
Conponent | nst ance sel f);

pascal Component Result DHC ose(Dat aHandl er d obal s st orage
Conponent | nst ance sel f);

pascal Component Result DHCanDo(Dat aHandl er d obal s st orage
short functionSel ector);

pascal Component Result DHVersi on(Dat aHandl er d obal s storage);

pascal Component Result DHGet Dat a(Dat aHandl er d obal s storage, Handle h
| ong of fsetlntoHandl e, | ong offset,
| ong size);

pascal Component Result DHPut Dat a(Dat aHandl er d obal s storage, Handle h
long hOffset, long *offset, |ong size);

pascal Component Result DHSet Al i as(Dat aHandl er d obal s st orage
Al i asHandl e ali as);

pascal Component Result DHGet Al i as(Dat aHandl er d obal s st orage
Al i asHandl e *al i as);

December 21, 1994 Page 91

pascal

pascal

pascal
pascal
pascal
pascal

pascal

pascal

Conponent Resul t

Conponent Resul t

Conponent Resul t
Conponent Resul t
Conponent Resul t
Conponent Resul t

Conponent Resul t

Conponent Resul t

// main function

pascal

Conponent Resul t

QuickTime 2.0 SDK: Toolbox Changes

DHComnpar eAl i as(Dat aHandl er d obal s st or age,
Al i asHandl e al i as, Bool ean *equal);

DHSchedul eDat a (Dat aHandl er d obal s st or age,
Ptr dataPtr,long fileOfset,
| ong dataSi ze, |ong refCon,
Ti mreRecord *ti neNeededBy,
Dat aHConpl eti onUPP conpl eti onRouti ne);

DHOpenFor Read(Dat aHandl er d obal s st orage);
DHCl oseFor Read(Dat aHandl er d obal s st orage);
DHOpenFor Wi t e(Dat aHandl er d obal s st orage) ;
DHCl oseFor Wit e(Dat aHandl er d obal s storage);

DHGet Vol unelLi st (Dat aHandl er d obal s st or age,
Dat aHVol urelLi st *vol uneLi st);
DHCanUseDat aRef (Dat aHandl er @ obal s st or age,

Handl e dataRef, |ong *useFl ags);

mai n(Conponent Par anet ers *parans, Handl e storage)

{

}

Conponent Result err;
Conponent Functi onUPP conponent Pr oc;

conponent Proc = DHSel ect or Lookup(par ans- >what) ;

i f (conponent Proc)
err = Call Conponent Functi onWthSt orage(storage, parans,
conponent Proc) ;
el se
err = badConponent Sel ect or;

return err;

/1 determ ne function based on sel ected request

Conponent Functi onUPP DHSel ect or Lookup(short sel ector)

{

Page 92

Conponent Functi onUPP conponent Proc = O;

switch (selector) {

case kConponent Ver si onSel ect :
conponent Proc = (Conponent Funct i onUPP) DHVer si on;
br eak;

case kConponent CanDoSel ect :
conponent Proc = (Conmponent Funct i onUPP) DHCanDo;
br eak;

case kConponent Cl oseSel ect :
conponent Proc = (Component Funct i onUPP) DHCl ose;
br eak;

case kConponent OpenSel ect:

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

conponent Proc = (Component Funct i onUPP) DHOpen;
br eak;

case Dat aCet Dat aSel ect or:
conponent Proc = (Conponent Funct i onUPP) DHGet Dat a;
br eak;

case Dat aPut Dat aSel ect or:
conponent Proc = (Conponent Funct i onUPP) DHPut Dat a;
br eak;

case Dat aOpenFor ReadSel ect or:
conponent Proc = (Conmponent Funct i onUPP) DHOpenFor Read;
br eak;

case Dat ad oseFor ReadSel ect or:
conponent Proc = (Conmponent Funct i onUPP) DHCl oseFor Read,;
br eak;

case Dat aOpenForWiteSel ector:
conponent Proc = (Conmponent Funct i onUPP) DHOpenFor Wi t e;
br eak;

case Dat aC oseForWiteSel ector:
conponent Proc = (Conponent Funct i onUPP) DHCl oseFor Wit e;
br eak;

case DataSet Al i asSel ector:
conponent Proc = (Conponent Functi onUPP) DHSet Al i as;
br eak;

case DataCet Ali asSel ector:
conponent Proc = (Conponent Functi onUPP) DHGet Al i as;
br eak;

case Dat aComnpar eAl i asSel ector:
conponent Proc = (Conmponent Funct i onUPP) DHConpar eAl i as;
br eak;

case Dat aSchedul eDat aSel ect or:
conponent Proc = (Conmponent Funct i onUPP) DHSchedul eDat a;
br eak;

case Dat aCanUseDat aRef :
conponent Proc = (Conponent Funct i onUPP) DHCanUseDat aRef ;
br eak;

case Dat aCGet Vol unelLi st Sel ector:
conponent Proc = (Conponent Funct i onUPP) DHGet Vol unelLi st ;
br eak;

}

return conponent Proc;

}

/1 open data handl er connection

pascal Component Result DHOpen(Dat aHandl er d obal s st or age,
Conponent | nst ance sel f)
{

Conponent Result err;
storage =

(Dat aHandl er d obal s) NewPt r Cl ear (si zeof (Dat aHandl er @ obal sRecord));
if (err = MenkError())

December 21, 1994 Page 93

QuickTime 2.0 SDK: Toolbox Changes

return err;
st orage- >sel f = (Conponent | nstance) sel f;
Set Conponent | nst anceSt or age(st or age- >sel f, (Handl e) st or age) ;

return noErr;

}

/1 cl ose conponent connection

pascal Component Result DHC ose(Dat aHandl er d obal s st orage
Conponent | nst ance sel f)
{

if (storage !'=nil) {
DHCl oseFor Read(st or age) ;
DHCl oseFor Wit e(st orage);

if (storage->alias != nil)
Di sposeHandl e((Handl e) st or age->al i as) ;

Di sposePtr((Ptr)storage);
}

return noErr;

}

/1 determ ne whet her data handl er supports request

pascal Component Result DHCanDo(Dat aHandl er d obal s st orage
short functionSel ector)
{

}

return DHSel ect or Lookup(functionSel ector) != 0;

/1 return conponent's version

pascal Component Result DHVersi on(Dat aHandl er A obal s st or age)
{

}

return 0x00020001;

/!l read data

pascal Component Result DHGet Dat a(Dat aHandl er d obal s storage, Handle h
| ong of fsetlntoHandl e, | ong offset,

| ong size)
{
OSEr r err;
Si gnedByt e saveSt ate

if (!storage->readFref) {
err = DHOpenFor Read(st or age) ;
if (err !'= noErr)

Page 94 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

return err;

}

saveState = HGet State(h);

HLock(h);

err = DHSchedul eDat a(storage, *h + of fsetlntoHandl e,
of fset, size, 0, nil, nil);

HSet St at e(h, saveState);

return err;

}

/!l wite data

pascal Component Result DHPut Dat a(Dat aHandl er A obal s storage, Handle h
long hOffset, long *offset, |ong size)
{

CSErr err;

if (!storage->witeFref) {
err = DHOpenForWite(storage);
if (err !'= noErr)
return err;

}

err = SetFPos(storage->witeFref, fsFronLECF, O0);
if (err == noErr) {

if (offset)
err = CGetFPos(storage->witeFref, offset);
if (err == noErr)
err = FSWite(storage->witeFref, &size, *h + hOfset);
}
return err;

}

// set alias

pascal Component Result DHSet Al i as(Dat aHandl er @ obal s st orage
Al i asHandl e al i as)
{

OSErr err = noErr;

/1 throw away the ol d one

if (storage->alias) {
Di sposeHandl e((Handl e) st or age->al i as) ;
storage->alias = nil

}
/1 copy the new one, if there is one
if (alias) {
err = HandToHand((Handl e *) &al i as);
if (err == noErr)

storage->alias = alias;

December 21, 1994 Page 95

QuickTime 2.0 SDK: Toolbox Changes

}

return err;

}

/1l retrieve alias

pascal Component Result DHGet Al i as(Dat aHandl er @ obal s st orage
Al i asHandl e *al i as)

{
OSErr err = noErr;
*alias = nil;
if (storage->alias) {
*alias = storage->ali as;
err = HandToHand((Handl e *)alias);
}
return err;
}

/1 conpare two aliases

pascal Component Result DHConpar eAl i as(Dat aHandl er d obal s st orage
Al i asHandl e al i as, Bool ean
*equal)
{
OSErr err = parangtrr;
FSSpec fssl, fss2;
Bool ean whoCar es;

*equal = fal se

if (storage->alias &% alias) {

err = ResolveAlias(nil, storage->alias, & ssl, &wwhoCares);
if (err == noErr) {
err = ResolveAlias(nil, alias, & ss2, &wwhoCares);

if (err == noErr) {
*equal = (fssl.vRef Num == fss2.vRef Num &&
(fssl.parlD == fss2.parl D) &&
Equal String(fssl. nane, fss2.name, false, false);

}

return err;

}

/1 schedul ed read

pascal Component Result DHSchedul eDat a(Dat aHandl er d obal s st orage
Ptr dataPtr,long fileOfset,
| ong dataSi ze, |ong refCon,
Ti mreRecord *ti neNeededBy,

Page 96 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Dat aHConpl et i onUPP
conpl eti onRout i ne)

{
OSErr err;
i f (storage->readFref == 0) {
err = DHOpenFor Read(st or age) ;
if (err)
return err;
}
err = Set FPos(storage->readFref, fsFronttart, fileOfset);
if (err == noErr)
err = FSRead(storage->readFref, &dataSize, dataPtr);
/1 Always call conpletion routine, even on an error.
if (conpletionRoutine !'= nil)
(*conpl etionRoutine)(dataPtr, refCon, err);
return err;
}

/1 open container for read

pascal Component Result DHOpenFor Read(Dat aHandl er G obal s st or age)

{
CSErr err;

FSSpec fss;
Bool ean whoCar es;

i f (storage->readFref != 0)
return nokErr;

if (storage->alias == nil)
return dat aNoDat aRef ;

err = ResolveAlias(nil, storage->alias, & ss, &wwhoCares);
if (err) return err;

err = FSpOpenDF(&f ss, fsRdPerm &storage->readFref);

return err;

}

/1 close container after reading

pascal Component Result DHC oseFor Read(Dat aHandl er G obal s st or age)
{

i f (storage->readFref) {
FSC ose(st orage->readFref);
st orage- >readFref = 0;

}

return noErr;

December 21, 1994 Page 97

QuickTime 2.0 SDK: Toolbox Changes

}

/1 open container for wite

pascal Component Result DHOpenFor Wit e(Dat aHandl er A obal s st or age)
{

CSErr err;

FSSpec fss;

Bool ean whoCar es;

if (storage->writeFref = 0)
return nokrr;

if (storage->alias == nil)
return dat aNoDat aRef ;

err = ResolveAlias(nil, storage->alias, & ss, &wwhoCares);
if (err) return err;

err = FSpOpenDF(&f ss, fsRAW Perm &storage->witeFref);

return err;

}

/1 close container after witing

pascal Component Result DHC oseFor Wit e(Dat aHandl er G obal s st orage)
{
if (storage->writeFref) {
FSC ose(storage->witeFref);
storage->witeFref = 0;

}

return noErr;

}

/1
/1 This function linmts the set of drives this data handler will be used
to
/1 read fromto those with nanes beginning with the letter Q
/1
Bool ean i sVRef NumOK(short vRef Num;
Bool ean i sVRef NumOK(short vRef Num
{
Par amBl ockRec pb;
Str63 nane;

nane[0] = O;

pb. vol unePar am i oVol | ndex = O;

pb. vol unePar am i oVRef Num = vRef Num

pb. vol unePar am i oNanePt r nane;

i f (PBGetVInfoSync(&pb) !'= noErr)
return false;

Page 98 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

return (name[1] == 'Q) || (name[l] =="'q");

}

// determ ne whether we can handl e the data reference

pascal Component Result DHCanUseDat aRef (Dat aHandl er @ obal s st or age,
Handl e dataRef, | ong *useFl ags)

{
CSErr err;
FSSpec fss;
Bool ean whoCar es;
*useFl ags = O;
err = ResolveAlias(nil, (AliasHandl e)dataRef, &fss, &whoCares);
if (err) return err;
if (isVRef NumOK(fss.vRef Nunj)
*useFl ags = kDat aHCanRead | kDat aHSpeci al Read | kDat aHCanWi t e;
return nokErr,;
}
/1
/1 This call is only required for data handlers with a subtype of
/1 rAliasType ('alis').
/1

pascal Component Result DHGet Vol unelLi st (Dat aHandl er @ obal s st or age,
Dat aHVol unelLi st *vol uneLi st)

{
OSErr err = noErr;
Dat aHVol uneLi st |i st;
VCB *vq;

list = (DataHVol uneLi st) NewHandl e(0) ;
if (err = MenkError())
goto bail;

vg = (VCB *) Get VCBQHr () - >qHead;
while (vq) {
i f (isVRef NumOK(vqg->vcbVRef Num) {
Dat aHVol urelLi st Record vl r;

/] add it to our Iist

vl r.vRef Num = vg- >vchVRef Num

vlr.flags = kDataHCanRead | kDat aHSpeci al Read | kDataHCanWit e;
err = PtrAndHand((Ptr)&vlr, (Handle)list, sizeof(vlr));

if (err)
goto bail;
}
vg = (VCB *)vq->qLi nk;

}
bai | :

December 21, 1994 Page 99

QuickTime 2.0 SDK: Toolbox Changes

if (err) {
Di sposeHandl e((Handl e) li st);
list = nil;

}

*vol unelLi st = |ist;

return err;

Windows Data Handler Components

This section discusses additional information you need to know before you develop your
own Windows data handler component. It also includes source code for a Windows data
handler component.

While data handler components to be used with QuickTime for Windows are functionally
quite similar to Macintosh data handlers, there are some differences you need to consider
before developing your own Windows data handler. First of all, QuickTime for Windows
does not support awrite data path. Therefore, your data handler needs to support only
those functions that allow QuickTime to read movie data.

In addition, Windows components are build as special dynamic link libraries (DLLS).
Y ou need to structure your code appropriately.

Sample Windows Data Handler
/*

KRR S O R R S b O S O S R S S R R Ik
* %

** File: datah.cpp

* %

** Description:
* %

** Data Handl er conmponent for QuickTinme for Wndows.

* %

** Routi nes:
* %

** Routines enclosed in [brackets] exist, but are unsupported.
* %

** Dat aHOpen() ; - conponent nanager open call
** Dat aHC ose(); - conponent nmanager close call
** Dat aHCanDo() ; - conponent nanager cando call
** Dat aHVer si on() ; - conmponent manager version call
** Dat aHGet Dat a() ; - imediate data read

** [Dat aHPut Dat a() ;] - data wite

** [Dat aHFl ushDat a() ;] - flush wite buffers

** [Dat aHOpenForWite();] - open for wite access

** [Dat aHCl oseForWite();] - close for wite access

** Dat aHOpenFor Read() ; - open for read access

** Dat aHCO oseFor Read() ; - close for read access

** Dat aHSet Dat Ref () ; - set data reference

Page 100 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

***/

/1

Dat aHGet Dat aRef () ;

Dat aHConpar eDat aRef () ;

Dat aHTask() ;

Dat aHSchedul eDat a() ;

Dat aHFi ni shDat a() ;

Dat aHFI ushCache() ;

Dat aHResol veDat aRef () ;

Dat aHGet Fi | eSi ze() ;

Dat aHCanUseDat aRef () ;

Dat aHGet Vol uneLi st () ;
[DataHWite();]

[Dat aHPr eext end() ;]

[Dat aHSet Fi | eSi ze() ;]

Dat aHGet Fr eeSpace() ;

[Dat aHCreat eFil e() ;]

Dat aHGet Pr ef er r edBl ockSi ze() ;
Dat aHGet Devi cel ndex() ;

Dat aHGet Schedul eAheadTi ne() ;
Dat aHPl aybackHi nts();

Dat aHSet OSFi | eRef erence() ;
Dat aHGet OSFi | eRef erence() ;
_DataHDi rect Read() ;

W ndows header files

#i ncl ude <wi ndows. h>
#i ncl ude <wi ndowsx. h>
#i ncl ude <msystem h>

/1

dos headers

#i ncl ude <direct. h>
#i ncl ude <dos. h>

/1

Conpi | er header files

#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>

/1

Application header files

#defi ne | NTERNAL_DHLR
#i ncl ude “datahp. h”
#i ncl ude <qt debug. h>

get data reference

conpare data references

provi de background tine
schedul e advance read

conpl ete schedul ed reads

flush cache buffers

resol ve data reference

return file size

check if data ref can be used
return list of volunes supported
wite data

extend file

set file size

get device free space

create file

get preferred bl ock size

get uni que devi ce index

get preferred advance read tine
provi de data ref playback hints
set HFILE as data reference

get references from SetCSFile..
di rect device read function

/1 Appl e Conputer four character type.
#defi ne ostypeAPPL QTFOURCC('a','p','p','Il")

/1

macr os

#def i ne DATAHPARM x,y) GCetPrivateProfilelnt(“Data
Handl er”, x, y, QT'W PRCFI LE)
#defi ne DEBUG TRUE

/1

DWORD QTAP

prototypes for external
Dat aHENnt ry(voi d) ;

December 21, 1994

functions

Page 101

QuickTime 2.0 SDK: Toolbox Changes

// 4 obal data

Conponent Descri ption cdTable = /1 one conponent in this DLL
{ ostypeDHLR /1 ostypeConponent Type
, 0stypeHNDL /1 ostypeConponent SubType
, 0stypeAPPL /1
ost ypeConponent Manuf act ur er
, 0 /1 dwConponent Fl ags
, 0 /1 dwComponent Fl agsMask
, (Conponent Routi ne) DataHEntry /1 crEntryPoi nt
, 0 /1 hrsrcName
, 0 /1 hrsrclinfo
, 0 /1 hrsrclcon
b
/*

LR I I R I I I R S S I S R I I I I R S R I I R O
* %

** Name: Dat aHOpen()

* %

** Description:

* %

** (Opens an instance of the conponent.

* %

** The general data handler initialization is done here, so that any
nenory

** used will not be allocated until an instance of the data handler is
actual ly

** opened.

* %
kkhkhkkhkhkkhkhkkhkkhkhkhhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhkhkhhkdhhkdhkhdhkhkkhkhkkhkhkhkhhkdhhkdhhdhkhdkhkkhkhkkhkhkhkdhkhkdhkhrkhkdxhhkhxk*x
*/
Conponent Resul t QTAPI Dat aHOpen(STKOFF_CWVP so, Conponentlnstance ci)
{

void far *storageH, far *globalH

Dat aHI nst anceSt or agePtr st or age;

Dat aHd obal St oragePtr gl obal s;

/1 allocate the cross-instance gl obals
gl obal H = (void far *) Get Conmponent Refcon(ci);
i f(global H== NULL)

{
/1 allocate gl obal storage
gl obalH = (void far *)d obal Al | oc(GVEM ZERO NI T,
si zeof (Dat aHA@ obal St orage)) ;
i f(global H== NULL)
return insufficientMenory;
/1 set the refcon so that we know we have been initialized
Set Conponent Ref con(ci, (I ong)gl obal H);
}

gl obal s = (Dat aHd obal St oragePtr) d obal Lock((const void
near *)LOWNORD(gl obal H));

Page 102 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

i f(globals == NULL)

d obal Free((const void near *)LOWRD(gl obal H));
return(insufficientMenory);

/1 allocate instance storage
storageH = (void far *)d obal All oc(GVEM ZERO NI T,
si zeof (Dat aHl nst anceSt or age)) ;

i f(storageH == NULL)

return insufficientMenory;
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void

near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)

d obal Unl ock((const void near *)LONRD(gl obal H));
d obal Free((const void near *)LOWNRD(storageH));
return(insufficientMenory);

}

/1 init storage fields

storage->ci = ci;

wwli st _I nit (&storage->readRequest Li st);

wwli st _| ni t Cache(&st or age- >r eadRequest Li st, 10); /1 init node cache

/1 set storage for this conponent
Set Conponent | nst anceSt orage(ci, (LPVA D)storageH);

/1 done

d obal Unl ock((const void near *)LOMNORD(storageH));
d obal Unl ock((const void near *)LONRD(gl obal H));
return(noErr);

/*
R I I I I R I I R I S I S I R I I I I R R O I R I

* *

** Name: DataHC ose()

* *

** Description:

* *

** (Cl oses an instance of the conponent.

* %
kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkhkhhkhkkhkhkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdkhkdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhdkhdxk*x
*/

Conponent Resul t QTAPI Dat aHC ose(STKOFF_CMP so, Conponentl| nstance ci)

void far *storageH, far *globalH
Dat aHI nst anceSt or agePtr st or age;
/1 locate instance storage

December 21, 1994 Page 103

QuickTime 2.0 SDK: Toolbox Changes

st orageH = Get Conponent | nst anceSt or age(ci);
i f(storageH !'= NULL)

{
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LONORD(st or ageH)) ;
i f(storage != NULL)
/1 close the file
if (storage->fileRef Num
nmi oCl ose(storage->fil eRef Num 0);
/'l release nenory allocated for fil enane
i f(storage->fil eNane)
d obal Free((HGLOBAL) st or age- >fi | eNane) ;
/1 release nenory for instance storage
d obal Unl ock((const void near *)LONORD(storageH));
d obal Free((const void near *)LOWNRD(storageH));
}
}
/1 release global storage if this is the last instance of the
conponent
i f (Count Conponent | nstances(ci) == 1)
{

gl obal H = (void far *) Get Conmponent Refcon(ci);
i f(gl obal H)
{

d obal Free((const void near *)LOWRD(gl obal H));
Set Conponent Ref con(ci, NULL) ;

}

return(noErr);

/*
R I I I I I R I I R S S I S I R I I R R I I R I I
* *

** Name: Dat aHCanDo()

* *

** Description:

* *

** Returns TRUE if a call is supported.

* %
kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkhkhhkhkkhkhkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdkhkdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhdkhdxk*x
*/

Conponent Resul t QTAPI Dat aHCanDo(STKOFF_CMP so, |ong | FunctionSel ector)

switch (I FunctionSel ector)

{

/* standard conponent manager calls */

Page 104 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

case kDat aVersi onSel ector:
case kDat aCanDoSel ector:
case kDat aC oseSel ector:
case kDat aQpenSel ector:

/* data handler calls */

case kDat aGet Dat aSel ect or:

case kDat aOpenFor ReadSel ect or:

case kDat ad oseFor ReadSel ect or:

case kDat aSet Dat Ref Sel ect or:

case kDat aGet Dat aRef Sel ect or:

case kDat aConpar eDat aRef Sel ect or:

case kDat aTaskSel ector:

case kDat aSchedul eDat aSel ect or:

case kDat aFi ni shDat aSel ect or:

case kDat aFl ushCacheSel ect or:

case kDat aResol veDat aRef Sel ect or:

case kDataCetFil eSi zeSel ector:

case kDat aCanUseDat aRef Sel ect or:

case kDat aGet Vol unelLi st Sel ect or:

case kbDat aPl aybackH nt sSel ect or:

case kDat aSet OSFi | eRef er enceSel ect or:

case kDat aGet OSFi | eRef erenceSel ect or:
return(TRUE) ;

br eak;
defaul t:
return(FALSE) ;
br eak;
}
return(FALSE) ;
}
/*

R I I I I I R I I R S S I S I R S I R R I R R O I R I O

* *

** Nanme: DataHVersion()
** Description:

** Returns version nunber of the conponent.

* %
kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkhkhhkhkkhkhkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdkhkdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhdkhdxk*x
*/
Conponent Resul t QTAPI Dat aHVer si on(STKOFF_CMP so, Conponent| nstance ci)

}

r et ur n(kDat aHVer si on) ;

/*
R I O I I I R S S I S I R I R I R I A R I I O O

* *

December 21, 1994 Page 105

QuickTime 2.0 SDK: Toolbox Changes

** Name: DataHGet Dat a()

* %

** Description:

* %

** Synchronous data read.

* %

LR I I I I I R I I R I S I S I R S I I R R I I R I O

*/
Conponent Resul t QTAPI Dat aHGet Dat a (DHLR_FPARML
Handl e h, /1 handl e to destination of data
long hOfset, // offset into handle to place data
| ong of f set, /1 offset within file of data to read
| ong size) /1 ampunt of data to read
{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
char *dataPtr;
/1 lock the storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)
return(insufficientMenory);

/1 verify that we have an open file

i f(storage->fil eRef Num == 0)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
r et ur n(dat aNot QpenFor Read) ;

}

/1 lock and deref the user handle

dataPtr = (char *)d obal Lock(h);

i f(dataPtr == NULL)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
return(insufficientMenory);

}

/1 build the pointer to the destination area
dataPtr += hOfset;

i f(_DataHDi rect Read(storage, dataPtr, offset, size) == FALSE)
{
d obal Unl ock(h);
d obal Unl ock((const void near *)LOMNORD(storageH));
return(dat aReadErr);

}

/1 done

d obal Unl ock(h);

d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

Page 106 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

/*

EIE R R R S I I I I R R I S I R R S T R I R R I S I R I I I R R I S S R I S I R
* %

** Name: DataHPut Dat a()

* %

** Description:
* %

** Synchronous wite. Not supported.
* %

KRR S O R R S b O S O S R S S R R Ik

*/
Conponent Resul t QTAPI Dat aHPut Dat a (DHLR_FPARML
Handl e h,
[ong hOf fset,
| ong *of fset,
| ong size)

r et ur n(badConponent Sel ect or) ;

/*

IR R R R I I I R I R R R I I I R I L R I R R I R R R I S R R S A R I I I I R
* %

** Name: DataHFI ushbDat a()

* %

** Description:
* %

** Flush unwitten data. Not supported.

* %
khkkkkhhkkkhkhhkkkhhhkhhhhkhhhkhhhhkhhhkhhhhkhhhkhhhhkhhhkkhhhhkdhhkddhrhkdhhkkddrxhkdkhdxkddxkhx**x*%
*/

Conponent Resul t QTAPI Dat aHFl ushDat a (DHLR_FPARM)

{
r et ur n(badConponent Sel ect or) ;

/*
khkkkkhhkkkhkhhkhkkhhhkhhhhkhhhkhhhhkhhhkhhhhkhhhkhhhhkhhkhkkhdhhhkdhhkddhhkdhhkkddrxhkdhdxkddxhkhx**x*%
* %

** Name: Dat aHOpenForWite()

* %

** Description:
* %

** (Open data reference for wite access. Not supported.
* %

KRR S O R R I S O S S I S S O R I R O

December 21, 1994 Page 107

QuickTime 2.0 SDK: Toolbox Changes

*/
Conponent Resul t QTAPI Dat aHOpenFor Wite (DHLR FPARMR)
{
r et ur n(badConponent Sel ector) ;
}
/*

LR I I I R I I I R I I R S S I S R S R I R I R O I I R I I
* %

** Name: DataHC oseForWite()

* %

** Description:

* %

** (Cl ose data reference that has been opened for wite access. Not
support ed.

* %

LR I I R I I I R S S I S R I I I I R S R I I R O

*/
Conponent Resul t QTAPI Dat aHC oseForWite (DHLR FPARM)
{
r et ur n(badConponent Sel ector) ;
}
/*

LR I I I I I R S S I S I R S I I I R R I R I O

* %

** Name: Dat aHOpenFor Read()
** Description:

** (pen data reference for read access.

R I I I I I I R I I R S S I S R S R R R I S O

*/
Conponent Resul t QTAPI Dat aHOpenFor Read (DHLR_FPARM)
{

void far *storageH = instanceSt or age;

Dat aHI nst anceSt or agePtr st or age;
char *fil eNamne;

storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

// must have a data reference
i f(storage->fileNane == NULL)

d obal Unl ock((const void near *)LOMNORD(storageH));
r et ur n(dat aNoDat aRef) ;

Page 108 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

/1 dereference the handle to the file nane
fileNane = (char *)d obal Lock(storage->fil eNane);
if(fileNane == NULL)
{
d obal Unl ock((const void near *)LONORD(storageH));
return(inval i dDat aRef);

}

/1 open the file
storage->fil eRef Num = nm oQpen(fil eNane, NULL, MM O READ);
i f(storage->fil eRef Num == NULL)

{
d obal Unl ock((const void near *)LONORD(storageH));
d obal Unl ock(st orage->fil eNane);
return(inval i dDat aRef);

}

/1 unl ock handl es
d obal Unl ock((const void near *)LOMNORD(storageH));
d obal Unl ock(st orage->fil eNane);

/1 done

i f(storage->fil eRef Num
return(noErr);

el se
return(inval i dDat aRef);

/*
R I I R I I R S S I S R S I I I I R I R R I A R I I
* *

** Name: DataHC oseFor Read()

* *

** Description:

* *

** (Cl ose data reference that has been opened for read access.

* *

R I I I I R I I R I S I S I R I I I I R R O I R I

*/
Conponent Resul t QTAPI Dat aHCl oseFor Read (DHLR_FPARM)
{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)
return(insufficientMenory);

/1 close the file
if (storage->fileRef Num

December 21, 1994 Page 109

QuickTime 2.0 SDK: Toolbox Changes

{
nmi oCl ose(storage->fil eRef Num 0);
storage->fil eRef Num = O;
}
el se
r et ur n(dat aNot QpenFor Read) ;
/1 done
return(noErr);
}
/*

LR I I I I R I I R S S I S R I I I I R R O I R I O
* %

** Name: Dat aHSet Dat aRef ()

* %

** Description:

* %

** Set data reference for this conmponent instance. |In QIW the data

ref erence

** is the file path. The input data reference is assuned to be a | ocked
** HGLOBAL.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhkhkdhkhkdhkhkkhkhkkhkhkhkhhkdhhkdhkhkdhkhkkhkhkkhkhkhkhhkdhhkdhkhkhkdhkhkkhkhkkhkhkhkdkhkdkhrhkhhdkhxk*x
*/
Conponent Resul t QTAPI Dat aHSet Dat aRef (DHLR_FPARML
Handl e dat aRef)
{
char far *strln;
char *nmyStr;
int len;
HLOCAL nmem
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 release any existing allocated nenory
i f(storage->fil eNane)
{
d obal Free(storage->fil eNane);
storage->fil eNanme = NULL
}

/1 deref the path

strin = (char far *)d obal Lock(dat aRef);
if(strin == NULL)

{

Page 110 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

/*

d obal Unl ock((const void near *)LOMNRD(storageH));
return(inval i dUser Dat aHandl e) ;
}

len = fstrlen(strin);

/1 allocate the nenory
nmem = d obal Al l oc(GVEM ZERO NI T, |en);
i f(mem == NULL)

{
d obal Unl ock((const void near *)LONORD(storageH));
d obal Unl ock(dat aRef) ;
return(insufficientMenory);

}

/1 copy data
nyStr = (char *)d obal Lock(rmem;
while (*nmyStr++ = *strln++)
/* enpty body */;
d obal Unl ock(nmen) ;

/1 store handl e
storage->fil eNane = nmem

/1 done
d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

R I I R I I R S S I S R S I I I I R I R R I A R I I

* *

* *

* *

* *

* *

* *

* *

Nane: Dat aHGet Dat aRef ()
Descri pti on:

Return data reference for this conponent instance.

R I I I I R I I R I S I S I R I I I I R R O I R I

*/

Conponent Resul t QTAPI Dat aHGet Dat aRef (DHLR_FPARML

{

Handl e *dat aRef)

char far *strQut;

char *nmyStr;

int len;

HGLOBAL nmem

void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near

*) LONORD(st or ageH)) ;
December 21, 1994 Page 111

QuickTime 2.0 SDK: Toolbox Changes

i f(storage == NULL)
return(insufficientMenory);

/1 deref the path
nyStr = (char *)d obal Lock(storage->fil eNane);
len = strlen(nyStr);

/1 allocate the nenory
nmem = d obal Al l oc(0, |en);
i f(mem == NULL)

d obal Unl ock(st orage->fil eNane);
d obal Unl ock((const void near *)LONORD(storageH));
return(insufficientMenory);

}

/1 copy data
strQut = (char far *)d obal Lock(nem;
while (*nmyStr++ = *strQut ++)
/* enpty body */;
d obal Unl ock(nmen) ;

// store handl e
*dat aRef = nem

/1 done
d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

/*
R I O I I R I I R S S I S I R S I R I R O I I R O O
* *

** Name: Dat aHConpar eDat aRef ()

* *

** Description:

* %

** Conpare provided data reference with the one established for this
** component instance.

* *

R I O I I I R S S I S I R I R I R I A R I I O O

*/

Conponent Resul t QTAPI Dat aHConpar eDat aRef (DHLR_FPARML
Handl e dat aRef,
Bool ean *equal)

char far *inStr;

char *nmyStr;

int nyLen, inLen;

void far *storageH = instanceStorage;

Page 112 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Dat aHI nst anceSt or agePtr st or age;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 deref the paths

nyStr = (char *)d obal Lock(storage->fil eNane);

i f(myStr == NULL)

{
d obal Unl ock((const void near *)LONORD(storageH));
return(insufficientMenory);

}

myLen strlen(myStr);

inStr (char far *)d obal Lock(dataRef);

i f(myStr == NULL)

d obal Unl ock(st orage->fil eNane);
d obal Unl ock((const void near *)LONORD(storageH));
return(inval i dUser Dat aHandl e) ;

}

inLen = fstrlen(inStr);

/1 assume equal
*equal = TRUE;

/1 check | engths

i f(myLen !'= inLen)
{
*equal = FALSE;
}
el se
{
/1 lengths are sane, so check contents
for(int i = 0; i < nyLen; i++)
{
i f(toupper(*nyStr) != toupper(*inStr))
{
*equal = FALSE;
br eak;
}
myStr++;
i NStr++;
}
}
/1 done

d obal Unl ock(st orage->fil eNane);

d obal Unl ock((const void near *)LONORD(storageH));
d obal Unl ock(dat aRef) ;

return(noErr);

December 21, 1994 Page 113

QuickTime 2.0 SDK: Toolbox Changes

/*
LR I S R I R S S I S I R S R I R R O I R I I O
* %

** Name: DataHTask()

* %

** Description:

* %

** Provides tine slices for the data handl er to perform background
operations.

* %

LR I I I I R I I R S S I S R I I I I R R O I R I O

*/
Conponent Resul t QTAPI Dat aHTask (DHLR_FPARM?)
{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
Dat aHReadRequest Ptr request;
/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)
return(insufficientMenory);

/1 attenpt to satisfy pending requests
do
{
request = (Dat aHReadRequest Ptr)wali st _Get Head(&st or age-
>r eadRequest Li st) ;
i f(request)

{
i f(_DataHDi rect Read(storage, (char *)request-
>pl aceToPut Dat aPtr,
request->fil eOfset, request->dataSize))

{
/1 do the call back
i f(request->conpl eti onRtn)
(*request ->conpl eti onRt n) (request - >pl aceToPut Dat aPtr,
request - >ref Con, noErr);
/1 renove this request. The current list itemwll be
adj ust ed
wwli st _Del Head(&st or age- >r eadRequest Li st) ;
}
el se
{
/1 move to the next itemin the I|ist
wwli st _Get Next (&st or age- >r eadRequest Li st) ;
}
}

Page 114 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

el se
request =(Dat aHReadRequest Pt r) wwLi st _Get Curr (&st or age-
>r eadRequest Li st) ;
} while(request);

/1 done
d obal Unl ock((const void near *)LOMNRD(storageH));
return(noErr);

/*
LR I I I I I I I S I S S I S I R S I R I R R I R I O
* %

** Name: Dat aHSchedul eDat a()

* %

** Description:

* %
** Async or synchronous read operation.
* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkdhkhkkhkhkhkhhkhkhkdhhkdhkhkhkhkkhkhkkhkhhkhkhkdhkhkdhkhdhkhdkhkhkhkkhkhkhkdhkhkdkhhkhhhkxxk*x
*/
Conponent Resul t QTAPI Dat aHSchedul eDat a (DHLR_FPARML
Ptr placeToPut Dat aPtr,
long fileOffset,
| ong dat aSi ze,
| ong ref Con,
Dat aHSchedul ePtr schedul eRec,
DHCompl et eProc conpl eti onRt n)

void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
Dat aHReadRequest Ptr request;

/1 lock instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 to read the data right now
i f(schedul eRec == NULL)
{
/1 use direct nethod to read from di sk
i f(_DataHDi rect Read(storage, (char *)placeToPutDataPtr,
fileOfset,
dat aSi ze) == FALSE)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
i f(conpl etionRtn)
(*compl etionRtn) (placeToPut Dat aPtr, refCon, dataReadErr);
return(dat aReadErr);
}

December 21, 1994 Page 115

QuickTime 2.0 SDK: Toolbox Changes

/1 do the call back
i f(conpl etionRtn)
(*compl etionRtn) (placeToPut DataPtr, refCon, noErr);

el se // the request is asynchronous

{
/1 allocate a new request structure
request = (Dat aHReadRequest Ptr) nal | oc(si zeof (Dat aHReadRequest)) ;
i f(request == NULL)

d obal Unl ock((const void near *)LONORD(storageH));
i f(conpl etionRtn)
(*conpl etionRtn) (placeToPut DataPtr, refCon
i nsufficientMnory);
return(insufficientMenory);
}

/1 init request fields

request - >pl aceToPut Dat aPt r pl aceToPut Dat aPt r

request->fil e fset = fileOfset;

request - >dat aSi ze = dat aSi ze

request - >r ef Con = ref Con;

request - >conpl eti onRt n = conpl etionRtn

request - >schedul eRec. t i neNeededBy = schedul eRec- >t i neNeededBy;

request - >schedul eRec. ext endedl D schedul eRec- >ext endedl| D;
request - >schedul eRec. ext endedVer s schedul eRec- >ext endedVers;
request - >schedul eRec. priority = schedul eRec->priority;

/1 place it in the request queue
i f(wwli st_AddTail (&st orage->readRequest Li st, (LISTDATA)request) ==
FALSE)
{
free(request);
d obal Unl ock((const void near *)LOMNORD(storageH));
i f(conpl etionRtn)
(*conpl etionRtn) (placeToPut DataPtr, refCon
i nsufficientMnory);
return(insufficientMenory);
}

}

/1 done
d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

/*
R I O I I I R S S I S I R I R I R I A R I I O O

* *

** Name: Dat aHFi ni shDat a()

* *

** Description:

Page 116 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

* %
** Conpl ete specified async read requests.
* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhkdhkhkhkhkkhkhkhkhkhkdhkhkdhkhkhkhkkhkhkkhkhhkhhkdhkhkdhkhkdhkhdhkhkkhkhkkhkhkhkdhkhkdkhrhkhhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHFi ni shDat a (DHLR_FPARML

Ptr placeToPut Dat aPtr

Bool ean cancel)

r et ur n(badConponent Sel ector) ;

/*
LR I O R I I I I I R I I R S S I S R S S R R I I R O

* %

** Name: Dat aHFl ushCache()
** Description:

** Flush read caches.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkhkhkhkhkhkdhhkdhkhkhkhkkhkhkkhkhkhkhhkdhhkdhhdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhhkhdxk*x
*/

Conponent Resul t QTAPI Dat aHFl ushCache (DHLR _FPARMR)

}

return(noErr);

/*
R I O I I I S R S I R I R R I I R I O
* *

** Name: Dat aHResol veDat aRef ()

* *

** Description:

* %

** Resolves a data reference. No operation is perforned, as a data
ref erence

** under QuickTinme for Wndows is a path nane.

* %
kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkhkhhkhkkhkhkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdkhkdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhdkhdxk*x
*/
Conponent Resul t QTAPI Dat aHResol veDat aRef (DHLR _FPARML

Handl e dat aRef,

Bool ean *wasChanged,

Bool ean user | nterfaceAl | owed)

{
*wasChanged = FALSE
return(noErr);

}

/*

December 21, 1994 Page 117

QuickTime 2.0 SDK: Toolbox Changes

LR I I I I R S S I S I R S R I R R I I O O O
* %

** Name: DataHGet Fil eSi ze()

* %

** Description:

* %

** Return size of data reference. The data reference nust already be
open

** for this call to work.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhkhkhkkhkhkkhkhkhkhhkdhkhkdhkhkhkhkkhkhkkhkhkhkhhkdhkhkdhkhkdhkhdhkhkhkhkkhkhkhkdhkhkdkhhkhxhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHGet Fi | eSi ze (DHLR_FPARML

long *fileSize)

void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
| ong curr;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 file nust be open
if (storage->fileRef Num == NULL)

d obal Unl ock((const void near *)LOMNORD(storageH));
r et ur n(dat aNot QpenFor Read) ;

}

/1 get the current file position and save it
curr = nm oSeek(storage->fileRefNum 0, SEEK CUR)

/1 get the size of the file by seeking to the EOF
*fileSize = mm oSeek(storage->fileRef Num 0, SEEK END);
if(*fileSize == -1)
{
*fileSize = 0;
d obal Unl ock((const void near *)LOMNORD(storageH));
return(-1);

}

/1l reset the previous file position
nmi oSeek(storage->fil eRef Num curr, SEEK SET);

// done

d obal Unl ock((const void near *)LOMNORD(storageH));
return(noErr);

Page 118 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

/*

R I O R I I I R I I R S S I S R S I I R R O S I R I O O

* %

** Name: Dat aHCanUseDat aRef ()
* %

** Description:

* %

** Return flags indicating the ability for the data handler to access
t he
** data reference.
* %
** Currently only reading of files is supported.
* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhkdhkhkkhkhkhkhhkhhkdhkhkdhkhkhkhkhkhkkhkhhkhhkdhhkdhkhkdhkhkdkhkkhkhkkhkhkhkdhhkdkhrdkhxhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHCanUseDat aRef (DHLR_FPARML

Handl e dat aRef,

Dat aHUseFl ags *useFl ags)

*useFl ags = kDat aHCanRead,;
return(noErr);

/*

LR I I I I I R S S I S I R S I I I R R I R I O

* %

** Name: DataHGet Vol unelLi st ()

* %

** Description:

* %

** Return a list of volunes supported by this data handler. Not
support ed.

* %

kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhkhkdhkhkhkhkhkhkhkhkkhkhkhkdhhkdhkhhkhkkhkhkkhkhkhkhhkdhhkdkhdhkhdkhkkhkhkkhkhkhkdhkhkdkhkhkhkhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHGet Vol uneLi st (DHLR_FPARML

Dat aHVol unelLi st *vol uneLi st)

{
}

r et ur n(badConponent Sel ector) ;

/*
R I O I I I R S S I S I R I R I R I A R I I O O

*khkkkkhkkkxk*k

** Name: DataHWite()
** Description:
** Wite data to data reference. Not supported.

R I O I I I R S S I S I R I R I R I A R I I O O

December 21, 1994 Page 119

QuickTime 2.0 SDK: Toolbox Changes

*/
Conponent Result QTAPI DataHWite (DHLR FPARML
Ptr data,
| ong of f set,
| ong si ze,
DHCompl et eProc conpl eti on
| ong refcon)

r et ur n(badConponent Sel ector) ;

/*
LR I I I I R I I R S S I S R I I I I R R O I R I O

* %

** Nane: DataHPreextend()
** Description:

** Preextend the data reference. Not supported.

kkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhkhkdkhdhkhkkhkhkkhkhkhkhhkdhhkdkhdkhdkhkkhkhkkhkhhkdhkhkdkhrkhkhkhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHPr eext end (DHLR_FPARML

| ong naxToAdd,

| ong *spaceAdded)

r et ur n(badConponent Sel ector) ;

/*
R I O I I R I I R S S I S I R S I R I R O I I R O O

* *

** Name: DataHSet Fil eSize()
** Description:

** Change file size of data reference. Not supported.

* %
kkhkhkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkhkkhkhkkhkhhkhhkhkhkdhkhkkhkhkkhkhkkhkhkhkdhhkdkhhkhkkhkhkkhkhkhkhhkdhhkdhkhkhkhkdkhkkhkhkkhkhkhkdhkhkdhkhkhkxhhkhxk*x
*/
Conponent Resul t QTAPI Dat aHSet Fi | eSi ze (DHLR_FPARML

long fileSize)

}

r et ur n(badConponent Sel ector) ;

/*
R I O I I I R S S I S I R I R I R I A R I I O O
* *

** Name: Dat aHGet FreeSpace()

* *

Page 120 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

** Description:

* %

** Return anpunt of free space on the device holding the data reference.
** Not supported.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhkhkhkkhkhkkhkhkhkhkhkdhhkdkhdhkhdhkhkkhkhkkhkhkhkdhkhkdkhrhkhxhhkhxk*x
*/
Conponent Resul t QTAPI Dat aHGet Fr eeSpace (DHLR _FPARML
unsi gned |l ong *freeSi ze)
{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
char *fil eNane;
i nt devi cel ndex;
_diskfree_t freeSpace
CSErr err;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

// must have a data reference

i f(storage->fileNane == NULL)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
r et ur n(dat aNoDat aRef) ;

}

/1l dereference the handle to the file nanme
fileNane = (char *)d obal Lock(storage->fil eNane);
if(fileName == NULL)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
return(inval i dDat aRef);

}

/1 get the index, use the drive letter. |If the caller didn't

/1 specify a drive letter, then get the current drive. The
/[l index is O for A:, 1 for B:,

if(fileName[1l] !=":")
devi cel ndex = _getdrive();
el se

devi cel ndex = tol ower(fileNanme[0])-'a'

/1l get the free space on the device
i f(_dos_getdi skfree(devicel ndex, &freeSpace))

{
err = coul dNot Resol veDat aRef ;
}
el se
{

December 21, 1994 Page 121

QuickTime 2.0 SDK: Toolbox Changes

/1 calculate the free space fromthe dos info returned
*freeSi ze = freeSpace. avail _clusters *
freeSpace. sectors_per_cl uster
* freeSpace. bytes_per_sector;
err = noErr;

}

/1 unl ock handl es
d obal Unl ock((const void near *)LONORD(storageH));
d obal Unl ock(st orage->fil eNane);

/1 done
return(err);

/*
LR I I R I I R I S S I R S R I R R I R O O

* %

** Name: DataHCreateFil e()
** Description:

** Create a file corresponding to the data reference. Not supported.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhhkkhkhkkhkhkkhkhkkhkhhkhkhkdhkhdhkhkkhkhkkhkhkhkhkhkdhhkdkhkdhkhkkhkhkkhkhkhkhhkdhhkdkhdkhdhkhkkhkhkkhkhkhkdhkdkhrkhkhxhhkxk*x
*/
Conponent Resul t QTAPI Dat aHCr eat eFi | e (DHLR_FPARML

OSType creator,

Bool ean del et eExi sting)

r et ur n(badConponent Sel ector) ;

/*
R I O I I R I I R S S I S R I I I R I R I R I O
* *

** Name: DataHGet PreferredBl ockSi ze()

* *

** Description:
* %
** Return the block size, in bytes, the data handler prefers to work
wi t h.
* %
kkhkhkkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkhkhhkhkkhkhkhkhkkhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdkhkdhkhdkhkkhkhkkhkhkhkdhkhkdkhrkhkhkhdkhdxk*x
*/
Conponent Resul t QTAPI Dat aHGet Pr ef err edBl ockSi ze (DHLR_FPARML

| ong *bl ockSi ze)

{
/1 we are happiest with bl ocks of this size
*bl ockSi ze = 512
return(noErr);

}

Page 122 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

/*
R I I R I I I R S S I S R S I R R O I I S
* %

** Name: Dat aHGet Devi cel ndex()

* %

** Description:

* %

** Return a unique identifier for the device the data reference resides
on.

* %
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhhkhkhkhkhkhhkhhkdhkhkdhkhkhkhkkhkhkkhkhhkhhkdhkhkdhkhkdhkhkdhkhkhkhkkhkhkhkdhhkdkhhkhhdkhxk*x
*/
Conponent Resul t QTAPI Dat aHGet Devi cel ndex (DHLR _FPARML

| ong *devi cel ndex)

{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
char *fil eName;
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)
return(insufficientMenory);

/1 must have a data reference

i f(storage->fileNane == NULL)

{
d obal Unl ock((const void near *)LOMNORD(storageH));
r et ur n(dat aNoDat aRef) ;

}

/1l dereference the handle to the file nanme
fileNane = (char *)d obal Lock(storage->fil eNane);
if(fileName == NULL)

d obal Unl ock((const void near *)LOMNORD(storageH));
return(inval i dDat aRef);

}

/1 get the index, use the drive letter. |If the caller didn't
/1 specify a drive letter, then get the current drive. The
/[l index is O for A:, 1 for B:,

if(fileNane[1] !=":")
*devi cel ndex = _getdrive();
el se

*devi cel ndex (long) (tol ower(fileName[0])-"a');

/1 unl ock handl es

d obal Unl ock((const void near *)LONORD(storageH));
d obal Unl ock(st orage->fil eNane);

December 21, 1994 Page 123

QuickTime 2.0 SDK: Toolbox Changes

/1 done
return(noErr);

/*

LR I I I I I R I I R I S I S I R S I I R R I I R I O

** Name: Dat aHGet Schedul eAheadTi ne()
** Description:

** Return schedul e ahead tine that the data handler prefers. Currently
** an arbitrary value is returned.

kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkdhhkdhkhkdhkhkkhkhkkhhkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhhkdhkhkdhkhdkhkhkhkkhkhkhkdhhkdkhhkhhhkhxkx*x
*/
Conponent Resul t QTAPI Dat aHGet Schedul eAheadTi ne (DHLR_FPARML

long *mllisecs)

{
/1 2 seconds, arbitrary
*mllisecs = 2*1000;
return(noErr);

}

/*

R I O I I I R I I R S S I S I R I I I I R R I S
* *

** Name: DataHPl aybackHi nts()

* *

** Description:

* %

** Provides hints about the data reference being accessed. This
function

** may be called at any tinme, even during novie playback if the user has
** made edits to the novie.

* %
kkhkhkkhkhkkhkhkkhkhhkhkhkkhkhkkhkhkkhkhkkhkhhkdhkhkdhkhdhkhkkhkhkkhkhkhkhkhkdhhkdkhdhkhkkhkhkkhkhhkhhkdhhkdhkhkdhkhkdhkhkkhkhkkhkhkhkdhkhkdkhhkxhhkhdxk*x
*/
Conponent Resul t QTAPI Dat aHPlI aybackHi nts (DHLR_FPARML

I ong fl ags,

unsi gned long mnFil eOfset,

unsi gned | ong nmaxFil e f set,

| ong byt esPer Second)

{
void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;
/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;

i f(storage == NULL)

Page 124 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

return(insufficientMenory);

/1 store playback hints

st orage->ni nFi | eOF f set m nFi | eOF fset;
st or age- >naxFi | eOf f set maxFi | eOF f set

st or age- >byt esPer Second = byt esPer Second;

/1 done
d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

/*
LR I O R I I I I I R I I R S S I S R S S R R I I R O
* %

** Name: Dat aHSet OSFi | eRef erence()

* %

** Description:
* %
** Set the file reference directly to an already open file. This cal
** exists because NewMbvi eFronDat aFork() is only given an HFILE to work
wit h,
** and M5-Wndows can't backup to the filenanme fromjust the HFILE
* %
kkhkhkkhkhkkhkhkkhkhkhkkhhkkhkhkkhkhkkhkhkkhkhhkhkhkdhkhdhkhkkhkhkkhkhkhkhkhkdhhkdkhkdhkhkkhkhkkhkhkhkhhkdhhkdkhdkhdhkhkkhkhkkhkhkhkdhkdkhrkhkhxhhkxk*x
*/
Conponent Resul t QTAPI Dat aHSet OSFi | eRef erence (DHLR_FPARML

long fil eRef,

long fil ePernmns)

void far *storageH = instanceSt or age;
Dat aHI nst anceSt or agePtr st or age;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 nake sure we are not already open via the regular data reference
i f(storage->fil eRef Num
return(inval i dDat aRef);

/1 assign the file reference
st orage->hfil eRef Num = (HFILE)fil eRef;
storage->hfil ePerns = fil ePerns;

// done

d obal Unl ock((const void near *)LONORD(storageH));
return(noErr);

December 21, 1994 Page 125

QuickTime 2.0 SDK: Toolbox Changes

/*
LR I I I R R I R S S I S I R I I R R I R I I S I O

* %

** Name: Dat aHGet OSFi | eRef erence()
** Description:

** Returns the file reference set by Set OSFil eRef erence();

* %

LR I O I I R S S I S I R S I S I R R O I S I I I O

*/

Conponent Resul t QTAPI Dat aHGet OSFi | eRef erence (DHLR_FPARML
long *fil eRef,
I ong *fil ePerns)

{
void far *storageH = instanceSt or age;

Dat aHI nst anceSt or agePtr st or age;

/1 locate instance storage
storage = (DataHl nstanceSt oragePtr)d obal Lock((const void
near
*) LOANORD(st or ageH)) ;
i f(storage == NULL)
return(insufficientMenory);

/1 nmake sure we are not already open via the regular data reference
i f(storage->fil eRef Num
return(inval i dDat aRef);

/1 copy the file reference
*fil eRef = storage->hfil eRef Num
*filePerms = storage->hfil ePerns;

/1 done
d obal Unl ock((const void near *)LOMNORD(storageH));
return(noErr);

/*
R I O I I I R S S I S I R I R I R I A R I I O O

* *

** Name: _DataHDirectRead()
** Description:

** Directly calls mm oRead() to read data froma file. This function
does

** not alter the current file position (it is preserved). This function
** shoul d be used only as a last resort, i.e. if the TdnRead() function
** cannot return the data.

* *

R I O I I I R S S I S I R I R I R I A R I I O O

Page 126 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

*/
BOOL _Dat aHDi r ect Read(
Dat aHI nst anceSt or age *st or age, /1 storage for this instance
char *pDest Buf, /1 pointer to destination buffer
long fileOffset, // file offset to begin read at
| ong size) /1 # of bytes to read

BOOL result = TRUE
U NT xfer;

| ong nread;

unsi gned | ong nysi ze

i f(storage->fil eRef Nun) {
/1 nmove to the new | ocation
nmi oSeek(storage->fil eRefNum fileOfset, SEEK SET);

/1 read the data
nread = mm oRead(storage->fil eRef Num pDestBuf, size);
if(nread < size)
result = FALSE
}
el se if(storage->hfil eRef Num {
/1 the file reference was set via Set OSFi | eRef erence, so read
/1 in the data in 64k chunks
nysi ze = size;
whi | e(nysi ze) {
xfer = (U NT)(nysize < 65536 ? nysize : 65535);
_lread(storage->hfil eRef Num pDestBuf, xfer);
pDest Buf += xfer;
nysi ze -= xfer;
}

}

el se {
result = FALSE
}

/1 done
return(result);

December 21, 1994 Page 127

QuickTime 2.0 SDK: Toolbox Changes

REFERENCE TO DATA HANDLER COMPONENTS

This section describes the functions your data handler component may support. Some of
these functions are optional—your component should support only those functions that
are appropriate to it.

Functions

This section describes the functions that may be supported by data handler components,
and is divided into the following topics:

n “Selecting a Data Handler” discusses the functions that allow client programs, such
as the Movie Toolbox, to select an appropriate data handler for a data reference.

n “Working With Data References’ describes the functions that allow client programs
to manage a data handler’ s current data reference.

n “Reading Movie Data’ tells you about the functions that alow client programs to
retrieve data from a data handler.

n “Writing Movie Data’ tells you about the functions that allow client programs to
store data using a data handler.

n “Managing Data Handler Components” provides information about the functions
that allow client programs to manage their interactions with data handler
components.

n “Completion Function” discusses the interface that must be provided by a client
program’ s data-handler completion function.

Selecting a Data Handler

In order to client programs to choose the best data handler component for a data
reference, Apple has defined some functions that allow applications to interrogate a data
handler’ s capabilities.

The Dat aHGet Vol uneLi st function allows an application to obtain alist of the volumes
your data handler can support. The Dat aHCanUseDat aRef function allows your data
handler to examine a specific data reference and indicate its ability to work with the
associated container. The Dat aHGet Devi cel ndex function allows applicationsto
determine whether different data references identify containers that reside on the same
device.

Page 128 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

By way of illustration, the Movie Toolbox uses the Dat aHGet Vol uneLi st and

Dat aHCanUseDat aRef functions as follows. During startup, and whenever anew volume
is mounted, the Movie Toolbox calls each data handler’ s Dat aHGet Vol uneLi st function
in order to obtain information about each handler’s general capabilities. So, the Movie
Toolbox calls each component’s GpenConponent , Dat aHGet Vol uneLi st , and

d oseConponent functions.

Whenever an application opens amovie, the Movie Toolbox selects the best data handler
for the movie's container. This may involve calling each appropriate data handler’s

Dat aHCanUseDat aRef function (in some cases, a data handler may indicate that it does
not need to examine a data reference before accessing it—see the discussion of the

Dat aHGet Vol uneLi st function for more information). For each data handler that can
support the data reference (that is, has the correct component subtype value) and needs to
be interrogated, the Movie Toolbox calls the component’s QpenConponent ,

Dat aHCanUseDat aRef , and O oseConponent functions. Based on the resulting
information, the Movie Toolbox selects the best data handler for the application.

DataHGetVolumelL ist

In response to the Dat aHGet Vol uneLi st function, your data handler
component returns alist of the volumes your component can access, along
with flags indicating your component’ s capabilities for each volume.

pascal Conponent Result Dat aHGet Vol uneLi st (Dat aHandl er dh,
Dat aHVol unelLi st *vol uneLi st);

dh |dentifies the calling program’ s connection to your
data handler component.

vol umeLi st Contains a pointer to afield that your data handler
component uses to return a handle to avolume list.
Y our component constructs the volume list by
allocating a handle and filling it with a series of
Dat aHVol uneLi st Recor d structures (one structure
for each volume your component can access). This
structure is described later in this section.

DESCRIPTION

In order to reduce the delay that may result from choosing an appropriate
data handler for avolume, the Movie Toolbox maintains alist of data
handlers and the volumes they support. The Movie Toolbox uses the

Dat aHGet Vol unelLi st function to build that list.

When your component receives this function, it should scan the available
volumes and create a series of Dat aHVol umeLi st Recor d Structures—one
structure for each volume your component can access. This structureis
defined as follows:

t ypedef struct Dat aHVol unelLi st Record {
short vRef Num /* reference nunber */

December 21, 1994 Page 129

Page 130

vRef Num

fl ags

QuickTime 2.0 SDK: Toolbox Changes

| ong fl ags; /* capability flags */
} Dat aHVol uneLi st Record, *DataHVol uneLi stPtr,
**Dat aHVol uneli st ;

Contains the volume reference number assigned to
the volume.

Indicates the level of support your data handler can
provide for this volume. These flags are similar to
those defined for the Dat aHCanUseDat aRef
function, though there is one additional flag. Y our
component should set every appropriate flag to 1
(set unused flags to 0).

kDat aHCanRead Indicates that your data handler can
read from the volume.

kDat aHSpeci al Read Indicates that your data handler can
read from the volume using a
specialized method. For example,
your data handler might support
access to networked multimedia
servers using a special protocal. In
that case, your component would set
thisflag to 1 whenever the volume
resides on a supported server.

kDat aHSpeci al ReadFi | e
Reserved for use by Apple.

kDat aHCanW i t e Indicates that your data handler can
write datato the volume. In
particular, use this flag to indicate
that your data handler’s
Dat aHPut Dat a function will work
with this volume.

kDat aHSpeci al Wite
Indicates that your data handler can

write to the volume using a
specialized method. Aswith the
kDat aHSpeci al Read flag, your data
handler would use thisflag to
indicate that your component can
access the volume using specialized
support (for example, specidl
network protocols).

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

kDat aHCanSt r eanmi ngWite
Indicates that your data handler can
support the special write functions
for capturing movie data when
writing to this volume. These
functions are described later in this
chapter, in “Writing Movie Data.”

kDat aHVust CheckDat aRef
Instructs the calling program that
your component must check each
data reference before it can
accurately report its capabilities. If
you set thisflag to 1, the Movie
Toolbox will call your component’s
Dat aHCanUseDat aRef function
before it assigns a container to your
data handler. Note, however, that this
may slow the data handler selection
process somewhat.

Y our data handler may use any facilities necessary to determine whether it
can access the volume, including opening a container on the volume. Y our
component should set to 1 as many of the capability flags as are
appropriate for each volume. Do not include records for volumes your
handler cannot support.

For example, if your component supports networked multimedia servers
using aspecial set of protocols, your data handler should set the

kDat aHCanRead and kDat aHCanSpeci al Read flagsto 1 for any volume
that is on that server. In addition, if your component can write to avolume
on the server, set the kDat aHCanW i t e and kDat aHCanSpeci al Wite
flagsto 1 (perhaps along with kDat aHCanSt r eani ngW i t €). However,
your component should create entries only for those volumes that support
your protocols.

It isthe calling program’ s responsibility to dispose of the handle returned
by your component.

The Movie Toolbox tracks mounting and unmounting removable volumes,
and keeps its volume list current. As aresult, the Movie Toolbox may call
your component’s Dat aHGet Vol uneLi st function whenever aremovable
volume is mounted.

If your data handler does not process data that is stored in file system
volumes, you need not support this function.

ERROR CODES

Memory Manager errors

December 21, 1994 Page 131

DataH CanUseDataRef

QuickTime 2.0 SDK: Toolbox Changes

Page 132

The Dat aHCanUseDat aRef function allows your data handler to report
whether it can access the data associated with a specified data reference.

pascal Conponent Result DataHCanUseDat aRef (DataHandl er dh,

dh

dat aRef

useFl ags

Handl e dat aRef,
| ong *useFl ags);

|dentifies the calling program’ s connection to your
data handler component.

Specifies the data reference. This parameter
contains a handle to the information that identifies
the container in question.

Contains a pointer to afield that your data handler
component uses to indicate its ability to access the
container identified by the dat aRef parameter.

Y our data handler may use the following flags (set
all flagsthat are appropriate to 1; set unused flags to

0):

kDat aHCanRead

kDat aHSpeci al Read

Indicates that your data handler can
read from the container.

Indicates that your data handler can
read from the container using a
specialized method. For example,
your data handler might support
access to networked multimedia
servers using a special protocol. In
that case, your component would set
thisflag to 1 whenever the data
reference identifies a container on a
supported server.

kDat aHSpeci al ReadFi | e

Indicates that your data handler can
read from the container using a
specialized method that is particular
to the type of container in question.
For example, your data handler may
use a different method for some
types of containers (say, a Hypercard
stack).

Thisflag represents a special case of
the kDat aHSpeci al Read flag. That
is, thisflag is appropriate only if you
have also set kDat aHSpeci al Read to
1.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

kDat aHCanW i t e Indicates that your data handler can
write data to the container. In
particular, use this flag to indicate
that your data handler’s
Dat aHPut Dat a function will work
with this data reference.

kDat aHSpeci al Wite
Indicates that your data handler can
write to the container using a
specialized method. Aswith the
kDat aHSpeci al Read flag, your data
handler would use thisflag to
indicate that the data reference
identifies a container which your
component can access using
specialized support (for example,
special network protocols).

kDat aHCanSt r eam ngWite
Indicates that your data handler can
support the special write functions
for capturing movie data when
writing to this container. These
functions are described later in this
chapter, in “Writing Movie Data.”

If your data handler cannot access the container, set
thefieldto O.

DESCRIPTION

Apple's standard data handler sets both the kDat aHCanRead and
kDat aHCanW i t e flagsto 1 for any datareference it receives, indicating
that it can read from and write to any volume.

Y our component should set to 1 as many of the capability flags as are
appropriate for the specified data reference. Conversely, be sure to set the
flagsto O if your component cannot support the container. For example, if
your component supports networked multimedia servers using a special set
of protocols, your data handler should set the kDat aHCanRead and

kDat aHCanSpeci al Read flagsto 1 for any container that is on that server.
In addition, if your component can write to the server, set the

kDat aHCanW i t e and kDat aHCanSpeci al Wi t e flagsto 1 (perhaps along
with kDat aHCanSt r earmi ngW i t e). However, your component should set
the flagsfield to O for any container that is not on a server that supports
your protocols.

Y our data handler may use any facilities necessary to determine whether it
can access the container. Bear in mind, though, that your component
should try to be as quick about this determination as possible, in order to
minimize the chance that the delay will be noticed by the user.

December 21, 1994 Page 133

QuickTime 2.0 SDK: Toolbox Changes

SEE ALSO

The Movie Toolbox calls your component’s Dat aHGet Vol ureLi st
function to retrieve your data handler’s capabilities for an entire volume.

DataH GetDevicel ndex

In response to the Dat aHGet Devi cel ndex function, your data handler
component returns a value that identifies the device on which a data
reference resides.

pascal Conponent Result Dat aHGet Devi cel ndex (Dat aHandl er dh,
| ong *devi cel ndex) ;

dh |dentifies the calling program’ s connection to your
data handler component.

devi cel ndex Contains a pointer to afield that your data handler
component uses to return a device identifier value.

DESCRIPTION

Some client programs may need to account for the fact that two or more
data references reside on the same device. For instance, this may affect
storage-allocation requirements. This function allows such client programs
to obtain thisinformation from your data handler.

Y our component may use any identifier value that is appropriate (as an
example, Apple' s HFS data handler uses the volume reference number).
The client program should do nothing with the value other than compare it
with other identifiers returned by your data handler component.

Working With Data References

All data handler components use data references to identify and locate amovie's
container. Different types of containers may require different types of data references. For
example, areference to a memory-based movie may be a handle, while areferenceto a
file-based movie may be an dlias.

Client programs can correl ate data references with data handlers by matching the
component’ s subtype value with the data reference type—the subtype value indicates the
type of data reference the component supports. All data handlers with the same subtype
value must support the same data reference type. To continue the previous example,
Apple s memory-based data handler for the Macintosh uses handles (and has a subtype
value of ' hndl '), while the HFS data handler uses Alias Manager aliases (its subtype
valueis'alis').

Page 134 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

The Dat aHSet Dat aRef and Dat aHGet Dat aRef functions allow applicationsto assign
your data handler’s current data reference. The Dat aHConpar eDat aRef function asks
your component to compare a data reference against the current data reference and
indicate whether the references are equivalent (that is, refer to the same container). The
Dat aHResol veDat aRef permitsyour component to locate a data reference’ s container.

The Dat aHSet OSFi | eRef and Dat aHGet OSFi | eRef functions provide an alternative,
system-specific mechanism for assigning your data handler’s current data reference.

DataH SetDataRef

The Dat aHSet Dat aRef function assigns a data reference to your data
handler component.

pascal Conponent Result Dat aHSet Dat aRef (Dat aHandl er dh,
Handl e dat aRef);

dh |dentifies the calling program’ s connection to your
data handler component.

dat aRef Specifies the data reference. This parameter
contains a handle to the information that identifies
the container in question. Y our component must
make a copy of this handle.

DESCRIPTION
Note that the type of data reference always corresponds to the type that
your component supports, and that you specify in the component subtype
value of your data handler. As aresult, the client program does not provide
adata reference type value (unlike the Movie Toolbox’ s data reference
functions).
The client program is responsible for disposing of the handle.
Consequently, your component must make a copy of the data reference
handle.

ERROR CODES

Memory Manager errors

DataHGetDataRef

The Dat aHGet Dat aRef function retrieves your component’ s current data
reference.

pascal Component Result Dat aHGet Dat aRef (Dat aHandl er dh,
Handl e *dat aRef);

December 21, 1994 Page 135

ERROR CODES

DataHCompa

QuickTime 2.0 SDK: Toolbox Changes

dh |dentifies the calling program’ s connection to your
data handler component.

dat aRef Contains a pointer to a data reference handle. Y our
component should make a copy of its current data
reference in a handle and return that handle in this
field. The client program is responsible for
disposing of that handle.

Memory Manager errors

reDataRef

DESCRIPTION

Y our component compares a supplied data reference against its current
data reference and returns a Bool ean value indicating whether the data
references are equivalent (that is, the two data references identify the same
container).

pascal Conponent Result Dat aHConpar eDat aRef (Dat aHandl er dh,
Handl e dat aRef, Bool ean
*equal) ;

dh |dentifies the calling program’ s connection to your
data handler component.

dat aRef Specifies the data reference to be compared to your
component’s current data reference.

equal Contains a pointer to a Boolean. Y our component
should set that Boolean to t r ue if the two data
references identify the same container. Otherwise,
set the Booleantof al se.

Note that your component cannot simply compare the bitsin the two data
references. For example, two completely different aliases may refer to the
same HFS file. Consequently, you need to completely resolve the data
reference in order to determine the file identified by the reference.

DataHResolveDataRef

Page 136

The Dat aHResol veDat aRef function instructs your data handler
component to locate the container associated with a given data reference.

pascal Component Result Dat aHResol veDat aRef (Dat aHandl er dh,
Handl e t heDat aRef,

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

Bool ean *wasChanged,
Bool ean userlnterfaceAl |l owed);

dh |dentifies the calling program’ s connection to your
data handler component.

t heDat aRef Specifies the data reference to be resolved.

was Changed Contains a pointer to a Boolean. Y our component

should set that Booleanto t r ue if, in locating the
container, your data handler updates any
information in the data reference.

user | nterfaceAl | oned
Indicates whether your component may interact
with the user when locating the container. If this
parameter is set to t r ue, your component may ask
the user to help locate the container (for instance, by
presenting a Find File dialog box).

Thisfunction is, essentially, equivalent to the Alias Manager’s

Resol veAl i as function. The client program asks your component to
locate the container that is associated with a given data reference. If your
component determines that the data reference needs to be updated with
more accurate location information, it should put the new information in
the supplied data reference (and set the Boolean referred to by the
wasChanged parameter tot r ue).

Client programs may call your data handler’ s Dat aHResol veDat aRef
function at any time. Typically, however, the Movie Toolbox uses this
function as part of its strategy for opening and reading a movie container.
As such, you can expect that the supplied data reference will identify a
container that your component can support.

DataH SetOSFileRef

December 21,

The Dat aHSet OSFi | eRef function assigns a movie container to your data
handler component. Applications may use this function instead of calling
the Dat aHSet Dat aRef function in cases where the applications have
already opened the container.

pascal Component Result Dat aHSet OSFi | eRef (Dat aHandl er dh,
long ref, long flags);

dh |dentifies the calling program’ s connection to your
data handler component.

1994 Page 137

DESCRIPTION

ERROR CODES

QuickTime 2.0 SDK: Toolbox Changes

r ef Specifies the container. This parameter contains an
operating system-specific file-access token. For
example, on the Macintosh an application would
supply the file reference it obtained by calling the
FSOpenfFi | e function. Under Windows, this
parameter would contain an HFI LE value obtained
from the OpenFi | e function.

fl ags Specifies access flags for the container. This
parameter contains the access flags the application
used when opening the container. Again, these are
operating system-specific.

This function provides an alternative mechanism for assigning your data
handler’s current container. In some cases, an application may have
created or opened amovie container prior to assigning the container to
your handler. In such cases, the application may choose to provideits
access token to your data handler, rather than using the Dat aHSet Dat aRef
function to assign a data reference. The application must have opened the
file before calling this function.

Note that your data handler must implement this function in a system-
specific manner, and must verify that the access token is valid.

Applications must still call your handlers Dat aHOpenFor Read or
Dat aHOpenFor Wi t e functions, as appropriate, before using your data
handler to access the container.

i nval i dDat aRef —2012 Application already set adata
reference
menful | Err —108 Insufficient memory for operation

DataH GetOSFileRef

Page 138

The Dat aHGet OSFi | eRef function retrieves your component’ s contai ner
access token, if it was assigned using the Dat aHSet OSFi | eRef function.

pascal Conponent Result DataHGet OSFi | eRef (Dat aHandl er dh,
long *ref, long *fl ags);

dh |dentifies the calling program’ s connection to your
data handler component.

r ef Contains a pointer to along. Y our component
should return the container access token that the
application provided when it called your
Dat aHSet OSFi | eRef function.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

fl ags Contains a pointer to along. Y our component
should return the access flags that the application
provided when it called your Dat aHSet OSFi | eRef

function.
ERROR CODES
i nval i dDat aRef —2012 Application already set adata
reference
menful | Err —108 Insufficient memory for operation

Reading Movie Data

Data handler components provide two basic read facilities. The Dat aHGet Dat a function
isafully synchronous read operation, while the Dat aHSchedul eDat a function is
asynchronous. Applications provide scheduling information when they call your
component’ s Dat aHSchedul eDat a function. When your component processes the queued
request, it calls the application’ s data-handler completion function (see “Completion
Function,” later in this chapter, for more information). By calling your component’s

Dat aHFi ni shDat a function, applications can force your component to process queued
read requests. Applications may call your component’s Dat aHGet Schedul eAheadTi me
function in order to determine how far in advance your component prefers to get read
requests.

Before any application can read data from a datareference, it must open read access to

that reference by calling your component’ s Dat aHOpenFor Read function. The
Dat aHO oseFor Read function closes that read access path.

DataHOpenFor Read

Y our component opens its current data reference for read-only access.

pascal Component Result Dat aHOpenFor Read (Dat aHandl er dh);

dh Identifies the calling program’ s connection to your
data handler component.

DESCRIPTION

After setting your component’ s current data reference by calling the

Dat aHSet Dat aRef function, client programs call the Dat aHOpenFor Read
function in order to start reading from the data reference. Y our component
should open the data reference for read-only access. If the datareferenceis
already open or cannot be opened, return an appropriate error code.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’ s Dat aHOpenFor Read function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

December 21, 1994 Page 139

QuickTime 2.0 SDK: Toolbox Changes

DataH CloseFor Read

Y our component closes read-only access to its data reference.

pascal Conponent Result DataHC oseFor Read (Dat aHandl er dh);

dh |dentifies the calling program’ s connection to your
data handler component.

DESCRIPTION

Note that a client program may close its connection to your component (by
calling the Component Manager’s ¢ oseConponent function) without
closing the read path. If this happens, your component should close the
data reference before closing the connection.

ERROR CODES
dat aNot OpenFor Read —2042 Datareference not open for read
dat aAl r eadyCl osed —2045 Thisreference already closed
DataHGetData

Y our component reads data from its current data reference. Thisisa
synchronous read operation.

pascal Component Result Dat aHGet Dat a (Dat aHandl er dh, Handl e
h, long hOfset, |ong offset,

| ong size);
dh |dentifies the calling program’ s connection to your
data handler component.
h Specifies the handle to receive the data.
hOf f set | dentifies the offset into the handle where your

component should return the data.

of f set Specifies the offset in the data reference from which
your component is to read.

si ze Specifies the number of bytesto read.

Page 140 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

The Dat aHGet Dat a function provides a high-level read interface. Thisisa
synchronous read operation; that is, the client program’s execution is
blocked until your component returns control from this function. Asa
result, most time-critical clients use the Dat aHSchedul eDat a function to
read data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’ s Dat aHOpenFor Read function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

SEEALSO

Client programs can force your component to invalidate any cached data
by calling your component’s Dat aHFl ushCache function.

DataH ScheduleData

Y our component reads data from its current data reference. This can bea
synchronous read operation or an asynchronous read operation.

pascal Conponent Result DataHSchedul eData (Dat aHandl er dh,
Ptr placeToPut Dat aPtr,
long fileOfset, |ong
dat aSi ze, | ong ref Con,
Dat aHSchedul ePtr schedul eRec,
DHComnpl et eProc conpl eti onRtn);

dh |dentifies the calling program’ s connection to your
data handler component.

pl aceToPut Dat aPt r Specifies the location in memory that isto receive

the data.

fileOfset Specifies the offset in the data reference from which
your component is to read.

dat aSi ze Specifies the number of bytesto read.

r ef Con Contains a reference constant that your data handler

component should provide to the data-handler
completion function specified with the
conpl eti onRt n parameter.

December 21, 1994 Page 141

DESCRIPTION

Page 142

QuickTime 2.0 SDK: Toolbox Changes

schedul eRec Contains a pointer to a schedule record. If this
parameter is set to ni |, then the client program is
requesting a synchronous read operation (that is,
your data handler must return the data before
returning control to the client program).

If this parameter isnot set to ni |, it must contain
the location of a schedule record that has timing
information for an asynchronous read request. Y our
data handler should return control to the client
program immediately, and then call the client’s
data-handler compl etion function when the datais
ready. The schedule record is discussed later in this
section.

conpl eti onRtn Contains a pointer to a data-handler completion
function. When your data handler finishes with the
client program’ s read request, your component must
call thisroutine. Be sure to call thisroutine even if
the request fails. Y our component should pass the
reference constant that the client program provided
with ther ef Con parameter.

The client program must provide a completion
routine for all asynchronous read requests (that is,
all requests that include a valid schedule record).
For synchronous requests, client programs should
set this parameter to ni | . However, if the function
is provided, your handler must call it, even after
synchronous requests.

The Dat aHSchedul eDat a function provides both a synchronous and an
asynchronous read interface. Synchronous read operations work like the
Dat aHGet Dat a function—the data handler component returns control to
the client program only after it has serviced the read request.
Asynchronous read operations allow client programs to schedule read
requests in the context of a specified QuickTime time base. Y our data
handler queues the request and immediately returns control to the calling
program. After your component actually reads the data, it calls the client
program’ s data-handler completion function.

If your component cannot satisfy the request (for example, the request
requires data more quickly than you can deliver it), your component
should reject the request immediately, rather than queuing the request and
then calling the client’ s data-handler compl etion function.

The client program provides scheduling information for scheduled readsin
aschedule record. This structure is defined as follows:

t ypedef struct Dat aHSchedul eRecord ({

Ti reRecord tineNeededBy; /* schedul e info
*/

December 21, 1994

QuickTime 2.0 SDK: Toolbox

t i meNeededBy

December 21, 1994

Changes

| ong ext endedl D /* type of data */
| ong ext endedVers; /* reserved */
Fi xed priority; [* priority */

} Dat aHSchedul eRecord, *DataHSchedul ePtr;

Specifies the time at which your data handler must
deliver the requested data to the calling program.
Thistime valueisrelative to the time base that is
contained in thistime record.

During pre-roll operations, the Movie Toolbox may
use special valuesin certain time record fields. The
time record fields in question are the scal e and

val ue fields. By correctly interpreting the values of
these fields, your data handler can queue up the pre-
roll read requests in the most efficient way for its
device.

There are two types of pre-roll read operations. The
first typeisarequired read; that is, the Movie
Toolbox requires that the read operation be satisfied
before the movie starts playing. The second typeis
an optional read. If your data handler can satisfy the
read operation as part of the pre-roll operation, it
should do so. Otherwise, your data handler may
satisfy the request at a specified time while the
movieis playing.

The Movie Toolbox indicates that a pre-roll read
request isrequired by setting the scal e field of the
time record to —1. Thisliterally meansthat the
request is scheduled for atime that isinfinitely far
into the future. Y our data handler should collect all
such read requests, order them most efficiently for
your device, and process them when the Movie
Toolbox calls your component’ s Dat aHFi ni shDat a
function.

For optional pre-roll read requests, the Movie
Toolbox setsthe scal e field properly, but negates
the contents of the val ue field. Y our data handler
has the option of delivering the data for this request
with the required data, if that can be done
efficiently. Otherwise, your data handler may
deliver the data at its schedule time. Y ou determine
the scheduled time by negating the contents of the
val ue field (that is, multiplying by —1).

For more information about pre-roll operations, see
“Retrieving Movie Data,” earlier in this chapter.

Page 143

SEEALSO

QuickTime 2.0 SDK: Toolbox Changes

ext endedl D Indicates the type of datathat followsin the
remainder of the record. The following values are
valid:

kDat aHExt endedSchedul e _ .
The remainder of the record contains
extended scheduling information.

If the ext ended! Dfield is set to kDat aHExt endedSchedul e, the
remainder of the schedule record is defined as follows:

ext endedVer s Reserved; this field should always be set to O.

priority Indicates the relative importance of the data request.
Client programs assign a value of 100.0 to data
requests the must be delivered. Lower values
indicate relatively less critical data. If your data
handler must accommodate bandwidth limitations
when delivering data, your component may use this
value as an indication of which requests can be
dropped with the least impact on the client program.

As an example, consider using prioritiesin aframe-
differenced movie. Key frames might have priority
values of 100.0, indicating that they are essential to
proper playback. As you move through the frames
following a key frame, each successive frame might
have a lower priority value. Once you drop aframe,
you must drop all successive frames of equal or
lower priority until you reach another key frame,
because each of these frames would rely on the
dropped one for some image data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’ s Dat aHOpenFor Read function. If this
happens, your component should open the data reference for read-only
access, respond to the read request, and then leave the data reference open
in anticipation of later read requests.

Client programs can force your component to invalidate any cached data
by calling your component’s Dat aHFl ushCache function.

DataHFinishData

Page 144

The Dat aHFi ni shDat a function instructs your data handler component to
complete or cancel one or more queued read requests. The client program
would have issued those read requests by calling your component’s

Dat aHSchedul eDat a function.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DESCRIPTION

SEE ALSO

pascal Component Result Dat aHFi ni shDat a (Dat aHandl er dh,
Ptr placeToPut Dat aPtr,
Bool ean cancel);

dh |dentifies the calling program’ s connection to your
data handler component.

pl aceToPut Dat aPt r Specifies the location in memory that is to receive
the data. The value of this parameter identifies the
specific read request to be completed. If this
parameter is set to ni | , the call affectsall pending
read requests.

cancel Indicates whether the calling program wants to
cancel the outstanding request. If this parameter is
set to t r ue, your data handler should cancel the
request (or requests) identified by the
pl aceToPut Dat aPt r parameter.

Client programs use the Dat aHFi ni shDat a function either to cancel
outstanding read requests or to demand that the requests be serviced
immediately. Pre-roll operations are a special case of the immediate
service request. The client program will have queued one or more read
requests with their scheduled time of delivery set infinitely far into the
future. Y our data handler queues those requests until the client program
calls the Dat aHFi ni shDat a function demanding that all outstanding read
requests be satisfied immediately.

Note that your component must call the client program’ s data-handler
completion function for each queued request, even though the client
program called the Dat aHFi ni shDat a function. Be sure to call the
completion function for both canceled and completed read requests.

Client programs queue read requests by calling your component’ s
Dat aHSchedul eDat a function.

DataHGetScheduleAheadTime

The Dat aHGet Schedul eAheadTi me function allows your data-handler
component to report how far in advance it prefers clients to issue read
requests.

pascal Component Result Dat aHGet Schedul eAheadTi ne
(Dat aHandl er dh,
long *millisecs);

December 21, 1994 Page 145

QuickTime 2.0 SDK: Toolbox Changes

dh |dentifies the calling program’ s connection to your
data handler component.

mllisecs Contains a pointer to along. Y our component
should set thisfield with a value indicating the
number of milliseconds you prefer to receive read
requests in advance of the time when the data must
be delivered.

DESCRIPTION

This function allows your data handler to tell the client program how far in
advance it should schedule its read requests. By default, the Movie
Toolbox issues scheduled read requests between 1 and 2 seconds before it
needs the data from those requests. For some data handlers, however, this
may not be enough time. For example, some data handlers may have to
accommodate network delays when processing read requests. Client
programs that call this function may try to respect your component’s
preference.

Note, however, that not all client programswill call this function. Further,
some clients may not be able to accommodate your preferred timein all
cases, even if they have asked for your component’ s preference. Asa
result, your component should have a strategy for handling requests that
do not provide enough advanced scheduling time. For example, if your
component receives a Dat aHSchedul eDat a request that it cannot satisfy, it
can fail the request with an appropriate error code.

SEEALSO

Client programs queue read requests by calling your component’s
Dat aHSchedul eDat a function.

Writing Movie Data

Aswith reading movie data, data handlers provide two distinct write facilities. The
Dat aHPut Dat a function is a simple synchronous interface that allows applications to
append data to the end of a container.

The Dat aHW i t e function is a more-capable, asynchronous write function that is suitable
for movie capture operations. Asis the case with the Dat aHSchedul eDat a function, your
component calls the application’ s data-handler completion function when you are done
with the write request.

There are several other helper functions that allow applications to prepare your data
handler for amovie capture operation. The Dat aHCr eat eFi | e function asks your
component to create a new container. The Dat aHSet Fi | eSi ze and Dat aHGet Fi | eSi ze
functions work with a container’s size, in bytes. The Dat aHGet Fr eeSpace function
allows applications to determine when to make a container larger. The Dat aHPr eext end
function asks your component to make a container larger. Applications may call your
component’ s Dat aHGet Pr ef er r edBl ockSi ze function in order to determine how best to
interact with your data handler.

Page 146 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Before writing data to a data reference, applications must call your component’s
Dat aHOpenFor W i t e function to open awrite path to the container. The
Dat aHCl oseFor Wi t e function closes that write path.

Note that some data handlers may not support write operations. For example, some
shared devices, such asa CD-ROM “jukebox”, may be read-only devices. As aresult, it
is very important that your data handler correctly report its write capabilities to client
programs. See “ Selecting a Data Handler,” earlier in this chapter, for information about
the functions that client programs use to interrogate your data handler.

DataHOpenForWrite

Y our component opens its current data reference for write-only access.

pascal Conponent Result DataHOpenFor Wite (DataHandl er dh);

dh |dentifies the calling program’ s connection to your
data handler component.

DESCRIPTION
After setting your component’ s current data reference by calling the
Dat aHSet Dat aRef function, client programs call the Dat aHOpenFor Wi t e
function in order to start writing to the data reference. Y our component
should open the data reference for write-only access. If the data reference
is already open or cannot be opened, return an appropriate error code.
ERROR CODES

dat aAl r eadyQpenFor Wit e—2044 Datareference already open for write

DataHCloseForWrite

Y our component closes write-only access to its data reference.

pascal Component Result DataHC oseForWite (DataHandl er dh);

dh |dentifies the calling program’ s connection to your
data handler component.

DESCRIPTION
Note that a client program may close its connection to your component (by
calling the Component Manager’s C oseConponent function) without

closing the write path. If this happens, your component should close the
data reference before closing the connection.

December 21, 1994 Page 147

QuickTime 2.0 SDK: Toolbox Changes

ERROR CODES
dat aNot QpenFor Wi te —2043 Datareference not open for write
dat aAl r eadyCl osed —2045 Thisreference already closed
DataHPutData

DESCRIPTION

Y our component writes data to its current data reference. Thisisa
synchronous write operation that appends data to the end of the current
data reference.

pascal Component Result DataHPut Data (Dat aHandl er dh, Handl e
h, long hOfset, |ong *offset,

| ong size);

dh |dentifies the calling program’ s connection to your
data handler component.

h Specifies the handle that contains the data to be
written to the data reference.

hOf f set |dentifies the offset into the handle h to the data to
be written.

of f set Contains a pointer to along. Y our component
returns the offset in the data reference at which your
component wrote the data.

si ze Specifies the number of bytesto write.

The Dat aHPut Dat a function provides a high-level writeinterface. Thisisa
synchronous write operation that only appends data to the end of the
current data reference. That is, the client program’s execution is blocked
until your component returns control from this function, and the client
cannot control where the datais written. As aresult, most movie-capture
clients (for example, Appl€e' s sequence grabber component) use the

Dat aHW i t e function to write data when creating movies.

ERROR CODES

SEE ALSO

Page 148

dat aNot QpenFor Wi te —2043 Datareference not open for write

Client programs can force your component to write any cached data by
calling your component’s Dat aHFI ushDat a function.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

DataHWrite

Y our component writes data to its current data reference. This can bea
synchronous write operation or an asynchronous operation, and can write
datato any location in the container.

pascal Conponent Result DataHWite (DataHandl er dh, Ptr data,

dh

dat a

of f set

si ze

conpl etion

r ef Con

December 21, 1994

| ong offset, long size,
DHComnpl et eProc conpl eti on
| ong ref Con);

|dentifies the calling program’ s connection to your
data handler component.

Specifies a pointer to the data to be written. Client
programs should lock the memory area holding this
data, allowing your component’s Dat aHW i t e
function to move memory.

Specifies the offset (in bytes) to the location in the
current data reference at which to write the data.

Specifies the number of bytesto write.

Contains a pointer to a data-handler completion
function. When your data handler finishes with the
client program’ s write request, your component
must call thisroutine. Be sure to call thisroutine
even if the request fails. Y our component should
pass the reference constant that the client program
provided with the r ef Con parameter.

The client program must provide a completion
routine for all asynchronous write requests. For
synchronous requests, client programs should set
this parameter to ni | .

Contains a reference constant that your data handler
component should provide to the data-handler
completion function specified with the conpl et i on
parameter.

For synchronous operations, client programs should
set this parameter to 0.

Page 149

DESCRIPTION

QuickTime 2.0 SDK: Toolbox Changes

The Dat aHW i t e function provides both a synchronous and an
asynchronous write interface. Synchronous write operations work like the
Dat aHPut Dat a function—the data handler component returns control to
the client program only after it has serviced the write request.
Asynchronous write operations allow client programs to queue write
requests. Y our data handler queues the request and immediately returns
control to the calling program. After your component actually writes the
data, it callsthe client program’ s data-handler completion function.

ERROR CODES

SEEALSO

dat aNot QpenFor Wi te —2043 Datareference not open for write

Client programs can force your component to write any cached data by
calling your component’s Dat aHFI ushDat a function.

DataH SetFileSize

DESCRIPTION

Y our component sets the size, in bytes, of the current data reference.

pascal Conponent Result DataHSetFil eSize (DataHandl er dh,
long fileSize);

dh |dentifies the calling program’ s connection to your
data handler component.

fileSize Specifies the new size of the container
corresponding to the current data reference, in
bytes.

The Dat aHSet Fi | eSi ze function isfunctionally equivalent to the File
Manager’ s Set ECOF function. If the client program specifies a new size that
is greater than the current size, your component should extend the
container to accommodate that new size. If the client program specifies a
container size of 0, your component should free all of the space occupied
by the container.

DataHGetFileSize

Page 150

Y our component returns the size, in bytes, of the current data reference.

pascal Component Result DataHGet Fil eSi ze (DataHandl er dh,
long *fileSize);

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes
dh |dentifies the calling program’ s connection to your
data handler component.
fileSize Contains a pointer to along. Y our component
returns the size of the container corresponding to
the current data reference, in bytes.

DESCRIPTION

The Dat aHGet Fi | eSi ze function isfunctionally equivalent to the File
Manager’' s Get ECF function.

DataHCreateFile

Y our component creates a new container that meets the specifications of
the current data reference.

pascal Conponent Result DataHCreateFil e (DataHandl er dh,
OSType creator,
Bool ean del et eExi sti ng);

dh |dentifies the calling program’ s connection to your
data handler component.

creat or Specifies the creator type of the new container. If
the client program sets this parameter to O, your
component should choose a reasonable value (for
example, ' TVOD , the creator type for Apple’s
movie player).

del et eExi sting Indicates whether to delete any existing data. If this
parameter is set to t r ue and a container already
exists for the current data reference, your
component should delete that data before creating
the new container. If this parameter issetto f al se,
your component should preserve any data that
resides in the container defined by the current data
reference (if thereis any).

DataHGetPr eferredBlock Size

The Dat aHGet Pr ef er r edBl ockSi ze function allows your component to
report the block size that it prefers to use when accessing the current data
reference.

pascal Component Result Dat aHGet Pref erredBl ockSi ze
(Dat aHandl er dh,
| ong *bl ockSi ze);

December 21, 1994 Page 151

QuickTime 2.0 SDK: Toolbox Changes

dh |dentifies the calling program’ s connection to your
data handler component.

bl ockSi ze Contains a pointer to along. Y our component
returns the size of blocks (in bytes) it prefersto use
when accessing the current data reference.

DESCRIPTION

Different devices use different file system block sizes. This function
allows your component to report its preferred block size to the client
program. Note that the client program is not required to use this block size
when making requests. Some clients may, however, try to accommodate
your component’s preference.

DataHGetFreeSpace

Y our component reports the number of bytes available on the device that
contains the current data reference.

pascal Conponent Result Dat aHGet FreeSpace (Dat aHandl er dh
unsi gned | ong *freeSize);

dh |dentifies the calling program’ s connection to your
data handler component.

freeSize Contains a pointer to an unsigned long. Y our
component returns the number of bytes of free
space available on the device that contains the
container referred to by the current data reference.

DataH Preextend

Y our component allocates new space for the current data reference,
enlarging the container.

pascal Component Result Dat aHPr eext end (Dat aHandl er dh
| ong naxToAdd,
| ong *spaceAdded);

dh |dentifies the calling program’ s connection to your
data handler component.

nmaxToAdd Specifies the amount of space to add to the current
datareference, in bytes. If the client program sets
this parameter to O, your component should add as
much space as it can.

Page 152 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

spaceAdded Contains a pointer to along. Y our component
returns the number of bytesit was able to add to the
datareference, in bytes.

DESCRIPTION

Thisfunction is essentially analogous to the File Manager’s

PBAI | ocCont i g function. Y our component should allocate contiguous
free space. If there is not sufficient contiguous free space to satisfy the
request, your component should return adskFul Err error code.

Client programs use this function in order to avoid incurring any space-
allocation delay when capturing movie data.

Managing Data Handler Components

Y our data handler component provides a number of functions that applications can use to
manage their connections to your handler. The most important among theseis

Dat aHTask, which provides processor time to your handler. Applications should cal this
function often so that your handler has enough time to do its work.

Applications may call your handler’ s Dat aHPI aybackHi nt s function in order to provide
you with some guidelines about how those applications play to use the current data
reference.

The Dat aHFI ushDat a and Dat aHFI ushCache functions allow applications to influence
how your component manages its stored data.

DataHTask
Client programs call your component’s Dat aHTask function in order to
cede processor time to your data handler.
pascal Component Result DataHTask (DataHandl er dh);
dh Identifies the calling program’ s connection to your
data handler component.
DESCRIPTION

Thisfunction is essentially analogous to the Movie Toolbox’s Movi esTask
function. Client programs call this function in order to give your data
handler component time to do its work. Y our data handler uses thistime to
do itswork. Because client programs will call this function frequently, and
especially so during movie playback or capture, your data handler should
return control quickly to the client program.

December 21, 1994 Page 153

QuickTime 2.0 SDK: Toolbox Changes

DataHFlushCache

DESCRIPTION

Y our component discards the contents of any cached read buffers.

pascal Conponent Result DataHFl ushCache (Dat aHandl er dh);

dh |dentifies the calling program’ s connection to your
data handler component.

Client programs may call thisfunction if they have, in some way, changed
the container associated with the current data reference on their own.
Under these circumstances, data your component may have read and
cached in anticipation of future read requests from the client may be
invalid.

Note that this function does not invalidate any queued read requests (made
by calling your component’ s Dat aHSchedul eDat a function).

DataHFlushData

DESCRIPTION

Y our component forces any datain its write buffers to be written to the
device that contains the current data reference.

pascal Component Result Dat aHFl ushData (Dat aHandl er dh);

dh |dentifies the calling program’ s connection to your
data handler component.

Thisfunction is essentially analogous to the File Manager’s PBFI ushFi | e
function. The client program may call this function after any write
operation (either Dat aHPut Dat a Or Dat aHW i t). Y our component should
do what is necessary to make sure that the data is written to the storage
device that contains the current data reference.

DataHPlaybackHints

Page 154

The Dat aHPI aybackHi nt s function allows the client program to provide
additional information to your component that you may use to optimize
the operation of your data handler.

pascal Component Result Dat aHPl aybackHi nts (DataHandl er dh

I ong fl ags,
unsi gned long mnFil eOfset,

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

dh

fl ags

m nFi | e f set

maxFi | e f set

byt esPer Second

DESCRIPTION

unsi gned | ong nmaxFil e f set,
| ong byt esPer Second) ;

|dentifies the calling program’ s connection to your
data handler component.

Reserved for use by Apple Computer, Inc. Client
programs should always set this parameter to O.

Together with the maxFi | eOf f set parameter,
specifies the range of data the client program
anticipates using from the current data reference.
This parameter specifies the earliest byte the
program expects to use (that is, the minimum
container offset value). If the client expects to
access bytes from the beginning of the container, it
should set this parameter to O.

Specifies the latest byte the program expectsto use
(that is, the maximum container offset value). If the
client expects to use bytes throughout the container,
the client should set this parameter to —1.

Indicates the rate at which your data handler must
read data from the data reference in order to keep up
with the client program’ s anticipated needs.

Y our component should be prepared to have this function called more than
once for agiven data reference. For example, the Movie Toolbox calls this
function whenever amovie' s playback rate changes. Thisis a handy way
for your data handler to track playback rate changes.

Completion Function

When client programs schedul e asynchronous read or write operations (by calling your
component’s Dat aHSchedul eDat a Or Dat aHW i t e functions), they furnish your
component a data-handler completion function. Y our component must call this function
when it completes the read or write operation, whether the operation was a success or a

failure.

Data-handler Completion Function

The client program’s completion function must present the following

interface:

pascal void DHConpl eteProc (Ptr request, |ong refcon,

December 21, 1994

CSErr err);

Page 155

QuickTime 2.0 SDK: Toolbox Changes

request Specifies a pointer to the data that was associated
with the read (Dat aHSchedul eDat a) or write
(Dat aHW i t €) request. The client program uses this
pointer to determine which request has compl eted.

refcon Contains a reference constant that the client
program supplied to your data handler component
when it made the original request.

err Indicates the success or failure of the operation. If

the operation succeeded, set this parameter to O.
Otherwise, specify an appropriate error code.

Page 156 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

CHAPTER 10 QUICKTIME® MUSIC ARCHITECTURE

This chapter describes the QuickTime Music Architecture. This chapter includes
descriptions of the data structures and functions that allow your application to control the
time-based music features included with QuickTime 2.0. With the QuickTime Music
Architecture your application alows users to play, edit, cut, copy and paste movie music
data in the same way they work with text and graphic elements today.

QUICKTIME MUSIC ARCHITECTURE OVERVIEW

The QuickTime Music Architecture (QMA) is a set of music events and three layers of
software components. Each component layer provides a set of functions that allow your
applications or QuickTime Movie music tracks to create and control music elements on
the Macintosh. Additional control for external MIDI devicesis aso provided.

Music “events’ are used to specify the Instruments and notes of a musical composition,
called asequence. A group of eventsiscalled a“sequence.” A sequence of events may
define arange of Instruments and their characteristics, along with a sequence of notes and
rests which, when interpreted, product the musical composition. Such event sequences
can be contained within a QuickTime music track or be produced by your application.
QMA interprets and plays the music from the sequence data.

The three layers of QMA provide different levels of accessto the actual devices used to
create sound. The top-most component layer provides timing for the sequence and
minimizes the need to understand and manage the specific details for each synthesizer
device. The next component layer playsindividual notes to a specified synthesizer device.
The lowest component level provides access to synthesizer device specifics.

The available QMA components are the:
* TunePlayer
* Note Allocator
* Music Component

The Tune Player component plays atime-ordered sequence of events. The Tune Player
negotiates with the Note Allocator, described below, to determine which Music
Component to use. For example, if the music score requires a piano, the sequence will
request a“piano” resource. QMA provides an Instrument that best “fits’ the request. At
the top-most layer the sequence is not required to know about the specific Instrument
type. The sequence only needs to know that it needs a piano. At the lowest layer however,
the Music Component provides specific details about each available sound producing
device.

The sequence of eventsis sent to the Note Allocator which in turn sends them to an

appropriate Music Component. The Tune Player handles all aspects of timing as defined
by the sequence of events.

December 21, 1994 Page 157

QuickTime 2.0 SDK: Toolbox Changes

The Note Allocator component can be used to play individual notes from a synthesizer.
Unlike the Tune Player, there are no timing services. The Note Allocator also contains
miscellaneous functions to handle external MIDI devices, create and maintain a database
of Music Components, and provide special functions to gain access to the details of each
Music Component.

Music Components are sound-playing software or software components utilizing external
hardware devices to produce music. These components either produce the sounds through
software-only means or interact with hardware devices which produce sound.

Asthe following diagram illustrates, QMA can be accessed by QuickTime Music tracks
or by applications. QuickTime Music tracks can contain a sequence of events and use a

standard Music Media Handler to access the Tune Player.

An application will usually access QMA through the Tune Player or the Note Allocator.

Some applications will access the Music Components directly but thisis usually
unnecessary.

QuickTime Music Track

=

Application
Music
Media Handler
“Music
Preferences”
Tune Player
Music
Component
Sound Manager

Note Allocator Music

Component
General MIDI

Music
Component
Brand X MIDI

Music Component f§ |]]]I[]
Nubus Synthesizer M

Page 158 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

GENERAL TERMINOLOGY

DURATION:
Music sequences contain notes and rests. The length in time of either is
described by its duration. A duration is defined by a number of units-per-
second.

INSTRUMENT:
A particular sound on a synthesizer (see synthesizer below).

KNOB:
A user-modifiable Instrument adjustment value.

MICROTONES:
The musical scale most often used in modern Western music is the 12 tone
“equal tempered” scale. This scale divides each octave into 12 available
pitches (frequencies), called “semitones.” Any pitch that lies between two
semitonesis called a“microtone.” The QuickTime Music Architecture lets
you specify 255 microtones between each pair of semitones.

MIDI:
Musical Instrument Digital Interface is a standard serial protocol for
communication between electronic musical devices.

MusIC COMPONENT:
A software component, which adheres to the QMA Music Component
interface standard, to produce sound either through the Macintosh’s built-
in speaker or by controlling an external hardware device.

MUSIC TRACK:
A sequence of QMA events used to describe music in terms of the notes,
rests and I nstruments to be used.

NOTE:
A sound defined by its pitch, volume (velocity) and duration.

NOTE CHANNEL:

An abstract reference to a synthesizer Part which can play notes.

December 21, 1994 Page 159

POLYPHONY::

PART:

PITCH:

SYNTHESIZER:

TIMBRE:

QuickTime 2.0 SDK: Toolbox Changes

A number of simultaneous musical notes. The polyphony of a synthesizer
is the maximum number of notesit can play at one point in time. The
polyphony of a music track is the maximum number of notesit ever plays
at one point in time.

A single assignable Instrument slot within a synthesizer. A synthesizer
contains a number of Parts. This maximum number defines the
synthesizer'stimbrality. Each Part can be set to one Instrument. An
initialized Part can be modified through its Knobs to produce a unique
Instrument. Modified Parts may be saved as new Instruments and later
recalled.

The relative position of anote in a scale as determined by its frequency.
Any of various standards that establish afrequency for each musical note,
used in the tuning of Instruments.

A software or hardware device capable of creating sounds. To be used by
QuickTime, a synthesizer must have a corresponding Music Component
which provides the software interface to that synthesizer.

The quality of a sound which makesit uniquely identifiable regardless of
the sound's pitch or volume. The unique qualities or attributes that make
the sounds of a piano, tuba or oboe, all playing the same note, uniquely
identifiable.

TUNE PLAYER:

TRACK:

VOICE:

Page 160

A software component used to assign available Instruments and to play a
sequence of QM A music events. The Tune Player provides abstract access
to Instruments and system timing for long sequences of music.

In the context of QMA, atrack is a sequence of music events contained in
a QuickTime movie track.

Voices and oscillators are interchangeabl e terms. The maximum number
of voices available to a synthesizer defines its polyphony.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

VOLUME:
The amplitude or loudness of a sound. The audio level, described by QMA

as anumber from 0.0 to 1.0, used to adjust the output of either a Part, an
entire synthesizer or both.

December 21, 1994 Page 161

QuickTime 2.0 SDK: Toolbox Changes

ADVANTAGES OF QUICKTIME MUSIC ARCHITECTURE VS. MIDI

QMA isnot limited to MIDI's 16 simultaneous timbres

It supports generalized access to synthesizer specific features.

Devices can report their details about device specifics.

QMA offers anatural implementation of microtonal scales.
* QMA fileformat is simpler than standard MIDI format.

The QMA's API has no limitation on the number of timbres (Parts) available to an
application or music track. MIDI limits the number of timbresto 16.

The QMA supports generalized access to synthesizers. This ability eliminates the
requirements for an application to support arange of specific devices. In some case,
however, an application may need greater control to a specific type of synthesizer. Access
to aparticular Music Components provides this type of control.

In addition to producing standard equal tempered notes, the QMA file format allows 256
microtonal values between each standard note.

Page 162 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

COMPONENTS OF QUICKTIME MUSIC ARCHITECTURE

The three layers of the QuickTime Music Architecture are the:
* TunePlayer
* Note Allocator
* Music Component

The Tune Player component of the QuickTime Music Architecture can be used to play
sequences of notes and Rest event data in a ssimple manner.

The Note Allocator provides servicesto play individual notes out of a synthesizer. Unlike
the Tune Player, the Note Allocator has no ability to provide sequence timing.

The Music Component is a software component which is used to produce sound through
software-only algorithms or through an interface to external hardware. Generally an
application will not need to call the Music Component directly. Usually calls through the
Note Allocator will provide adequate service. Macintosh provides the Software
Synthesizer and General MIDI Music Components.

Tune Player

The Tune Player plays sequences of music. It also allocates the necessary note channels
for a particular sequence.

In addition, the Tune Player provides the timing support necessary to interpret and play a
musi ¢ sequence, compared to the Note Allocator which has no timing support.

Any number of sequences may be played simultaneously as long as there is sufficient
polyphony (voices) within the specific Music Component allocated by the Tune Player.

Sequences can be played from beginning to end or only a portion of a sequence can be
played. An additional sequence, or sequence section, may be queued-up while oneis
currently being played. Queuing sequences can provide a seamless way to transition
between sections.

The Tune Player isimplemented as a component. Each instance of the Tune Player
component can play a sequence.

December 21, 1994 Page 163

QuickTime 2.0 SDK: Toolbox Changes

Note Allocator

The Note Allocator provides away to access and manage the available synthesizers
without the need to understand a synthesizer’ s specific details.

The Note Allocator, unlike the Tune Player, provides no timing related featuresto
manage the sequence. The Note Allocator's features are similar to the Music
Component's, as described below, although more generalized.

The Note Allocator's services fal into three categories:
* Note channel allocation and use
» System configuration
» Miscellaneous interface tools

Note channel allocation will create a note channel by selecting and allocating a Part,
within a synthesizer, based on the tone requested, provides detailed information about an
allocated note channel, and allows configuration of, and access to, external MIDI devices.

In addition, note channel allocation provides features to reserve in advance, and release
when finished or temporarily not needed, resources required to play a sequence. A
sequence's overall volume can be adjusted and the note channel can be engaged (default)
or disengaged while playing.

Note channel use will play individual notes, apply a specified controller to the allocated
note channel, provide access to Knobsto adjust a Part's characteristics, select an
Instrument based on a required tone, and modify or change the Instrument type on an
existing note channel.

System configuration provides services which create and maintain a database of Music
Components, save configuration information in a“Music Preferences’ file and establish
connections to external MIDI devices.

The miscellaneous interface tools provide a set of user interface dialogs to select

individual Instruments, select Instruments within an arrangement and to provide
copyright information for a particular Instrument.

Page 164 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Music Component

A Music Component is a software component used to produce sound. The method a
component uses to produce sound depends on the component.

An application generally accesses a Music Component through the Note Allocator or
Tune Player. Applications do not usually call music components directly.

The standard Macintosh Music Components include a software synthesizer and a General
MIDI music component.

In addition to these standard components, a Music Component can be created to control
an external hardware synthesizer. In this case, the sound is produced by the external
synthesizer, not the software component.

A Music Component provides synthesizer access similar to that of the Note Channel.
The Note Channel's access, however, is generalized and indirect. The Music Component
can directly access a particular synthesizer’'s features and controls. This type of accessis
available only through a Music Component.

To better understand the role of aMusic Component it's important to understand the
features of ageneric QMA synthesizer.

A synthesizer contains a number of Parts and Instruments. An Instrument isavery
specific description of the type of sound produced. Parts can be thought of as slotsin
which the user installs particular Instruments.

Instruments are grouped into fixed (built-in) and user-modifiable InstrumentsSee
Modifiable Instruments. Instruments installed or loaded into a Part can be used as-is or
modified and saved into a user-modifiable Instrument for later recall.

An Instrument is accessible only after it isloaded into one of the synthesizer's Parts. An
Instrument loaded into a Part can be modified by changing the value of one of its Knobs,
and saving to one of the Modifiable Instruments using a new Instrument name.
Instruments cannot be saved to a Fixed Instrument location.

The diagram below illustrates the internal model of a Music Component (described here
as ageneric synthesizer). The illustration shows the total number of Parts available from
the synthesizer, a group of fixed Instruments, 1 through n, and a group of user modifiable
Instruments, n+1 through n+m.

December 21, 1994 Page 165

QuickTime 2.0 SDK: Toolbox Changes

Instruments
Note <= > pat1 OBD (Fixed & User Modifiable)
Allocator —| pat2 900 \ Instrument 1
| pata 000 N et e
iX
— | _Part4 3D Instrument 4 Instruments
——» Part5 Q@D Instrument ...
—» Part6 O3 Instrument n
> pat7 O3 Instrument n+1 User
—»(Parts O3 :Ezi:zmizz n+2 Modifiable
Instruments
—— Part... O3D Instrument n+m
—p| Part e
q- n = InstrumentCount
Synthesizer Parts m = ModifiableInstrumentCount
Synthesizer Knobs @@@@@® g = Synthesizer Parts

Generic Synthesizer Model

The illustration above shows the synthesizer's Part 1 loaded with the Fixed Instrument 2.
Once an Instrument is loaded into a Part it may be modified and subsequently saved, with
anew Instrument name, to a user modifiable Instrument.

An example of a user modifiable Instrument is shown using Part 6. It uses the same
Instrument as Part 1. One Instrument can be used by two separate Parts. After an
Instrument is loaded into multiple Parts, either Part can be modified, through its Knaobs,
to produce a unique variation from the original Instrument. In this example, Part 6 is
saved to the user modifiable Instrument n+1. Parts cannot be saved to the fixed
Instrument bank.

Each Part hasits own set of Knobs. There is another set of Knobs that apply to the entire
synthesizer and not to a particular Instrument. These Knobs are typically for controlling
effects like audio effects (such as reverb) that may be built into a device. In addition to
the synthesizer Knobs are controllers which will also modify the characteristics of the
synthesizer.
The Music Component services fall into 4 categories:

» Synthesizer access

* |nstrument access

* Part access

» Synthesizer timing

Page 166 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

The Music Component synthesizer access functions provide services to obtain specific
information about the current synthesizer and obtain an Instrument which best fits a
requested type of sound. The synthesizer access will also play a note with a specified
pitch, volume and duration, get and set a particular synthesizer's Knob, obtain default
Knob information, and get and set external MIDI procedure name entry points.

The Music Component Instrument access provides servicesto initialize aPart to a
specified Instrument, to create and return an organized group of available synthesizer
Instrument and Drum names, and return the Instrument number assigned to the specified
Part. The Instrument access a so stores modified Instruments from a Part into the
modifiable Instrument store, gets detailed information about each Instrument available
from the synthesizer, and returns detailed default Instrument Knob settings.

The Music Component Part access provides servicesto get and set synthesizer Part
parameters, to get and set a Part's human interface name, to get and set the value for a
particular Part Knaob, to reset the Part to a default state and get and apply controller values
to individual Parts modifying their characteristics.

The Music Component synthesizer timing provides services to get and modify the master
reference timer used by the synthesizer.

December 21, 1994 Page 167

QuickTime 2.0 SDK: Toolbox Changes

EVENT SEQUENCE FORMAT

QMA defines music as a sequence of events. The events described in this section
initialize and modify sound producing music devices and define the notes and rests to be

played.

A sequence of eventsisrequired to produce music. The sequence of eventsis generally
contained within either a QuickTime movie track (which uses a media handler to provide
access to the Tune Player), or an application containing a sequence of events. The
application will pass them directly to the Tune Player.

Note: Using the MoviePlayer a standard MIDI sequence file will automatically be
converted to a QuickTime music track sequence. Refer the “Conversion of Standard
MIDI” chapter for additional details.

Events are constructed as a group of long words. The upper 1st four bits (nibble) of an
event'slong word definesits type.

1st Nibble Long Words Event Type

000x 1 Rest
001x 1 Note
010x 1 Controller
011x 1 Marker
1000 2 (reserved)
1001 2 Note
1010 2 Controller
1011 2 Knobs
1100 2 (reserved)
1101 2 (reserved)
1110 2 (reserved)
1111 n General

It's important to understand that the Rest event specifies the duration before interpreting
the next event in the stream. A Rest event does not specify an independent period of
silence. The Rest event defines when to act on the next event in sequence. A Note event
will define its own end by the specific duration contained within the Note event.

Both the Note durations and the Rest durations are specified in units of the Tune Player's
time scale (default of 1/600ths of a second).

Consider the following musical fragment.

e aml

o

Page 168 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Assuming 120 beats-per-minute, and a Tune Player's scale of 600, each quarter note's
duration is 300. The music track data to describe this fragment would appear as follows.

NOTE Part 0, pitch 60, duration 1200 plays for four beats
NOTE Part 0, pitch 72, duration 300 plays for one beat
REST duration 300 delays start of next note
NOTE Part 0, pitch 72, duration 300 plays for one beat
REST duration 300 delays start of next note
NOTE Part 0, pitch 72, duration 300 plays for one beat
REST duration 300 delays start of next note
NOTE Part 0, pitch 74, duration 300 plays for one beat
REST duration 300 delays start of next note
PITCH

60 >

72 >

74 N

P P>

t t

0 a0 600 lgoo ‘1200
Notes ——»

Rests ———»

The Genera event is used to specify the types of Instruments or sounds used for the
subsequent Note events.

The Note event causes a specific Instrument, previously defined by a General event, to
play anote at a particular pitch and velocity for a specified duration of time.

Additional event types allow sequencesto apply controller effects to Instruments, define
rests and modify Instrument Knob values. The entire sequence is closed with the End
Marker event. The End Marker event is currently limited to this “end of sequence”
identifier. Future functionality isintended and reserved.

In most cases, the standard note and Controller events (2 long words) will provide
sufficient functionality for an application’ s requirements.

The Extended Note event provides greater pitch range and microtonal note control for
music that requires these capabilities.

December 21, 1994 Page 169

QuickTime 2.0 SDK: Toolbox Changes

The Extended Controller event expands the number of Instruments and controller values
an application can specify.

General Event

The General event is currently only used to inform QMA of a synthesizer to be use by
subsequent events. A subtype of 1 must be used. The Tune Player call,
TuneSet Header () , receives the General event described below.

General Event (Variable L ength)

(NN X X X X

XXX XX X X X

Su

Ml X X X X X X

Genera event typefiel
Part

Event length

Variable data words
Subtype

Event length

Event tail

typedef struct {
short pol yphony;
ToneDescri ption
} Not eRequest ;

part.12

XXX XX XX X

event length.16 (h
XXX XX X X X

up to 2"16-3 (65533) longwords of data

XXX XX XX X

btype.14

XXX XX XX X

d

XXX XX X X X

event length.16 (h
X XX X X X X X

ead & tail identical)

XXX XX XX X

XXX XX X X X

ead & tail identical)

XXX XX XX X

1st nibblevalue = 1111

Instrument index number

head: number of words in event
noteRequest structure below
noteRequest subtype must be 1
tail: must be identical to head
1st nibble of last word = 11X X

/* Preferred nunber of voices */

t one;

struct ToneDescription {

OSType
Str31
Str31
| ong

| ong

Page 170

synt hesi zer Type;
synt hesi zer Nane;
i nstrument Nane;

i nst rument Nurber ;
gm\unber ;

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

The Part number bit field is uniquely defined and set by the application. The unique Part
number isused in all subsequent events where the Part is referenced. For example, to play
anote the application will use this Part number to specify which Instrument will play the
note. The General event allows specifying Part numbers of up to 12 bits. The standard
note and controller events allow Part number of up to 5 bitsin length.

The event length bit fields contained in the first and last words of the message are
identical and are used as a message format check and to move both forward and
backward through the message.

The variable length data field contains information unique to the type of General event.
Thereis currently only a note request General event. The note request structure used to
define the Instrument or Part and is contained within the variable length datafield.

The subtype bit field indicates the type of General event. Currently there isonly a note
request General event with a subtype of 1. If the subtypeis any other value, the event is
ignored.

Macro calls are used to stuff the General event's head and tail long words, but not the
structures described above:

_Stuf f General Event (w1, w2, instrument, subType, |ength)

Macros are used to extract field values from the event's head and tail long words.

Xinstrument(m 1)
_CGeneral Subtype(m 1)
_Ceneral Length(m I)

Note Event

The standard Note event (as compared with the Extended Note event) supports most
musi ¢ requirements. The Note event allows up to 32 Instruments and supports the
traditional equal tempered scale.

Note

type.3 part.5 pitch.6 (32-95) velocity.7 duration.11
OBNOIE X X X X XX X X X X X[X XX X X X X[X X XX X XX XX X X

Note Event type field 1st nibble value = 001X

Part Part index number

Pitch numeric value of 0-63, mapped as 32-95
Velocity 0-127, 0 = no audible response

Duration Units of time the note will occur

The Part field is the Instrument number initially used during the TuneSet Header () call.

December 21, 1994 Page 171

QuickTime 2.0 SDK: Toolbox Changes

The pitch bit field allows arange from 0-63 which is mapped to the values 32-95
representing the traditional equal tempered scale. For example, the value 23 (mapped to
60) ismiddle C.

The velocity bit field allows arange from 0-127 and translates into the volume of the
specified Part. A velocity value of O produces silences.

The duration bit field defines the number of units of time during which the Part will play
the pitch. The units of time are defined by the media time scale or Tune Player time scale.

Macro call used to stuff the Note event's long word:

_StuffNoteEvent (x, instrument, pitch, volune, duration)

Macro calls used to extract fields from the Note event's long word:

_Instrunent (x)
_Not ePi t ch(x)
_Not eVel oci ty(x)
_Not eVol une(x)
_Not eDur at i on(x)

Note: The standard Note event does not allow microtonal values, pitches below 32 or
above 95. For these extended features use the Extended Note event.

Extended Note Event

The Extended Note event, compared to the standard Note event, provides a wider range
of pitch values (traditional equal tempered scale), microtonal values to define any pitch,
and extended note duration. The Extended Note event requires two long words; the
standard Note event requires only one.

Extended Note

pitch.15

XXXX‘XXXXXXXX XX XX XX XX XX XX XX X

velocity.7 duration.22

XX XX XX XX XX XX X

Extended Note type field 1st nibble value = 1001
| nstrument extended I nstruments index

Page 172 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Pitch 0-127 standard pitch , 60 = middle C
0x01.00 .. 0x7f.00 allowing 256
microtonal divisions
between each notesin the
traditional equal tempered scale.

Note Duration extended note duration
Note Velocity 0-127 where 0 = silence
Event tail 1st nibble of last word = 10X X

The Part number bit field is the Instrument index assigned to the Part when initialized by
the General event call to TuneSet Header .

If the pitch field islessthan 128, then it is interpreted as an integer pitch where 60 is
middle C. If the pitch is 128 or greater, it is treated as a fixed pitch.

Microtonal pitch values are produced when the 15 bits of the pitch field are split into an
upper 7 bits to define the pitch and alower 8 bits to define the pitch’ s fractional portion.
Thisisrepresented by 0x01.00 to 0x7F.00: where 0x01-0x7F defines the standard equal
tempered note with the lower 8 bits defining 256 microtonal divisions between the
standard notes.

Macro call used to stuff the extended Note event's long words:

_Stuf f XNot eEvent (wl, w2, instrunent, pitch, volune, duration)

Macro calls used to extract fields from the extended Note event's long words:

_Xinstrument(m 1)
_XNotePitch(m I)
_XNoteVelocity(m 1)
_XNot eVol une(m 1)
_XNoteDuration(m |I)

Rest Event

The Rest event specifies the period of time, defined by either the mediatime scale or the
Tune Player time scale, until the next Note event in the sequence will be played.

Rest

type.3 duration.24

OOII O O O D O|IX X X X X X XX/ XX XX XX XX/XXXXXXXX

Rest Event type field 1st nibble value = 000X

Duration Duration in units defined by mediatime
scale or Tune Player time scale.

December 21, 1994 Page 173

QuickTime 2.0 SDK: Toolbox Changes

The duration bit field specifies the number of units of time until the next Note event is
played.

Macro call used to stuff the Rest event's long word:

_StuffRest Event (x, duration)

Macro call used to extract the Rest event's duration value;

_Rest Duration(x)

Note: It isimportant to understand that the Rest events are not used to cause silencein
a seguence but to define the start of subsequent Note events.

End Marker Event

The End Marker event has subtype and value fields containing zero.

End Marker

subtype.8 value.16
00000O0O0OOOOOOOJOOOOOOOO/IOOOOOOODO

End Marker event typefield 1st nibble value = 011X
End Marker subtype 8 bit unsigned subtype =0
End Marker value 16 bit signed value=0

The End Marker subtype bit field must contain zeros.
The End Marker value bit field must contain zeros.

Macro call used to extract fields from the Rest event's long word:

_Mar ker Subt ype(x)
_Mar ker Val ue(x)

Page 174 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Controller Event

The Controller event changes the value of a controller on a specified Part.

Controller

type.3 part.5 controller.8 value.16

ONMANOE X X X X XX X X X X X X X[X X XX XX X X/XX XX XX X X

Controller event typefield 1st nibble value = 010X

Part Instrument index number

Controller controller to be applied to Instrument

Value 8.8 hit fixed point signed controller
specific value

Currently defined controller types:

kCont rol | er Modul at i on\Wheel 0- 7F. FF max effect

kControl | er Vol une 0-7f.ff max effect (default)

kControl | er Pan O=left, 1.00=right

kControl | er Pi t chBend 0x0100 rai ses the pitch by one
sem -tone and OxFFOO | owers by one
sem -tone.

The Part field is the Instrument number initially used during the TuneSet Header () call.
The controller bit field is a value which describes the type of controller used by the Part.
The value bit field is specific to the selected controller.

Macro call used to stuff the controller event's long word:

_StuffControl Event (x, instrunent, control, val ue)

Macro calls used to extract fields from the controller event'slong word:

_I nstrunent (x)
_Control Controll er(x)
_Control Val ue(x)

December 21, 1994 Page 175

QuickTime 2.0 SDK: Toolbox Changes

Extended Controller Event

The Controller event changes the value of a controller on a specified Part. The Extended
Controller event alows Parts and controllers beyond the range of the standard Controller
event.

Extended Controller

part.12
RO X X X I X X X XX XX xXxX0000000000000O0O00O0

controller.14 value.16

(Ol X X X X X X X X X X X X X X

Extended Controller typefield 1st nibble value = 1010

Part Instrument index for controller
Controller Controller for Instrument
Value Signed controller specific value
Event tail 1st nibble of last word = 10X X

The Part field is the Instrument number initially used during the TuneSet Header () call.

The controller bit field is a value which describes the type of controller to be used by the
Part.

The value bit field is specific to the selected controller.

Macro call used to stuff the Extended Controller event's long words:

_StuffXControl Event (wl, w2, instrunent, control, value)

Macro calls used to extract fields from the Extended Controller event's long words:

_XInstrunent(m 1I)
_XControl Controller(m 1)
_XControl Val ue(m 1)

Page 176 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Knob Event

The Knob event is used to modify a particular parameter within a specified Part.

part.12 value MSB.16

(ORI X X X X[X X X X X X X XX X X XX X X X/X XX XX XXX
knob.14 value LSB.16

OR X X X X X X[X X X X X X X X[X XX XX XX X/XXXXXXX X

Knob event type field 1st nibble value = 1011

Part Instrument index number

Knob number Knob number within specified Part
Knob value (LSW (0-15)) lower 16 bits of Knob value

Knob value (MSW (16-31)) upper 16 bits of Knob value

Event tall 1st nibble of last word = 10X X

The Part field is the Instrument number initially used during the TuneSet Header () call.
The 32 bit value composed of the lower 16 and upper 16 bit field values is used to alter
the specified Knaob.

The Knob bit field specifies which Knob is effected by the value.

Macro call used to stuff the Knob event's long words:

_Stuf f KnobEvent (w1, w2, instrunment, knob, val ue)

Macro calls used to extract fields from the Knob event's long words:

Xinstrument(m 1)
_KnobVal ue(m 1)
_KnobKnob(m I)

December 21, 1994 Page 177

QuickTime 2.0 SDK: Toolbox Changes

COMPONENT INTERFACES

The Note Allocator, Tune Player and Music Component APIs are described in the
following sections.

Tune Player

The QuickTime Music Architecture Tune Player component is used to play sequences of
notes and Rest event data in a straightforward manner.

An application need only open an instance of the Tune Player component, call
TuneSet Header () with the appropriate header data, and call TuneQueue() with the
desired sequence data.

The Tune Player will handle all timing necessary to play a sequence of notes and rests. In
addition, the Tune Player provides services to set the volume, and to stop and restart an
active sequence.

Note: It is often easier to use the QuickTime Toolbox to play a movie that contains
music data rather than utilizing the Tune Player directly.

The Tune Player component provides alayer of abstraction from the actual underlying
synthesizer components. This allows the application to select musical components at a
genera level and allows the Tune Player to pick the Instrument that is both available and
best fits the application's request.

The Tune Player is also used to specify details about atune sequence, modify time base
and time scale and get detailed information about actual Instrument selections.

Page 178 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Sequence Data

TuneSetHeader

The TuneSet Header () function prepares the Tune Player to accept
subsequent music sequences by defining one or more Parts used by
sequence Note events.

pascal Component Result TuneSet Header
(TunePl ayer tp,
unsi gned | ong *header);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*header A pointer to alist of NoteRequest (Gener al ,
subt ypel) eventsterminated by an end marker.

DESCRIPTION

The TuneSet Header () functionisthefirst QMA call inamusic
sequence. The *header parameter pointsto one or moreinitialized
General events.

The General event, described above, is composed of a group of long words
and used to define the Parts available to subsequent Note events by the
TuneQueue() calls. The *header parameter must conclude with an End
Marker event.

Only one call to TuneSet Header () isrequired. Each TuneSet Header ()
call resets all previous Genera events.

ERROR CODES

not eChannel Not Al | ocat edErr
t unePar seErr
Not eAl | ocat or errors

December 21, 1994 Page 179

QuickTime 2.0 SDK: Toolbox Changes

TuneQueue

The TuneQueue() function places a sequence of eventsinto the play queue
to be played.

pascal Component Result TuneQueue
(TunePl ayer tp,
unsi gned | ong *tune,
Fi xed tuneRate
unsi gned | ong
tuneStartPosition,
unsi gned | ong
t uneSt opPosi ti on,
unsi gned | ong queueFl ags,
TuneCal | BackUPP cal | BackPr oc,
| ong ref Con)

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*tune Pointer to array of events, terminated by an end
marker.
t uneRat e Fixed point speed at which to play the sequence.

0x00010000 is the “normal” speed.

tuneStartPosition o
Sequence starting time.

t uneSt opPosi ti on o
Sequence ending time.

queueFl ags

kTuneSt ar t Now Start after buffer implied. Play even
if another sequence is playing.

kTuneDont O i pNot es o]
Allow notes to finish durations

outside sample.

kTuneExcl udeEdgeNot es
Don't play notes that start at end of

tune.

kTuneQui ckSt art
Leave all controllers where they are,

ignore start time.

Page 180 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

kTuneLoopUnti |

cal | BackProc

ref con

DESCRIPTION

Loop aqueued tuneif there's nothing
elsein the queue.

Points to your callback function.
Y our callback function must have the following
form:

pascal void MyCal | BackProc
(Qrcal I Back cb, long refcon);

See “ Callback Event Functions’ on page 2-364 for
details.

Contains areference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

Thet uneSt art Posi tion andt uneSt opPosi ti on specify, in time units
numbered from zero for the beginning of the sequence, which part of the
gueued sequenceto play. To play al of it, pass 0 and OxFFFFFFFF

respectively.

If queueFlags = kTuneStartNow, the sequence will immediately begin
playing. If there is a sequence currently playing, the newly queued
sequence will begin as soon as the active sequence ends.

ERROR CODES

tunePl ayer Ful | Err
Ti meBase errors

December 21, 1994

Page 181

QuickTime 2.0 SDK: Toolbox Changes

Sequence Control

The following functions provide control over the Tune Player's current music sequence.

TuneStop
The TuneSt op function stops a currently playing sequence.
pascal Component Result TuneStop
(TunePl ayer tp,
| ong st opFl ags);
tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
st opFl ags Must be zero.
ERROR CODES
None
Page 182

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

TuneGetVolume

The TuneGet Vol une function returns the volume associated with the entire
sequence.

pascal Conponent Result TuneGCet Vol une
(TunePl ayer tp);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

DESCRIPTION

The TuneGet Vol urre function's return value holds avalue from 0.0 to 1.0.
Individual Instruments within the sequence maintain their current volume
levels.

ERROR CODES

None

TuneSetVolume

The TuneSet Vol unme function sets the volume for the entire sequence.

pascal Component Result TuneSet Vol une
(TunePl ayer tp, Fixed volune);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
vol ume 16.16 Fixed.

DESCRIPTION

The TuneSet Vol ume function sets the volume level of the active sequence
to the value of the vol ume parameter ranging from 0.0 to 1.0.

Note: Individual Instruments within the sequence can maintain
independent volume levels.

ERROR CODES
Not eAl | ocat or €rrors.

December 21, 1994 Page 183

QuickTime 2.0 SDK: Toolbox Changes

TuneGetTimeBase

The TuneGet Ti neBase function returns the current sequence TimeBase.
(TimeBase calls are described in the QuickTime tool box (need vol name))

pascal Conponent Result TuneGet Ti meBase
(TunePl ayer tp, TineBase *thb);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*th Aninitialized TimeBase object.
DESCRIPTION

The TuneGet Ti meBase function returns the current TimeBase value used
to control the sequence timing. The sequence may be controlled in several
ways through its timebase. The rate of playback may be changed, or the
TimeBase may be slaved to adifferent clock or TimeBase than the default
of real time.

ERROR CODES

none

Page 184 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

TuneGetTimeScale

The TuneGet Ti meScal e function returns the current time scale, in units-
per-second, for the specified Tune Player instance.

pascal Component Result TuneCet Ti neScal e
(TunePl ayer tp,
Ti meScal e *scal e);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
*scal e An initialized TimeScale object.
ERROR CODES

none

TuneSetTimeScale

The TuneSet Ti meScal e function sets the time scale, in units-per-second,
used by for the specified Tune Player instance.

pascal Component Result TuneSet Ti neScal e
(TunePl ayer tp,
Ti neScal e scal e);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
scal e The time scale value to be used.

DESCRIPTION

The TuneSet Ti meScal e function sets the time scale data used by the Tune
Player's sequence data when interpreting time based events.

ERROR CODES

none

December 21, 1994 Page 185

QuickTime 2.0 SDK: Toolbox Changes

Tunel nstant

The Tunel nst ant function plays the particular sequence events active at
the position specified by TunePosition.

pascal Conponent Result Tunel nst ant
(TunePl ayer tp,
unsi gned | ong *tune,
| ong tunePosition)

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*tune Pointer to tune sequence data.
t unePosi ti on Position within tune sequence data.
DESCRIPTION

The Tunel nst ant function plays the notes that are “on” at the specified
point in the sequence. The notes are started then |eft playing upon return.
The notes may be silenced by calling TuneStop. Thiscall is useful for
enabling user “scrubbing” on a sequence.

ERROR CODES

none

Page 186 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

TunePreroll
The TunePrerol | function attemptsto lock down all Tune Player
resources necessary in preparation of playing Tune Player sequence data.
pascal Conponent Result TunePreroll
(TunePl ayer tp);
tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
DESCRIPTION
The TunePrerol | function attempts to reserve note channels for each Part
in the sequence.
ERROR CODES
NAPr er ol | errors
TuneUnrall
The TuneUnr ol | function releases any note channels resources that may
have been locked down by previous callsto TunePr eRol | for this Tune
Player.
pascal Component Result TuneUnrol |
(TunePl ayer tp);
tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
ERROR CODES

NAUnr ol | errors
Channel Information

December 21, 1994 Page 187

QuickTime 2.0 SDK: Toolbox Changes

TuneGetl ndexedNoteChannel

The TuneGet | ndexedNot eChannel function returns information about the
actual Instrument associated with the index passed (refer to
TuneSet Header).

pascal Conponent Result TuneCet | ndexedNot eChanne
(TunePl ayer tp, short i,
Not eChannel *nc);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

[Note channdl index.
*nc Allocated initialized note channel.
DESCRIPTION

The Tune Player allocates note channels that best satisfy the requested
Instrument in the tune header. The application may use this call to
determine which music device was actually used for each note channel.

The index is defined by the application and used initially in the
TuneSet Header () call inthe Genera event. The resulting note channel
isused by the Nanot eChannel I nfo () call allowing access to the actual
music component allocated by the Tune Player.

ERROR CODES

none

Page 188 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

TuneGetStatus

The TuneGet St at us returns an initialized structure describing the state of
the Tune Player instance.

pascal Component Result TuneCet St at us
(TunePl ayer tp,
TuneSt at us *status);

tp Y ou obtain the Tune Player identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*st at us An initialized TuneStatus structure.

struct TuneStatus {
unsi gned | ong *tune;
unsi gned | ong *tunePtr
Ti meVal ue tine;
short queueCount;
short queueSpots;
Ti meVal ue queueTi ne;
| ong reserved[3];

sequence starting event
event currently playing
current rel to start
nunber of seq queued
nunber of avail slots
total time used / queue

~ Y~ Y~ Y~~~

ERROR CODES

none

December 21, 1994 Page 189

QuickTime 2.0 SDK: Toolbox Changes

Note Allocator

To play asingle note, an application must open an instance of the Note Allocator
component and call NANewNot eChannel () with a Not eRequest structure - typically to
request a standard Instrument within the General MIDI Instrument set (refer to the
Appendix). With an open note channel, the application can call NAPI ayNot e() while
specifying the note's pitch and velocity. The note will then be played and remain playing
until asecond call to NAPI ayNot e() IS made specifying the same pitch, but with a
velocity of zero. The velocity of zero will cause the note to stop.

There are calls for registering and unregistering a Music Component. During registration,
the connections for that device are specified (typically, the connections are the MIDI
Manager port and client IDs). Thereisalso acall for querying the Note Allocator for
registered devices, so that an application can offer a selection of the existing devicesto
the user.

Secondly, the Note Allocator provides an application level interface for requesting note
channels with particular attributes. A note channel is similar in some ways to a Sound
Manager sound channel; it needs to be created and disposed, and can receive various
commands.

To create a note channel, the client specifies the desired polyphony and the desired tone.
The Note Allocator will return a note channel that best satisfies the request. Procedural
interfaces are provided to play notes and alter controller settings on the note channel.

Typically, an application will access Music Components through the Note Allocator,
rather than directly.

Lastly, thereisan “Instrument picker,” which provides a standard user-interface for
choosing an Instrument sound.

The Note Allocator isimplemented as a component. To use it, the application must find
the component and open an instance of it. When that instance is closed, any note channels
created with that instance are disposed.

Note Channel Allocation and Use

Note channel allocation will create a note channel by selecting and allocating a Part,
within a synthesizer based on the tone requested. It also provides detailed information
about an allocated note channel, and allows configuration of, and access to, external
MIDI devices.

Note channel use will play individual notes, apply a specified controller to the allocated
note channel, provide access to Knobs to adjust a Part's characteristics, select an
Instrument based on a required tone, and modify or change the Instrument type on an
existing note channel.

Page 190 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NANewNoteChannel

The NaNewNot eChannel function requests a new note channel with the
qualities described in the not eRequest structure.

pascal Conponent Result NANewNot eChanne
(Not eAl | ocat or na,
Not eRequest *not eRequest,
Not eChannel *out Channel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*not eRequest Attributes of note request.

* out Channel New note channel handle.

struct Not eRequest {
| ong pol yphony;
Fi xed typi cal Pol yphony;
ToneDescri ption tone;

b

struct ToneDescription {
CSType synt hesi zer Type;
Str31 synthesi zer Nane;
Str31 instrument Nane;
| ong i nstrunent Nurber ;
| ong gmNumnber ;

s

DESCRIPTION

The NaNewNot eChannel function may return avaluein out Channel , even
if not eChannel request cannot initialy be satisfied.

The Note Channel may become valid at alater time, as other Note
Channels are released or other music components are registered. If an error
occurs the not eChannel will beinitialized to NIL.

ERROR CODES

none

December 21, 1994 Page 191

QuickTime 2.0 SDK: Toolbox Changes

NADisposeNoteChannel

The NADI sposeNot eChannel function deletes the specified note channel.

pascal Conponent Result NADi sposeNot eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to be disposed.
ERROR CODES

i Il egal Not eChannel Err

Page 192 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAGetNoteChannellnfo

The NAGet Not eChannel | nf o function returns the index of the Music
Component for the allocated channel.

pascal Conponent Result NAGet Not eChannel I nfo
(Not eAl | ocat or na,
Not eChannel not eChannel ,
| ong *i ndex,
| ong *part)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to get info on.

*i ndex Music component index.

*part Music component Part pointer.
DESCRIPTION

TheNAGet Not eChannel | nf o function allows direct access to the Music
Component allocated to the note channel by the Note Allocator. The index
will beinvalid if music components are subsequently registered or

unregistered (refer to the General Event used to initially install the Music
Component).

ERROR CODES

i I | egal Not eChannel Err

December 21, 1994 Page 193

NAUseDefaultM I DI I nput

QuickTime 2.0 SDK: Toolbox Changes

The NaUseDef aul t M DI | nput function defines an entry point to service
external MIDI device events.

pascal Component Result NAUseDef aul t M DI | nput

na

r eadHook

ref con

flags
DESCRIPTION

(Not eAl | ocat or na,

Musi cM DI ReadHookUPP r eadHook,
| ong ref Con,

unsi gned | ong fl ags)

Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

Process pointer for MIDI service.

Contains areference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

Must contain zero.

The NAUseDef aul t M DI | nput function specifies an application's
procedure to service external MIDI events. The specified application's
procedure call, defined by r eadHook, will be called when the external
default MIDI device hasincoming MIDI data for the application.

ERROR CODES

m di Manager Absent Err

Page 194

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAL oseDefaultM 1 DI I nput

The NALoseDef aul t M DI | nput function removes the external default
MIDI service procedure call, if previously defined by
NAUseDefaultMIDIInput.

pascal Conponent Result NALoseDefaul t M DI | nput
(Not eAl | ocat or na);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

ERROR CODES

-1 Returned if default M1DI was not in use.

December 21, 1994 Page 195

QuickTime 2.0 SDK: Toolbox Changes

NAPTr erolINoteChannel

The NAPr er ol | Not eChannel function attempts to reallocate the note
channdl, if it wasinvalid previously.

pascal Conponent Result NAPrerol | Not eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to be re-allocated.
DESCRIPTION

The NAPr er ol | Not eChannel function attempts to reallocate the note
channd, if it wasinvalid previoudly. It could have been invalid if there

were no available voices on any registered music components when the
note channel was created.

ERROR CODES

i Il egal Not eChannel Err
not eChannel Not Al | ocat edErr
Musi cConponent errorsfor Fi ndTone, Set | nst r ument Nunber

Page 196 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAUnNrollINoteChannel

The NAUnr ol | Not eChannel function marks a note channel as available to
be stolen.

pascal Conponent Result NAUnr ol | Not eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to be unrolled.

DESCRIPTION

The MIDI channel it resides on, and the synthesizer used to play it, might
be stolen by another note channel. As an example, a document whose
window is moved to the background might courteously unroll its note
channels.

ERROR CODES

i Il egal Not eChannel Err

December 21, 1994 Page 197

QuickTime 2.0 SDK: Toolbox Changes

NAEngageNoteChannel

The NAEngageNot eChannel function enables or engages the specified note
channdl.

pascal Conponent Result NAEngageNot eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to engage.

DESCRIPTION
The NAEngageNot eChannel function engages the specified note channel if
itiscurrently disengaged. Any difference in notes or controllers between

the engaged state and the disengaged state are sent to the music
component. A note channel is engaged by default.

ERROR CODES

i Il egal Not eChannel Err

Page 198 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NADisengageNoteChannel

The NADi sengageNot eChannel function causes a note channel to ignore
incoming note and controller commands.

pascal Conponent Result NADi sengageNot eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel ,
| ong sil enceNot es);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to disengage.

si | enceNot es Silences currently playing notes.
If si | enceNot es is 1, then any notes currently
playing are silenced.

DESCRIPTION

The NADi sengageNot eChannel function isuseful for fast-forwarding or
rewinding to a specific spot in a score.

While the note channel is disengaged, the state of notes and controllersis
still monitored, so that when the channel is engaged, the notes and
controllers will be playing asif the note channel had been continuously
engaged.

ERROR CODES

i I | egal Not eChannel Err

December 21, 1994 Page 199

QuickTime 2.0 SDK: Toolbox Changes

NAResetNoteChannel

The NAReset Not eChannel function turns“off” all currently “on” notes on
the note channel, and resets all controllersto their default values.

pascal Conponent Result NAReset Not eChannel
(Not eAl | ocat or na,
Not eChannel not eChannel);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Specified note channel to reset.

DESCRIPTION

The NAReset Not eChannel function resets the specified note channel by
turning “off” any note currently playing. Any controller applied to the note
channel isalso reset to its default state. The effects of the

NAReset Not eChannel call are propagated down to the allocated Part
within the appropriate Music Component.

ERROR CODES

Page 200

i Il egal Not eChannel Err
errors from Musi cReset Part ()

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NASetNoteChannelVVolume

The NASet Not eChannel Vol une function sets the volume on the specified
note channel.

pascal Conponent Result NASet Not eChannel Vol ume
(Not eAl | ocat or na,
Not eChannel not eChannel ,
Fi xed vol une);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Specified note channel to reset.
vol ure 16.16 volume vaue.
DESCRIPTION

The NASet Not eChannel Vol ume function sets the volume for the entire
note channel, which is different than a controller 7 (volume controller)
Setting.

Both volume settings allow fractional values of 0.0 to 1.0. Each value will
modify the other. Example: controller set to .5 and

NA SetNoteChannel Volume of .5 would result in a.25 volume level.

ERROR CODES

i Il egal Not eChannel Err

December 21, 1994 Page 201

QuickTime 2.0 SDK: Toolbox Changes

NAPlayNote
The NAPI ayNot e function plays a musical note on the specified note
channel with a particular pitch and velocity.
pascal Conponent Result NAPI ayNot e
(Not eAl | ocat or na,
Not eChannel not eChannel ,
I ong pitch, long velocity);
na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.
not eChannel Specific note channel to play note.
pitch 0-127 where 60 ismiddle C.
256 (0x1.00) to 32767 (0x7f.00) are fixed PT
values.
vel ocity Value of 0 = silence.
DESCRIPTION
The NAPI ayNot e function plays a specific note. If the pitch is anumber
from 0 to 127, then it isthe MIDI pitch, where 60 is middle-C. If the pitch
is apositive number above 65535, then the value is afixed point pitch
value. Thus, microtonal values may be specified. The range 256 (0x01.00)
through 32767 (0x7f.00), and all negative values, are not defined, and
should not be used.
The velocity refers to how hard the key was struck (if performed on a
keyboard-instrument), typically this translates directly to volume, but on
many synthesizers this also subtly alters the timbre of the tone.
ERROR CODES

Page 202

i I | egal Not eChannel Err

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NASetController

The NASet Cont rol | er function changes the specified controller on the
note channel to a particular value.

pascal Conponent Result NASet Controll er
(Not eAl | ocat or na, Not eChanne
not eChannel
short control | er Nunber, short
control | erVal ue);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel on which to change controller.

control | er Nunber _
Which controller.

control | erVval ue
Value for controller.
All controllers are reserved for use by Apple.

enum Musi cControl lers {
kCont rol | er Modul at i onWhee
kControl |l erBreath
kCont rol | er Foot
kControl | er Port anent oTi me
kCont rol | er Vol une
kControl | er Bal ance
kControl | er Pan
kControl | er Expressi on

kControl | er Pi t chBend 32, /* Apple unique */

1 1 1 e 1 O I I 1 A | O | B A B A A I
w
w

kControl | er Aft er Touch /* Appl e uni que */
kControl | er Sustain 64,
kControl | er Portanent o 65,
kCont rol | er Sost enut o 66,
kCont rol | er Sof t Pedal 67,
kControl | erReverb 91,
kControl |l er Trenol o 92,
kCont rol | er Chor us 93,
kControl |l erCel este 94,
kCont rol | er Phaser 95

December 21, 1994 Page 203

QuickTime 2.0 SDK: Toolbox Changes

ERROR CODES

egal Not eChannel Err

ill
illegal ControllerErr

Page 204 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NASetK nob

The NASet Knob function sets a particular Knob, on the specified note
channel, to a particular value.

pascal Component Result NASet Knob
(Not eAl | ocat or na,
Not eChannel not eChannel ,
| ong knobNunber,
| ong knobVal ue)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel on which to change knob.
knobNumber Knob to be set.
knobVal ue Knob value to be set.

ERROR CODES

i Il egal Not eChannel Err
i Il egal KnobErr
i Il egal KnobVal uekrr

December 21, 1994 Page 205

QuickTime 2.0 SDK: Toolbox Changes

NAFindNoteChannelTone

The NAFi ndNot eChannel Tone function locates the best fitting Instrument
number on the note channel for thet oneDescri pti on requested.

pascal Conponent Result NAFi ndNot eChannel Tone
(Not eAl | ocat or na,
Not eChannel not eChannel ,
ToneDescri ption *td,
[ong *instrument Nunber) ;

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to search for fit.
*td Description for Instrument fit.

*i nstrument Nunber _ _
Instrument index of fit.

struct ToneDescription {
OSType synt hesi zer Type;
Str31 synthesi zer Nane;
Str31 instrunment Nane;
| ong i nstrument Nunber ;
| ong gmNumber ;

ERROR CODES

i Il egal Not eChannel Err
illegal ControllerErr

Page 206 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NASetNoteChannell nstrument

The NASet Not eChannel | nst rument function changes the Instrument
setting on the note channel to the Instrument requested.

pascal Conponent Result NASet Not eChannel | nst r unment
(Not eAl | ocat or na,
Not eChannel not eChannel ,
short instrument Nunber);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

not eChannel Note channel to apply Instrument.

i nstrunent Nunber
Instrument number to apply.

ERROR CODES

i Il egal Not eChannel Err
Errors from Musi cSet | nst r ument Nurber ()

December 21, 1994 Page 207

QuickTime 2.0 SDK: Toolbox Changes

Miscellaneous Interface Tools
The miscellaneous interface tools provide a set of user interface dialogs to select

individual Instruments, select Instruments within an arrangement and to provide
copyright information for a particular Instrument.

NAPicklnstrument

The NAPi ckl nst runment function presents a user interface for picking an
I nstrument.

pascal Component Result NAPi ckl nstrument
(Not eAl | ocat or na,
Modal Filter UPP filterProc,
StringPtr pronpt,
ToneDescri ption *sd,
unsi gned | ong fl ags,
I ong ref Con, Ptr *reservedl,
[ong *reserved?2)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

filterProc Standard modal filter upp*.
pr onpt Dialog box prompt “New Instrument..”.
*sd Tone description initialized by pick.
fl ags Dialog flagsto limit user options. Refer to list
below.
kPi ckDont M x Don't show Drum.

kPi ckSameSynt h Don't allow options to other synths.

refcon Contains areference constant value. The Movie
Toolbox passes this reference constant to your
error-notification function each time it calls your

function.
*reservedl Must contained zero.
*reserved?2 Must contained zero.

Page 208 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

struct ToneDescription {
CSType synt hesi zer Type;
Str31 synthesi zer Nane;
Str31 instrument Nane;
| ong i nstrunent Nurber ;
| ong gmNumnber ;

Instrument Picker

Mew instrument for part?

— Any General MIDI |

Category: [Piano_|

Instrument:| Acoustic Grand Piano |

A

DESCRIPTION
The two flag values limit user options displayed within the dialog box.
kPi ckDont M x will not display a mix types of synthesizer types. For
example, if the current synthesizer isa Drum, the kPi ckDont M x flag will
display only available Drum Parts.

The kPi ckSaneSynt h will allow selections only within the current
synthesizer.

ERROR CODES

-1 Problem opening dialog.

December 21, 1994 Page 209

QuickTime 2.0 SDK: Toolbox Changes

NAStuffToneDescription

The NASt uf f ToneDescri pti on function initializes the tone description
structure with the details of the note channel specified by the gmNumber.

pascal Conponent Result NASt uf f ToneDescri ption
(Not eAl | ocat or na,
| ong gmN\umnber,
ToneDescri ption *td)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

gmN\unber I nstrument number.
*td Tone description to be stuffed.
ERROR CODES

Page 210

Errorsfrom Musi cGet | nst r unent Nanes and calls to Genera MIDI Music
Component.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAPickArrangement

The NAPi ckAr r angerrent function displays a dialog to allow Instrument
selection.

pascal Conponent Result NAPi ckArrangenent
(Not eAl | ocat or na,
Modal Fil ter UPP filterProc,
StringPtr pronmpt,
| ong part Count,
Not eRequest *not eRequest Li st ,
Track t,
StringPtr songNane)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

filterProc Standard modal filter upp*.
pr onpt Dialog box prompt.
par t Count Instrument selection count.

*not eRequest Li st _ _
List of Instruments for selection.

t Arrangement track number.

songNane Human readabl e string name displayed in dialog.

struct Not eRequest {

| ong pol yphony;
Fi xed typi cal Pol yphony;
ToneDescri ption tone;

ERROR CODES

-1 Problem opening dialog.

December 21, 1994 Page 211

QuickTime 2.0 SDK: Toolbox Changes

NACopyrightDialog

The NACopyri ght Di al og function displays a copyright dialog with
information specific to amusic device.

pascal Conponent Result NACopyri ght D al og
(Not eAl | ocat or na,
Pi cHandl e p, StringPtr author,
StringPtr copyright,
StringPtr other,
StringPtr title,
Modal Fil ter UPP filterProc,
| ong ref Con)

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

p Picture image resource handle for dialog.

aut hor Author information.

copyri ght Copyright information.

ot her Any additional information.

title Title information.

filterProc Standard modal filter upp*.

refcon Contains areference constant value. The Movie

Toolbox passes this reference constant to your
error-notification function each timeiit calls your
function.

ERROR CODES

-1 Problem opening dialog.

Page 212 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

System Configuration

System configuration provide calls which create and maintain a database of Music
Components, save configuration information in a“Music Preferences’ file and establish
connections to external MIDI devices.

NARegister MusicDevice

The NARegi st er Musi cDevi ce function registers a music component with
the Note Allocator.

pascal Component Result NARegi st er Miusi cDevi ce
(Not eAl | ocat or na,
unsi gned | ong synt hType,
Str31 nane,
Synt hesi zer Connecti ons *connecti ons);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

synt hType Subtype of the music component.
name Human readabl e synthesizer name.
*connect i ons MIDI connection structure.

struct Synthesi zer Connections {
OSType clientlD;
OSType i nput Port | D
OSType out put Port | D
| ong M DI Channel
[ong fl ags;
| ong reserved[3];

DESCRIPTION

The synt hType is the same as the music component’ s subtype. The name
isameans of distinguishing multiple instances of the same type of device.
The nane parameter is also a human readable version of the synthesizer
name. If the synt hNane is not passed, the name defaults to the name of the
music component type. The name will aso appear in the Instrument picker
dialog.

The connect i ons parameter specifies the hardware connections to the
device.

December 21, 1994 Page 213

QuickTime 2.0 SDK: Toolbox Changes

TheclientlD,inputPortlDand out put Port | Dare MIDI manager
identifiers. The M DI Channel isthe MIDI system channel value. The
fl ags and r eser ved values must be zero.

ERROR CODES
Synt hesi zerErr If too many synths registered.
m di Manager Absent Er r If MIDI not available.

Page 214 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAUnNregister MusicDevice

The NAUNnr egi st er Musi cDevi ce function removes a previously registered
music component from the Note Allocator.

pascal Conponent Result NAUnregi st er Musi cDevi ce
(Not eAl | ocat or na,
unsi gned | ong synt hType,
Synt hesi zer Connecti ons *connecti ons);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

synt hType Synthesizer type string.
*connecti ons MIDI connection structure.
ERROR CODES

Not eAl | ocat or errors from NAReset Not eChannel

errors from d oseConponent

December 21, 1994 Page 215

QuickTime 2.0 SDK: Toolbox Changes

NAGetRegisteredM usicDevice

The NAGet Regi st er edMusi cDevi ce function returns specifics about
music components registered to the specified Note Allocator instance.

pascal Conponent Result NAGCet Regi st eredMusi cDevi ce
(Not eAl | ocat or na, short index,
unsi gned | ong *synt hType, Str31 nane,
Synt hesi zer Connecti ons *connecti ons,
Musi cConponent *nt);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

i ndex 0 or 1 - max music components.

*synt hType Synthesizer type string.

nane Human readable synthesizer name.

*connect i ons MIDI connection structure.

*nc Music component instance.
DESCRIPTION

Ani ndex value of zero will cause NAGet Regi st er edMusi cDevi ce tO
return atotal count of registered music components. An index value of 1
through the maximum number of music components will return
information about the music component specified by the index.

The music component information returned by this call provides direct
access to the particular music component. Refer to the function callsin the
Music Component Interface section for additional details.

ERROR CODES

none

Page 216 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NAGetDefaultM DI I nput

The NASGet Def aul t M DI | nput function is used to obtain external MIDI
connection information.

pascal Conponent Result NAGet Def aul t M DI | nput
(Not eAl | ocat or na,
Synt hesi zer Connecti ons *sc);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*sC MIDI connection structure.

struct Synthesi zer Connecti ons ({
OSType clientlD;
OSType i nput Port | D
OSType out put Port | D
| ong M DI Channel
l ong fl ags;
| ong reserved[3];

DESCRIPTION

The NASGet Def aul t M DI | nput function returns an initialized

Synthesi zerConnections structure containing information about any
default external MIDI device attached to the system. The external MIDI
device provides note input directly to the Note Allocator.

ERROR CODES

none

December 21, 1994 Page 217

QuickTime 2.0 SDK: Toolbox Changes

NASetDefaultM I DI Input

The NASet Def aul t M DI | nput function initializes an external MIDI
device used to receive external note input.

pascal Conponent Result NASet Def aul t M DI | nput
(Not eAl | ocat or na,
Synt hesi zer Connecti ons *sc);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

*sC MIDI connection structure.
DESCRIPTION

The Synt hesi zer Connect i ons structure memberscl i ent | D,

i nput Por t | Dand out put Port | D (described in above) are MIDI
manager identifiers. The M DI Channel isthe MIDI system channel value.
Thefl ags and r eser ved values must be zero.

ERROR CODES

none

Page 218 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

NASaveM usicConfiguration

The NASaveMusi cConf i gur at i on savesthe current list of registered
devicesto afile.

pascal Conponent Result NASaveMusi cConfi guration
(Not eAl | ocat or na);

na Y ou obtain the Note Allocator identifier from the
Components Manager's OpenComponent function.
See the chapter “ Component Manager” in Inside
Macintosh: More Macintosh Toolbox for details.

DESCRIPTION

The NASaveMusi cConf i gur ati on savesthe current list of registered
devicesto afile. Thisfileisread whenever a Note Allocator connection is
opened, restoring the previously configured list of devices. Thefileis
called “Music Preferences’ and is placed in the “ Preferences’ subfolder of
the system folder.

ERROR CODES

-1 Returned if problem opening or creating the Music
Preferencesfile in the system folder.

December 21, 1994 Page 219

QuickTime 2.0 SDK: Toolbox Changes

Music Component Interface

The Music Components are not usually called directly unless an application is required to
access the music device directly. Thisis achieved by first allocating a noteChannel. By
using NAGet Not eChannel | nf o() and NAGet Regi st er edMusi cDevi ce(), the application
can locate the specific music component and Part number.

Thislayer is of interest to application developers who wish to access low-level
functionality of synthesizers and for developers of synthesizers (nubus cards, MIDI
devices or software algorithms) who wish to make the capabilities of their synthesizers
available to QuickTime.

Synthesizer Access

Music Component synthesizer access provides services to obtain specific information
about the current synthesizer and obtain a best Instrument fit for a requested tone from
the available Instruments within the synthesizer. The synthesizer access can also play a
note with a specified pitch, volume and duration, get and set a particular synthesizer
Knob, obtain default synthesizer Knob information and get and set external MIDI
procedure name entry points.

Page 220 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicGetDescription

The Musi cGet Descri pt i on function returns a structure describing the
synthesizer controlled by the Music Component device.

pascal Conponent Result Musi cGet Description
(Musi cComponent nt,
Synt hesi zer Descri ption *sd);

nc Music component instance returned by
NAGetRegisteredMusicDevice().
*sd Pointer to synthesizer description.
struct Synthesi zerDescription {
CSType type;
Str31 name;

unsi gned | ong fl ags;

unsi gned | ong voi ceCount ;

unsi gned | ong part Count ;

unsi gned | ong i nstrunent Count ;
unsi gned | ong nmodi fi abl el nst runment Count ;
unsi gned | ong channel Mask;

unsi gned | ong drunPart Count ;

unsi gned | ong dr umCount ;

unsi gned | ong nmodi fi abl eDr unCount ;
unsi gned | ong dr unChannel Mask;
unsi gned | ong out put Count ;

unsi gned | ong | at ency;

unsi gned | ong control |l ers[4];

unsi gned | ong gm nstrunent s 4] ;
unsi gned | ong gnDruns| 4] ;

DESCRIPTION
The Musi cGet Descri pt i on function returns a structure describing the
specified music component device. The Synt hesi zer Descri pti on record
isfilled out by the particular music component.

ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 221

MusicFindTone

QuickTime 2.0 SDK: Toolbox Changes

The Musi cFi ndTone function returns an Instrument number based on a
tone description.

pascal

*td

Conponent Resul t Musi cFi ndTone

(Musi cComponent nt,
ToneDescri ption *td,

[ong *instrument Nunber,
long *fit);

Music component instance returned by
NAGetRegisteredMusicDevice().

Pointer to a tone description.

*i nstrument Nunber

*fit

Page 222

I nstrument number of match.

Returns the fit quality.

kl nst runent Mat chSynt hesi zer Type

The requested synthesizer type was
found.

kl nst r unent Mat chSynt hesi zer Nane

The particular instance of the
synthesizer requested was found.

kl nst runent Mat chNane
The toneDescription's I nstrument

name matched an appropriate
Instrument on the synthesizer.

kl nstrunent Mat chNunber
The toneDescription's I nstrument

number matched an appropriate
Instrument on the synthesizer.

kl nst runment Mat chGvNunber
The General MIDI equivalent was

used to find an appropriate
Instrument on the synthesizer.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

t ypedef struct

{
OSType synt hesi zer Type; /* conmponent subtype */
Str31 synthesizerNanme; /* instants nane of synth */

Str31 instrument Nane; /* human use nanme */

long instrunmentNumber; /* instrunent # if synth-type
mat ches */

| ong gmNumber ; /* Best natching general MD
nunmber */

} ToneDescription;

DESCRIPTION
The Musi cFi ndTone function returns the best-matching I nstrument
number for this device. How close a match was attained is returned in
“fit”.
The Music component should search in the following order:
1 If the synthesizer isageneral MIDI device, use the gmunber .

2 If synt hesi zer Type matches, first try to match i nst r unent Nane,
elsetry i nst rument Nurber . Failing that, try the gniNunber .

3 If synt hesi zer Type doesn’'t match, try thei nst r unent Nane, then the
Instrument number.

If none of these rules apply, or the fields are “blank” (zero for the type or
numeric fields, or zero-length for the strings) then the call return
Instrument 1 and afit value of zero. The synthesizerName field may be
ignored by the component; it is used by the Note Allocator when deciding
which music device to use.

ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegallnstrumentErr

The Instrument number is out of valid range.

December 21, 1994 Page 223

QuickTime 2.0 SDK: Toolbox Changes

MusicPlayNote

The Musi cPl ayNot e function plays a specific note on the specified Part
characterized by its pitch and velocity.

pascal Conponent Result MusicPl ayNot e
(Musi cConponent nt, |ong part,
| ong pitch,
| ong vel ocity);

nmc Music component instance returned by
NAGetRegisteredMusicDevice().
part Part number to apply controller.
pi tch 0-127 MIDI pitch. > 65535 microtonal.
vel ocity 0-127 where 0 = silence.
DESCRIPTION

The Musi cPl ayNot e function is used to play notes with their pitch, if
MIDI, specified by a number from O to 127, if aMIDI pitch, where 60 is
middle-C. If the pitch is a positive number above 65535, then the value is
afixed point pitch value. Thus, microtonal values may be specified. The
range 256 (0x01.00) through 32767 (0x7f.00), and al negative values, are
not defined, and should not be used.

Velocity refers to how hard the key is struck (if performed on a keyboard-
Instrument), typically this translates directly to volume, but on many
synthesizers this also subtly alters the timbre of the tone.

The current note continues to play until a Musi cPl ayNot e() with the same
pitch and velocity of O turns the note off.

ERROR CODES

Page 224

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicGetKnob

The Musi cGet Knob function returns the value of the specified synthesizer
Knob.

pascal Conponent Result Musi cGet Knob
(Musi cComponent nt,
| ong knobNunber) ;

nmc Music component instance.
knobNunber Instrument Knob number.
DESCRIPTION

The Knob controls an aspect of the entire synthesizer, not limited or
specific to a Part or Instrument within the synthesizer.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal uekrr

The Knob value is outside its legal range, as
returned in its KnobDescription.

MusicSetK nob

The Musi cSet Knob function modifies the value of the specified
synthesizer Knob.

pascal Component Result Musi cSet Knob
(Musi cConponent nt,
| ong knobNunber,
| ong knobVal ue);

December 21, 1994 Page 225

QuickTime 2.0 SDK: Toolbox Changes

e Music component instance.

knobNunber Instrument Knob number.

knobVal ue Value for specified Knob.
DESCRIPTION

The Knob controls an aspect of the entire synthesizer, not limited or
specific to a Part or Instrument within the synthesizer.

ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for exampleif the MusicSetMIDIProc()

routine has not been called.

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

Page 226 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicGetK nobDescription

The Musi cGet KnobDescr i pti on function returns an initialized
KnobDescr i pt i on structure pointer for a synthesizer's Knob. The Knob
controls an aspect of the entire synthesizer, not limited or specific to a Part
or Instrument within the synthesizer.

pascal Component Result Musi cGet KnobDescri ption
(Musi cComponent nt,
| ong knobNunber,
KnobDescri pti on *nkd);

nmc Music component instance.

knobNumber Particular Knob.

* kd Pointer to KnobDescription.
DESCRIPTION

The Musi cGet KnobDescr i pti on function will return an initialized
KnobDescr i pt i on structure pointer. This structure will provide the
application default values associated with the particular Knob. This call
allows the Knob to be reset to some known, usable value.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

December 21, 1994 Page 227

QuickTime 2.0 SDK: Toolbox Changes

MusicGetMIDIProc

The Musi cGet M DI Pr oc function returns the currently active function call
used to process external MIDI notes.

pascal Conponent Result Musi cGet M DI Proc
(Musi cComponent nt,
Musi cM DI SendProcPtr *M DI SendPr oc,
| ong *ref Con);

nc Music component instance returned by
NAGetRegisteredMusicDevice().

*M DI SendPr oc Pointer into MIDI serial port call.

*refcon Contains areference constant value. The Movie

Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

DESCRIPTION
The Musi cGet M DI Pr oc function returns the active * M DI SendPr oc
pointer. This pointer provides afunction call initialized by QMA, and
provides access to an external MIDI port for serial communications. If the
port isuninitialized * M DI SendPr oc will return zero.

ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i Il egal Channel Err A MIDI channel value outside the valid range (1..16
or 0) has been passed.

Page 228 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicSetM DI Proc

The Musi cSet M DI Pr oc function initializes the MIDI SendProc value
specifying the procedure entry point for external MIDI seria
communications.

pascal Conponent Result Musi cSet M DI Proc
(Musi cComponent nt,
Musi cM DI SendProcPtr M DI SendPr oc,

| ong ref Con);
nc Music component instance returned by
NAGetRegisteredMusicDevice().
M DI SendPr oc MIDI serial port call pointer.
refcon Contains areference constant value. The Movie

Toolbox passes this reference constant to your
error-notification function each time it calls your
function.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i Il egal Channel Err
A MIDI channel value outside the valid
range (1..16 or 0) has been passed.

December 21, 1994 Page 229

QuickTime 2.0 SDK: Toolbox Changes

Instrument Control

Music Component Instrument access provides services that return or initialize a specified
Part to a particular Instrument, return an organized group of Instrument or Drum names
available, return the Instrument number assigned to a specified Part. In addition, the
Instrument access can store modified Parts into the modifiable Instrument store, get
detailed information about each available Instrument, and provide detailed default
settings for an Instrument's Knob settings.

Page 230 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

M usicGetl nstrument

The Musi cGet I nst runent returns a handle containing an initialized
| nst r ument Dat a structure for the specified Part.

pascal Conponent Result Musi cCetl nstrunent
(Musi cConponent nt, |ong part,
I nst runment Dat aHandl e *i H);

nmc Music component instance.
part Instrument Part number.
*iH Data handleinitialized by call.

struct InstrunmentData {
ToneDescri pti on tone;
| ong knobCount ;
| ong knob[1] ;
b

struct ToneDescription {
OSType synt hesi zer Type;
Str31 synthesi zer Naneg;
Str31 instrument Nane;
| ong i nstrunent Nunber ;
| ong gm\unber ;

1
Note: Thishandleisalocated in the caller’ s heap, and must be disposed by the caller.

DESCRIPTION

Instruments can be stored either to disk or in the synthesizer's User
Modifiable Instrument range.

Instrument data saved to disk, for example, and restored to the synthesizer

at alater time (Musi cSet I nst r unent) provides a means to modify and
restore Instruments between sessions.

ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

December 21, 1994 Page 231

QuickTime 2.0 SDK: Toolbox Changes

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

M usicSetl nstrument

The Musi cSet I nst runent function initializes the specified Part on the
synthesizer with the passed instrument data handle.

pascal Conponent Result Musi cSet | nstrunent
(Musi cConponent nt, | ong part,
I nst rument Dat aHandl e i H);

mc Music component instance.

part Instrument Part number.

iH Instrument data structure.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

M usicGetl nstrumentNumber

The Musi cGet | nst runent Nurmber function returns the Instrument number
currently assigned to that Part.

pascal Component Result Musi cGet | nstrunent Nunber
(Musi cConmponent nt,
| ong part);

mc Music component instance.

Page 232 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

part Part number containing Instrument.
ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for exampleif the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 233

QuickTime 2.0 SDK: Toolbox Changes

M usicSetl nstrumentNumber

The Musi cSet I nst runent Nunber function assigns a particular
Instrument, within the specified music component, to the specified Part.
The resulting Instrument number may be determined with the

Musi cFi ndTone() .

pascal Component Result Musi cSet | nstrument Number
(Musi cConponent nt, |ong part,
[ong i nstrument Nunber) ;

nmc Music component instance.
part Part number to be set.

i nstrunent Nunber
Instrument number used by Part.

DESCRIPTION

The Instrument number, resulting from the Musi cSet | nst r unment Nunber
function call, can be determined with Musi cFi ndTone() call.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegallnstrumentErr

The Instrument number is out of valid range.

Page 234 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicStor el nstrument

The Musi cSt or el nst runent puts whatever Instrument is on the specified
Part into the synthesizer’ s Instrument store.

pascal Component Result Musi cStor el nst runent

(Musi cConponent nt, | ong part,
[ong i nstrument Nunber) ;

nmc Music component instance.
par t Part to store Instrument.

i nst runment Nunber _
I nstrument number to be stored in Part.

DESCRIPTION

The I nst rument Number must be between 1 and the synthesizer’s
nodi fi abl el nst runent Count , as defined by the synthesizer description.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

illegallnstrumentErr

The Instrument number is out of valid range.

December 21, 1994 Page 235

QuickTime 2.0 SDK: Toolbox Changes

M usicGetl nstrumentNames

The Musi cGet | nst r ument Nanres function returns alist of Instrument
names known by the specified Music Component.

pascal Conponent Result Musi cGetl nstrunment Nanes
(Musi cComponent nt,
| ong nodifiabl el nstrunents,
Handl e *i nstrunment Nanes,
Handl e *i nstrunent Cat egorylasts,
Handl e *i nstrunent Cat egor yNanes)

nmc Music component instance returned by
NAGetRegisteredMusicDevice().

nodi fi abl el nstrunent s

Instrument count to return. A value of O will return
only afixed Instrument count. A value of 1 will
return the fixed and user modifiable Instrument
count.

*i nstrument Nanes _
The requested list of Instrument names formatted as
ashort followed by packed strings.

*inst runment Cat egorylLast s
A handle containing a group of short integers, the

first of which contains the number of shortsto
follow. Examples: {0} ,{ 1,20} {5,1,2,3,4,5}.

*i nst runment Cat egor yNanes
Instrument category names formatted as a short
followed by alist of names.
DESCRIPTION
The Musi cGet | nst r unent Names function returns alist of Instruments,
organized in groups. The Instrument list provides application
configuration information about the specified Music Component. The
information, and its format, is intended for application dialog support.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

Page 236 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

cant SendToSynt hesi zer Err

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 237

QuickTime 2.0 SDK: Toolbox Changes

MusicGetDrumNames

The Musi cGet Dr umNanes function returns alist of Drum names for the
music component. Unlike Musi cGet I nst r unent Names, which returns
names grouped in categories, Musi cGet Dr umNamres returnsasingle list
containing all available Drum names.

pascal Conponent Result Misi cGet Dr uniNanmes
(Musi cComponent nt,
| ong nodifiabl el nstrunents,
Handl e *i nstrument Nunber s,
Handl e *i nstrunment Nanes)

nmc Music component instance returned by
NAGetRegisteredMusicDevice().

modi fi abl el nstrunents
Maximum Drum count to return.

*instrument Nunmber s
Handle to Instrument number.

*inst rument Nanmes
Handl e to Instrument names.

DESCRIPTION
The Musi cGet Dr umNanes function returns asingle list of names. Thisis
unlike the Musi cGet I nst r unent Names call which returns a set of named
groups.
ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

Page 238 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

M usicGetl nstrumentAboutl nfo

The Musi cGet | nst r ument About | nf o function fills out a structure
providing information about a specific Part within a particular Instrument.
Thisisintended to provide copyright information about the synthesizer or
its sounds, and may be seen by the user by clicking the “About...” button
in the synthesizer picker.

pascal Conponent Result Musi cCetl nstrument About | nfo
(Musi cConmponent nt, | ong part,
I nst rument About I nfo *iai);

nmc Music component instance.
part Part number to return information.
*i ai Pointer to instrumentAboutlnfo.
struct Instrunment Aboutlnfo {

Pi cHandl e p;

St r 255 aut hor;

Str 255 copyri ght;

St r 255 ot her;

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 239

QuickTime 2.0 SDK: Toolbox Changes

MusicGetl nstrumentK nobDescription

The Musi cGet | nst runent KnobDescri pti on function returns an
initialized KnobDescr i pt i on structure pointer for the specified Instrument
Knaob.

pascal Conponent Result Musi cGetl nstrument KnobDescri ption
(Musi cComponent nt,
| ong knobNunber,
KnobDescri ption *nkd);

nmc Music component instance.
knobNunber Knob number to be retrieved.
*mkd Knob description structure pointer.

struct KnobDescription {
Str31 nane;
l ong | owval ue;
[ong hi ghVal ue;
| ong defaultVal ue;
long fl ags;

DESCRIPTION

The Musi cGet | nst runent KnobDescri pti on function's

KnobDescr i pti on structure provides the application with low, high and
default values for the specified Knob. Setting every Knob to its default
value will produce a simple generic sound.

ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i || egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob valueis outside itslegal range, as
returned in its KnobDescription.

Page 240 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicGetDrumK nobDescription

The Musi cGet Dr unknobDescr i pt i on function returns a pointer to an
initialized KnobDescr i pt i on structure for the specified Drum Knab.

pascal Conponent Result Misi cGet DrunKnobDescri ption
(Musi cComponent nt,
| ong knobNunber,
KnobDescri ption *nkd);

nmc Music component instance.

knobNunber Drum's Knob number.

*mkd Knob description structure.
DESCRIPTION

The Musi cGet DrunKnobDescri pt i on returns an initialized Knob structure
providing the application with default values for the specified Knob. This
call allows the specific Knob values, if necessary, to be restored (reset) to
aknown usable state.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.
cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

December 21, 1994 Page 241

QuickTime 2.0 SDK: Toolbox Changes

Part Access

Music Component Part access provides services to get and set synthesizer Part
parameters, get and set a Part's human interface name, get and set the value for a
particular Part Knob, and to reset a specified Part to a default state and to get and apply
controller valuesto individual Partsto modify their characteristics.

MusicGetPart

The Musi cGet Part function returnsthe MI1DI channel and maximum
polyphony for a particular Part in the *M DI Channel and * pol yphony
parameters.

pascal Component Result Misi cCet Part
(Musi cConponent nt, |long part,
| ong *M DI Channel

[ong *pol yphony)

nc The music component.

part The music component Part requested.

*M DI Channel Pointer to long for MIDIChannel resullt.

*pol yphony Pointer to long for polyphony result.
ERROR CODES

synt hesi zerErr A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i Il egal Channel Err A MIDI channel value outside the valid range (1..16
or 0) has been passed.

Page 242 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

M usicSetPart

The Musi cSet Part function setsthe MIDI channel and maximum
polyphony for the specified Part in the M DI Channel and pol yphony
parameters.

pascal Conponent Result Misi cSet Part
(Musi cConponent nt, |ong part,
| ong M DI Channel ,

| ong pol yphony)

nmc Music component instance.

part Part to be set.

M DI Channel The MIDI channel to be set to.

pol yphony The maximum voices or polyphony.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

i Il egal Voi ceAl' |l ocati onErr

The Part request has exceeded the Parts available
for the specific synthesizer.

cant SendToSynt hesi zer Err

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i Il egal Channel Err A MIDI channel value outside the valid range (1..16
or 0) has been passed.

December 21, 1994 Page 243

QuickTime 2.0 SDK: Toolbox Changes

MusicGetPartName

The Musi cGet Par t Nane function returns the string name of the requested
Part number.

pascal Component Result Musi cGet Part Name
(Musi cConponent nt, | ong part,

Str31 name);
nmc Music component instance.
part Music Part to get name.
nane Returned music Part name.

DESCRIPTION

The name string is a human readable name used by selection dialogs or
configuration information.

ERROR CODES
synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

M usicSetPartName

The Musi cSet Par t Nane function initializes the name portion of the
specified Part number.

pascal Component Result Musi cSet Part Nane
(Musi cConponent nt, | ong part,
Str31 nane);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Music Part to apply name.

Page 244 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

name Name to apply to music Part.

DESCRIPTION

The name string is a human readable name used by selection dialogs or
configuration information.

ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for exampleif the MusicSetMIDIProc()
routine has not been called.

MusicGetPartK nob

The Musi cGet Par t Knob function gets the current value of the specified
Part Knob.

pascal Component Result Musi cGet Part Knob
(Musi cConponent nt, | ong part,
| ong knobNunber) ;

nmc Music component instance.

part The Part number.

knobNunber The Part Knob number.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 245

Page 246

QuickTime 2.0 SDK: Toolbox Changes

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob value is outsideits legal range, as
returned in its KnobDescription.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

M usicSetPartK nob

The Musi cSet Par t Knob function sets the specified Part Knob to the value
of KnobVal ue.

pascal Component Result Musi cSet Part Knob
(Musi cConponent nt, | ong part,
| ong knobNunber,
| ong knobVal ue);

nmc Music component instance.

part The Part number.

knobNunber The Part Knob number to be set.

knobVal ue The new Part Knob value.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

i |1 egal KnobErr A Knob number outside the valid range
(1..knobCount) has been.

i Il egal KnobVal ueErr

The Knob value is outside its legal range, as
returned in its KnobDescription.

December 21, 1994 Page 247

QuickTime 2.0 SDK: Toolbox Changes

MusicResetPart

The Musi cReset Part function silences al sounds on the specified Part,
and resets al controllersto their default values. The default value for all
controllersis 0 (zero), except volume. Volumeis set to its maximum
32767 or, in hexadecimal, 7F.FF.

pascal Component Result Musi cReset Part
(Musi cComponent nt,

long Part);
nc Music component instance returned by
NAGetRegisteredMusicDevice().
part Part number to apply controller.
ERROR CODES

synt hesi zer Err A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicGetController

Page 248

The Musi cGet Cont rol | er function returns the value of the specified
controller on the specified Part.

pascal Component Result Musi cGet Controll er

(Musi cConponent nt, |ong part,
| ong controll erNurber);

mc Music component instance returned by
NAGetRegisteredMusicDevice().

part Part number to apply controller.

cont ol | er Nunber Controller number.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

ERROR CODES
synt hesi zerErr A synthesizer specific error has occurred.

illegal PartErr A Part number outside the valid range
(1..partCount) has been passed.

cant SendToSynt hesi zer Err
The component is unable to send commands to the

synthesizer, for exampleif the MusicSetMIDIProc()
routine has not been called.

illegal ControllerErr
The controller number is either out of the legal

range 1 through 128, or is not recognized by this
particular component.

December 21, 1994 Page 249

MusicSetController

QuickTime 2.0 SDK: Toolbox Changes

The Musi cSet Cont rol | er function initializes the value of the specified
controller on the specified Part.

pascal Conponent Result Musi cSet Controll er

part

cont ol | er Nunber

controll erVal ue

ERROR CODES

Page 250

synt hesi zerErr

illegal PartErr

synt hesi zerErr

cant SendToSynt hesi

(Musi cConponent nt, |ong part,
| ong controll er Nunmber,
| ong controllerVal ue);

Music component instance returned by
NAGetRegisteredMusicDevice().

Part number to apply controller.

Controller number.

Vauefor controller.

Controllers 0 through 127 correspond roughly to the
standard MIDI controllers. The valueis always a
signed 16 bit number where the lower 8 bits are
fractional. Therangeis-7F.FF through +7F.FF, or
-32767 to 32767, or 0x8001 to Ox7FFF.

Controller 32 is pitch bend, and it is defined to be in

semitones, where the lower 8 bits specify 256ths of
asemitone.

A synthesizer specific error has occurred.

A Part number outside the valid range
(1..partCount) has been passed.

A synthesizer specific error has occurred.
zerErr

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

illegal ControllerErr

The controller number is either out of the legal
range 1 through 128, or is not recognized by this
particular component.

December 21, 1994 Page 251

QuickTime 2.0 SDK: Toolbox Changes

Synthesizer Timing

Music component synthesizer timing provides services to get and modify the master
timer reference used by the synthesizer.

MusicGetM aster Tune

The Musi cGet Mast er Tune function returns the master reference timer
which is used as the base time clock.

pascal Component Result Musi cGet Mast er Tune
(Musi cConmponent nt);

nc Music component instance returned by
NA GetRegisteredMusicDevice().

ERROR CODES

synt hesi zerErr A synthesizer specific error has occurred.

cant SendToSynt hesi zer Err

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

MusicSetM aster Tune

The Musi cSet Mast er Tune function alters the master reference timer
which is used as the base time clock.

pascal Component Result Musi cSet Mast er Tune
(Musi cConmponent nt,
Fi xed mast er Tune);

e Music component instance returned by
NA GetRegisteredMusicDevice().
mast er Tune A fixed 16.16 number allowing shifts by fractional
values.
ERROR CODES

synt hesi zerErr A synthesizer specific error has occurred.

Page 252 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

cant SendToSynt hesi zer Err

The component is unable to send commands to the
synthesizer, for example if the MusicSetMIDIProc()
routine has not been called.

December 21, 1994 Page 253

QuickTime 2.0 SDK: Toolbox Changes

CONVERSION OF STANDARD MIDI

MoviePlayer 2.0 allows you to open and select a standard Macintosh MIDI file. Once

selected the open button will change to Convert.

|n:l Uirtual Media Works "l"l

Preview

OO MI1D1 Music Piece
O Save

O System Folder

OO UT Anims

i

&l

(<] Show Preview

= Uirtual Medi...

Desktop

Cancel

™
[P

[a:]

L

Convert...

After thefileis converted, MoviePlayer will prompt to save the converted file with the

suffix movie.

— Mirtual Media Works ¥ — Uirtual Medi...
[0 MIDI Music Piece gy [Eject]
% MoviePlayer 2.0
D Picture 1 [Desktop |
O Save
1 System Folder New [|
< lirtual Tarot
O UT Anims — [Options...]

¥
; [Cancel]

Save converted file as:
MIDI Music Piece Mouvie

Page 254

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Once saved, a named QuickTime movie controller is displayed and the converted MIDI
file can be played.

EE== MIDI Music Piece Movie =[]
il n| g VENND =

MUSIC CONFIGURATION UTILITY

Thefollowing illustration is a preliminary version of the user configuration utility. The
printer port does not appear because Local Talk isin use (on the computer this image was
taken from). The typical user would see only a General MIDI option, under MIDI
synthesizers, and Apple Music under Software Synthesizers. Other choices, such asthe
ones visible below, would appear if appropriate system extensions have been installed.

[J=— QuickTime Music =———

=

—t—| QuickTime 2.0

i) Built-1n Synthesizer
@ beneral MIDI In Modem Port
() General MIDI In Printer Port
() Plug-In Synthesizer

December 21, 1994 Page 255

QuickTime 2.0 DK: Toolbox Changes

APPENDIX

GENERAL MIDI INSTRUMENT NUMBERS

Genera MIDI Instrument Numbers

1 Acoustic Grand Piano 33 Wood Bass

2 Bright Acoustic Piano 34 Electric Bass Fingered
3 Electric Grand Piano 35 Electric Bass Picked
4 Honky-tonk Piano 36 Fretless Bass

5 Rhodes Piano 37 Slap Bass 1

6 Chorused Piano 38 Slap Bass 2

7 Harpsichord 39 Synth Bass 1

8 Clavinet 40 Synth Bass 2

9 Celesta 41 Violin

10 Glockenspiel 42 Viola

11 Music Box 43 Cdlo

12 Vibraphone 44 Contrabass

13 Marimba 45 Tremolo Strings

14 Xylophone 46 Pizzicato Strings

15 Tubular bells 47 Orchestral Harp

16 Dulcimer 48 Timpani

17 Draw Organ 49 Acoustic String Ensemble 1
18 Percussive Organ 50 Acoustic String Ensemble 2
19 Rock Organ 51 Synth Strings 1

20 Church Organ 52 Synth Strings 2

21 Reed Organ 53 Aah Choir

22 Accordion 54 Ooh Choir

23 Harmonica 55 Synvox

24 Tango Accordion 56 Orchestra Hit

25 Acoustic Nylon Guitar 57 Trumpet

26 Acoustic Steel Guitar 58 Trombone

27 Electric Jazz Guitar 59 Tuba

28 Electric clean Guitar 60 Muted Trumpet

29 Electric Guitar muted 61 French Horn

30 Overdriven Guitar 62 Brass Section

31 Distortion Guitar 63 Synth Brass 1

32 Guitar Harmonics 64 Synth Brass 2

December 21, 1994 Page 257

QuickTime 2.0 SDK: Toolbox Changes

General MIDI Instrument Numbers (continued)

65 Soprano Sax 97 Ice Rain

66 Alto Sax 98 Soundtracks
67 Tenor Sax 99 Crystal

68 Baritone Sax 100 Atmosphere
69 Oboe 101 Bright

70 English Horn 102 Goblin

71 Bassoon 103 Echoes

12 Clarinet 104 Space

73 Piccolo 105 Star

74 Flute 106 Banjo

75 Recorder 107 Shamisen

76 Pan Flute 108 Koto

77 Bottle blow 109 Kaimba

78 Shakuhachi 110 Bagpipe

79 Whistle 111 Fddle

80 Ocarina 112 Shanai

81 Square Lead 113 Tinkle bell

82 Saw Lead 114 Agogo

83 Calliope 115 Steel Drums
84 Chiffer 116 Woodblock
85 Synth Lead 5 117 Tako Drum
86 Synth Lead 6 118 Melodic Tom
87 Synth Lead 7 119 Synth Tom
38 Synth Lead 8 120 Reverse Cymbad
89 Synth Pad 1 121 Guitar Fret Noise
90 Synth Pad 2 122 Breath Noise
91 Synth Pad 3 123 Seashore

92 Synth Pad 4 124 Bird Tweset
93 Synth Pad 5 125 TelephoneRing
94 Synth Pad 6 126 Helicopter
95 Synth Pad 7 127 Applause

96 Synth Pad 8 128 Gunshot

Page 258 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

GENERAL MIDI DRUMKIT NUMBERS

Genera MIDI DrumKit Numbers

35 Acoustic Bass Drum 51 Ride Cymbal 1
36 Bass Drum 1 52 Chinese Cymbal
37 Side Stick 53 Ride Bell

38 Acoustic Snare 54 Tambourine

39 Hand Clap 55 Splash Cymbal
40 Electric Snare 56 Cowbell

41 Lo Floor Tom 57 Crash Cymbal 2
42 Closed Hi Hat 58 Vibraslap

43 Hi Floor Tom 59 Ride Cymbal 2
44 Pedal HiI Hat 60 Hi Bongo

45 LoTom Tom 61 Low Bongo

46 Open Hi Hat 62 Mute Hi Conga
47 Low -Mid Tom Tom 63 Open Hi Conga
48 Hi Mid Tom Tom 64 Low Conga

49 Crash Cymbal 1 65 Hi Timbale

50 Hi Tom Tom 66 Lo Timbale

GENERAL MIDI KIT NAMES

General MIDI Kit Names

1 Dry Set

9 Room Set

19 Power Set

25 Electronic Set
33 Jazz Set

41 Brush Set
65-112 User Area
128 Default

December 21, 1994

Page 259

QuickTime 2.0 SDK: Toolbox Changes

Page 260 December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

INDEX

A controller 172, 174, 175, 178, 179, 184,
. 185, 189, 199, 200, 208, 209, 210,

Qggﬁ{j‘gﬁgg ence function 16 211 213, 234, 253, 259, 260, 249,

asynchronous decompression, scheduled
43
audio level 169

B

beats-per-minute 177
built-in 167, 173

C

cantSendToSynthesizerErr 230, 232,
234, 236, 237, 238, 239, 240, 243,
244, 245, 246, 248, 249, 250, 251,
252, 253, 254, 255, 256, 258, 259,
260, 249, 251, 252

CDBandDecompress function 47

CDCodecFlush function 47

CDCodecSetTimeCode function 48

CDPreDecompress function 46

chunk size, getting preferred 22

chunk size, setting preferred 21

clock 193

CloseComponent Component Manager
function 144, 152

CodecCapabilities structure 44

CodecDecompressParams structure 44

Component Interfaces 187

Component Manager 92

CloseComponent function 144, 152
component flags value 88, 92
component subtype value 88, 92
component type value 88, 92
FindNextComponent function 88
manufacturer value 88, 92
OpenComponent function 87
OpenDefaultComponent function 87
selector values for data handler
components 93

compressor capability structure 44

configuration information 172, 222, 255,
256

container 86

assigning 141
creating 155
retrieving 142

December 21, 1994

250, 254
Controller Event 184
Controller events 178
Conversion of Standard MIDI 176
ConvertMovieToFile function 8
copyright 172, 220, 221, 250
cursor, hiding 50
_ControlController 184
_ControlValue 184

D

data handler components 3
appending data 91, 152
asynchronous read 145-148
asynchronous write 153-154
block size, preferred 156
buffers, flushing read 158
buffers, flushing write 159
cancelling a scheduled read 149
capabilities, determining 838
ceding processor time to a handler 158
closing data reference after read 143
closing data reference after write 152
completion function 90, 145-148, 149,
153-154, 160-161
component flags value 88, 92
Component Manager 82
component subtype value 86, 88, 92,
138
component type value 88, 92
connection, opening 87
creating a data handler component 92
data reference
types 86
deviceindex 137
duties 85-86
enlarging a data reference 157
extending a data reference 157
flushing cached reads 158
flushing cached writes 159
free space, getting 157
hints, playback 159
index, device 137
manufacturer value 88, 92
media handler components 85
mounting volumes 135
movie data, reading 90
movie data, writing 90, 91

Page 261

networked-device support 134
opening data reference for read 90, 143
opening data reference for write 151
playback hints 159
pre-roll operations 147
priority of read requests 148
processor time, granting to data
handler 91, 158
quality of service 89, 132, 134, 148
queued requests, completing 149
QuickTime
versions supported 81
QuickTime for Windows 81-82
version supported 81
random write 153-154
read, asynchronous 90, 145-148
read, synchronous 90, 144
read-ahead time, indicating preferred
150
reading movie data 90
removable volumes 135
responsibilities 85-86
retrieving movie data 90
schedule record 146-148
scheduled read 90, 145-148
scheduled read, cancelling 149
scheduled read, completing 149
selecting 88
selecting a data handler component 86
selecting with Movie Toolbox 22
selector values 93
size, getting data reference 155
Size, setting data reference 154
storing movie data 90-91
subtype value, component 86, 88, 92,
138
synchronous read 144
synchronous write 152
type value, component 88, 92
unmounting volumes 135
volume list, getting 89, 132
write, asynchronous 91, 153-154
write, synchronous 91, 152
writing movie data 91
data reference
and component subtype value 92, 138
assigning to a data handler 89, 138
closing after read 143
closing after write 152
comparing 89, 140
creating container for 155
determining ability to support 89, 135
enlarging 157
equivalent 89

Page 262

QuickTime 2.0 SDK: Toolbox Changes

free space 157
getting size of 155
opening for read 90, 143
opening for write 90, 151
resolving 140
retrieving from a data handler 139
selecting a handler for 87
setting size of 154
severa in one media 2, 20
types 88, 92, 138
working with 138
DataHCanUseDataRef function 89, 135
DataHCloseForRead function 143
DataHCloseForWrite function 152
DataHCompareDataRef function 89, 140
DataHCreateFile function 155
DataHFinishData function 90, 149
DataHFlushCache function 145, 148,
153, 158
DataHFlushData function 159
DataHGetData function 90, 144
DataHGetDataRef function 89, 139
DataHGetDevicel ndex function 137
DataHGetFileSize function 155
DataHGetFreeSpace function 157
DataHGetOSFileRef function 142
DataHGetPreferredBlockSize function
156
DataHGetScheduleAheadTime function
150
DataHGetVolumeList function 89, 132
DataHOpenForRead function 90, 143
DataHOpenForWrite function 90, 151
DataHPlaybackHints function 159
DataHPreextend function 157
DataHPutData function 91, 152
DataHResolveDataRef 140
DataH ScheduleData function 90, 145-
148
DataH ScheduleRecord structure 146-148
DataHSetDataRef function 89, 138
DataH SetFileSize function 154
DataHSetOSFileRef function 141
DataHTask function 91, 158
DataHV olumeListRecord structure 133
DataHWrite function 91, 153-154
decompression parameters structure 44
decompression, scheduled asynchronous
43
decompression, scheduling 37
DecompressSequenceFrameWhen
function 37
DeleteTrackReference function 17
dropframe timecode 24, 27

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

Drum names 175, 241, 249
duration 167, 175, 176, 177, 180, 181,
182, 189, 229

E

End Marker 178, 182, 183, 188
End Marker Event 182
engaged 199, 208, 209

equal tempered notes 170
Event Sequence Format 176
Extended Controller Event 185
Extended Note event 178, 181

F

file see container
file reference

assigning 141

retrieving 142
Fixed Instrument 173, 174
fixed pitch 181
FlattenMovie function 9
FlattenMovieData function 9
frame time structure 46
frequency 168
function name, longest 67

G

General event 177, 178, 188

General MIDI 171, 173, 199, 254, 255,
256, 257

generic synthesizer 173

GetDataHandler function 22, 87

GetM ediaPreferredChunkSi ze function
22

GetMovieColorTable function 14

GetMovielndTrackType function 15

GetNextTrackReferenceType function
19

GetTrackL oadSettings function 11

GetTrackReference function 18

GetTrackReferenceCount function 20

_GeneralLength 179

_General Subtype 179

H

hiding the cursor 50
hints, playback 1

| CM DecompressCompl ete function 48
|CMFrameTime structure 46

December 21, 1994

| CM Shiel dSequenceCursor function 50
illegal Channel Err 239, 240, 253, 254
illegal ControllerErr 214, 260, 250
illegaInstrumentErr 232, 245, 246
illegalKnobErr 214, 236, 237, 238, 251,
252, 257, 258
illegal KnobVauekrr 214, 236, 237, 238,
251, 252, 257, 258
illegal NoteChannel Err 202, 203, 206,
207, 208, 209, 211, 212, 214
illegal PartErr 234, 242, 243, 244, 245,
246, 250, 253, 254, 255, 256, 258,
259, 260, 249
illegalVoiceAllocationErr 254
Image Compression Manager
decompression, scheduled
asynchronous 43
decompression, scheduling 37
timecode information, setting 41
timecode support 37
image compressor components
scheduled asynchronous
decompression 43-47
timecode information, setting 48
timecode support 43
Instrument 167, 173, 174, 175, 181, 185,
215, 216, 217, 220, 231, 236, 237,
241, 242, 243, 245, 246, 247, 249,
255, 256
Instrument Control 241
Instrument index number 178, 184, 186
Instrument number 175, 180, 184, 185,
186, 215, 231, 232, 233, 241, 243,
245, 246, 249
InstrumentAboutinfo 250
InstrumentData 242

_Instrument 180, 184

K

kControllerAfterTouch 213
kControllerBalance 213
kControllerBreath 213
kControllerCeleste 213
kControllerChorus 213
kControllerExpression 213
kControllerFoot 213
kControllerModulationWhedl 184, 213
kControllerPan 184, 213
kControllerPhaser 213
kControllerPitchBend 184, 213
kControllerPortamento 213
kControllerPortamentoTime 213
kControllerReverb 213

Page 263

kControllerSoftPedal 213

kControllerSostenuto 213

kControllerSustain 213

kControllerTremolo 213

kControllerVolume 184, 213

kDataHCanRead flag 133, 135

kDataHCanStreamingWrite flag 134,
137

kDataHCanWrite flag 133, 136

kDataHMustCheckDataRef flag 134

kDataH SpecialRead flag 133, 136

kDataH Special ReadFile flag 133, 136

kDataHSpecialWrite flag 134, 136

kInstrumentM atchGM Number 231

kInstrumentMatchName 231

kInstrumentMatchNumber 231

kInstrumentM atchSynthesizerName 231

kInstrumentM atchSynthesizer Type 231

Knob 167, 168, 172, 173, 174, 175, 178,
186, 200, 229, 236, 237, 238, 241,
251, 252, 253, 257, 258

Knob Event 186

KnobDescription 251

kTuneDontClipNotes 189

kTuneExcludeEdgeNotes 189

kTunel oopUntil 190

kTuneQuickStart 189

kTuneStartNow 189

_KnobKnob 186

_KnobValue 186

M

master reference timer 175, 251

mediawith several datareferences 2, 20

M ediaForceUpdate function 79

MediaGetDrawingRgn function 78

Medialdle function 77

microtonal 170, 178, 180, 181, 212, 234

Microtones 167

middle C 180, 181, 212

MIDI 164, 165, 167, 170, 171, 172, 173,
175, 176, 199, 204, 205, 207, 212,
222,223, 224, 225, 226, 227, 229,
231, 232, 234, 235, 236, 237, 239,
240, 243, 244, 248, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251, 252, 253, 254, 255, 256,
257

midiManagerAbsentErr 204, 223

Modifiable Instruments 173

movie data import components

file type, getting 76
Movie Toolbox

Page 264

QuickTime 2.0 SDK: Toolbox Changes

and data handler components 86, 87
and removable volumes 135

color table, getting 14

color table, setting 13

data handler, selecting 22

data references, multiple 2, 20
drawing-complete function, assigning

forcing it to check your data handler’s
capabilities 134
GetDataHandler function 87
hints 1
MoviesTask function 158
preloading tracks 1, 9, 11
read-ahead time 150
reads before opening data reference
143, 145, 148
track references 2, 16
tracking data handler components 132
tracks, adding track references 16
tracks, counting track references 20
tracks, deleting track references 17
tracks, modifying track references 18
tracks, reading track references 18
tracks, scanning track reference types
19
tracks, searching by characteristic 15
MovielmportGetFileType function 76
Music Component 164, 165, 167, 168,
170, 171, 172, 173, 174, 175, 187,
199, 203, 210, 222, 225, 229, 230,
241, 247
Music Component Interface 229
Music Media Handler 165
Music Preferences 172, 222, 228
music track 164, 168, 170, 176, 177
musical note 168
MusicFindTone 231
MusicGetController 259
MusicGetDescription 230
Musi cGetDrumKnobDescription 252
MusicGetDrumNames 249
MusicGetlnstrument 242
MusicGetlnstrumentAboutlnfo 250
Musi cGetl nstrumentK nobDescription
251
MusicGetlnstrumentNames 247
MusicGetlnstrumentNumber 243
MusicGetKnob 236
Musi cGetK nobDescription 238
MusicGetMasterTune 251
MusicGetMIDIProc 239
MusicGetPart 253
MusicGetPartK nob 256

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

MusicGetPartName 255
MusicPlayNote 234
MusicResetPart 259
MusicSetController 249
Musi cSetlnstrument 243
Musi cSetlnstrumentNumber 245
MusicSetKnob 236
MusicSetMasterTune 251
MusicSetMIDIProc 240
MusicSetPart 254
MusicSetPartK nob 258
MusicSetPartName 255
MusicStorel nstrument 246
_MarkerSubtype 183
_MarkerValue 183

N

NA CopyrightDialog 221

NADisengageNoteChannel 209

NADisposeNoteChannel 202

NAEngageNoteChannel 208

NAFindNoteChannel Tone 215

NAGetDefaultMIDIlnput 226

NA GetNoteChannelInfo 203

NA GetRegisteredMusicDevice 225

NALoseDefaultMIDIInput 205

NANewNoteChannel 200

NAPickArrangement 220

NAPicklnstrument 217

NAPlayNote 212

NAPrerolINoteChannel 206

NARegisterMusicDevice 222

NAResetNoteChannel 210

NA SaveMusicConfiguration 228

NA SetController 213

NASetDefaultMIDIInput 227

NASetKnob 214

NA SetNoteChannelInstrument 216

NA SetNoteChannel Volume 211

NA Stuff ToneDescription 219

NAUnregisterMusicDevice 224

NAUnrolINoteChannel 207

NAUseDefaultMIDIInput 204

new movie, creating from user function
4

NewMovieFromFile function 7

NewM ovieFromUserProc function 4

Note 180

Note Allocator 164, 165, 171, 172, 173,
187, 199, 200, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 220, 221, 222,
224, 225, 226, 227, 228, 232

December 21, 1994

Note Channel 168, 173, 199, 200

Note Channel Allocation and Use 199

note channels 171, 196, 197, 199, 207

Note event 176, 177, 178, 179, 182

NoteAllocator errors 188

noteChannel NotAllocatedErr 188, 206

NoteRequest 200

notes 164, 165, 167, 168, 170, 171, 172,
176, 181, 187, 189, 195, 199, 200,
208, 209, 210, 234, 239

NoteDuration 180

_NotePitch 180

_NoteVelocity 180
_NoteVolume 180

O

OpenComponent Component Manager
function 87

OpenDefaultComponent Component
Manager function 87

oscillators 169

outputs, sequence grabber 51, 59-67

P

Part 168, 173, 174, 175, 178, 180, 184,
185, 186, 188, 210, 230, 234, 241,
244, 245, 246, 253, 254, 259, 249

Part Access 253

Part number 179, 181, 229, 234, 242,
243, 244, 245, 246, 250, 253, 254,
255, 256, 258, 259, 260, 249

pitch 167, 168, 175, 177, 178, 180, 181,
184, 199, 212, 229, 234, 249

playback hints 1

Polyphony 168, 200, 220

pre-roll operations 90

preloading tracks 1, 9, 11

QMA 164, 165, 167, 168, 169, 170, 173,
176, 178, 188, 239

queued-up 171

gueueFlags 190

QuickTime for Windows 90, 92

QuickTime movietrack 168, 176

QuickTime Music Architecture 164,
167, 171, 187

QuickTime Music tracks 165

R

real time 193
Rest event 176, 182

Page 265

rests 164, 167, 176, 178, 187
reverb 174
_RestDuration 182

S

scale 167, 168, 170, 176, 177, 179, 180,
181, 182, 187, 194
sequence 164, 165, 167, 168, 171, 172,
176, 178, 182, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 198,
199
Sequence Control 191
sequence data 164, 188
sequence grabber channel components
maximum data rate, getting 70
maximum data rate, setting 69
sequence grabber component
output, assigning to a channel 63
sequence grabber components
destination, determining 54
destination, specifying 51
mode, determining 57
output, configuring 64
output, creating a new 59
output, disposing of 62
output, getting remaining space 67
outputs 51, 59-67
timecode source identification
information, getting 58
timecode source identification
information, setting 58
timecode support 51
sequence grabber outputs 51, 59-67
SetD SequenceTimeCode function 41
SetMediaDefaultDataRefIndex function
20
SetMediaPreferredChunkSize function
21
SetMovieColorTable function 13
SetM ovieDrawingCompl eteProc
function 12
SetTrackL oadSettings function 9
SetTrackReference function 18
SGChannel GetDataSourceName
function 58
SGChannel GetRegquestedDataRate
function 70
SGChannel SetDataSourceName function
58
SGChannel SetRequestedDataRate
function 69
SGDisposeOutput function 62

Page 266

QuickTime 2.0 SDK: Toolbox Changes

SGGetDataOutputStorageSpaceRemaini
ng function 67

SGGetDataRef function 54

SGGetM ode function 57

SGNewOutput function 59

SGSetChannel Output function 63

SGSetDataRef function 51

SGSetOutputFlags function 64

shielding the cursor 50

saved 193

slots 173, 198

SMPTE timecode information 24

software component 164, 165, 167, 168,
171, 173

software synthesizer 173

standard note 170, 178, 179, 180, 181

stopFlags 191

subtype 178, 179, 182, 183

synthesizer 164, 165, 167, 168, 169, 170,
171, 172, 173, 174, 175, 178, 179,
187, 199, 200, 207, 212, 222, 225,
229, 230, 231, 232, 234, 235, 236,
237, 238, 239, 240, 242, 243, 244,
245, 246, 248, 249, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251, 252, 254

Synthesizer Access 229

Synthesizer Timing 251

SynthesizerConnections 222, 226

SynthesizerDescription 230

SynthesizerErr 223, 230, 232, 234, 236,
237, 238, 239, 240, 242, 243, 244,
245, 246, 247, 249, 250, 251, 252,
253, 254, 255, 256, 258, 259, 260,
249, 251

System Configuration 222

_StuffControlEvent 184

_StuffGenera Event 179

_StuffKnobEvent 186

_StuffNoteEvent 180

_StuffRestEvent 182

_Stuff X Control Event 185

_StuffXNoteEvent 181

T

TCFrameNumberToTimeCode function
31
TCGetCurrentTimeCode function 29
TCGetDisplayOptions function 35
TCGetSourceRef function 33
TCGetTimeCodeAtTime function 29
TCGetTimeCodeFl ags function 34
TCSetDisplayOptions function 35

December 21, 1994

QuickTime 2.0 DK: Toolbox Changes

TCSetSourceRef function 32
TCSetTimeCodeFlags function 33
TCTimeCodeToFrameNumber function
30
TCTimeCodeToString function 32
timbrality 168
Timbre 168
timbres 170
time scale 176, 180, 182, 187, 194
TimeBase 193
timecode definition structure 27-28
timecode media handler 3, 23-36
adding samples 26
and track references 25
control flags, getting 34
control flags, setting 33
converting frame number to timecode
time 31

converting timecode time to a string 32

converting timecode time to frame
number 30

converting timecode to media time 29

creating timecode media 25

display options, getting 35

display options, setting 35

displaying timecode information 25,
35

dropframe technique 24, 27
getting timecode information 29
sampl e description 26
source identification information 25
source identification information,
getting 33
source identification information,
setting 32
timecode definition structure 27
timecode record 28
timecode media, creating 25
timecode record 28
timing 164, 165, 168, 171, 172, 174,
175, 187, 193
ToneDescription 215, 242
ToneDescription { 200
track 167, 168, 220
adding track reference 16
counting track references 20
deleting track reference 17
modifying track reference 18
preloading 1, 9, 11
reading track reference 18
reference 2, 16
scanning track reference types 19
searching by characteristic 15
track references 2, 16

December 21, 1994

used with timecode media 25

Tune Player 164, 165, 168, 171, 172,
173, 176, 177, 178, 182, 187, 188,
189, 191, 192, 193, 194, 195, 196,
197, 198

TuneGetlndexedNoteChannel 197

TuneGetStatus 198

TuneGetTimeBase 193

TuneGetTimeScale 194

TuneGetVolume 191

Tunelnstant 195

tuneParseErr 188

tunePlayerFullErr 190

TunePreroll 196

TuneQueue 189

TuneSetHeader 178, 180, 181, 184, 185,
186, 187, 188, 197

TuneSetTimeScale 194

TuneSetVolume 192

tuneStartPosition 190

TuneStop 191

tuneStopPosition 190

TuneUnroll 196

U

units of time 180, 182

units-per-second 167, 194

user interface dialogs 172, 220

user-modifiable Instruments. See
Modifiable Instruments 173

V

VDGetTimeCode function 73
VDSetDataRate function 71
velocity 167, 177, 180, 199, 212, 234
video digitizer components
limiting datarate 71
timecode information, retrieving 73
timecode support 71
Voice 169
volume 167, 168, 169, 172, 175, 180,
181, 187, 191, 192, 199, 211, 212,
229, 234, 259
Windows, QuickTime support see
QuickTime for Windows

X

_XControlController 185
_XControlValue 185
_Xlnstrument 179, 182, 185, 186
_XNoteDuration 182
_XNotePitch 182

Page 267

QuickTime 2.0 SDK: Toolbox Changes

_XNoteVelocity 182
_XNoteVolume 182

Page 268 December 21, 1994

