

K

K

Developer’s Guide:
QuickTime for Macintosh

Preliminary

Version 2.5

K

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except in the normal use of the
software or to make a backup copy
of the software or documentation.
The same proprietary and copyright
notices must be affixed to any
permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or
loaned to another person. Under the
law, copying includes translating
into another language or format.
You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a trademark of
Apple Computer, Inc. Use of the
“keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this

manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter,
and Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, ADC
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to ADC.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Figures, Tables, and Listings xv

Preface

About This Book

xix

Format of an Update Chapter xxi
Format of a New Chapter xxii
Conventions Used in This Book xxii

Special Fonts xxiii
Types of Notes xxiii

Development Environment xxiii
For More Information xxiv

Chapter 1

Movie Toolbox

1-1

New Features of the Movie Toolbox 1-7
Preloading Tracks 1-7
Hints 1-7
Data References 1-8

Timecode Media Handler 1-8
Track References 1-9
Modifier Tracks 1-9

Data Handler Components 1-11
Sprite Toolbox 1-12

Sprite Characteristics 1-12
Sprite World Characteristics 1-15

QT Atoms 1-17
Using the Movie Toolbox 1-19

Loading a Movie 1-20
Creating Movies With Modifier Tracks 1-21
Creating and Initializing a Sprite World 1-22
Creating and Initializing Sprites 1-24
Animating Sprites 1-27
Disposing of a Sprite Animation 1-29

iv

Sprite Hit Testing 1-30
Creating and Disposing of Atom Containers 1-31
Creating New Atoms 1-32
Copying Existing Atoms 1-34
Retrieving Atoms From an Atom Container 1-36
Modifying Atoms 1-39
Removing Atoms From an Atom Container 1-39

Movie Toolbox Reference 1-41
Constants 1-41

Movie Exporting Flags 1-41
Movie Importing Flags 1-42
Flattening Flags 1-42
Interesting Times Flags 1-43
Full Screen Flags 1-43
Text Sample Display Flags 1-44
Modifier Input Types 1-46
Text Atom Types 1-48
Background Sprites 1-49
Flags for Sprite Hit Testing 1-49
Sprite Properties 1-50
Flags for SpriteWorldIdle 1-51
Constants for QT Atom Functions 1-52

Data Types 1-52
Data Reference 1-52
Sample Reference 1-53
Modifier Track Graphics Mode 1-54
Sprite and Sprite World Identifiers 1-54
QT Atom 1-55
QT Atom Type and ID 1-55
QT Atom Container 1-55

Functions for Getting and Playing Movies 1-55
Movie Functions 1-56
Enhancing Movie Playback Performance 1-65
Generating Pictures From Movies 1-68
Working with Progress and Cover Functions 1-69

Functions That Modify Movie Properties 1-71
Working With Movie Spatial Characteristics 1-71
Locating a Movie’s Tracks and Media Structures 1-74

v

Working With Track References 1-76
Working With Sound 1-80

Functions for Editing Movies 1-83
Adding Samples to Media Structures 1-83
Editing Tracks 1-85
Using the Full Screen 1-86
Handling Update Events 1-89
Handling Media Sample References 1-90
Managing the Video Frame Playback Rate 1-94
Manipulating Media Input Maps 1-95

Media Functions 1-98
Selecting Data Handlers 1-98
Timecode Media Handler Functions 1-99
Media Property Functions 1-113
Text Media Handler Functions 1-115

Sprite Toolbox Functions 1-116
Sprite World Functions 1-116
Sprite Functions 1-123

QT Atom Functions 1-129
Creating and Modifying QT Atom Containers 1-129
Retrieving Atoms and Atom Data 1-141

Chapter 2

Component Manager

2-1

New Features of the Component Manager 2-3
PowerPC-Native Component Manager Support 2-3
Component Manager Reference 2-7

Dispatching to Component Routines 2-7
Finding Components 2-8
Opening and Closing Components 2-9
Accessing a Component’s Resource File 2-11

Chapter 3

Image Compression Manager

3-1

New Features of the Image Compression Manager 3-3
ColorSync Support 3-3

vi

Asynchronous Decompression 3-3
Timecode Support 3-3
Data Source Support 3-4
Working with Alpha Channels 3-4
Working With Video Fields 3-6
Packetization Information 3-6

Using the Image Compression Manager 3-7
Using Screen Buffers and Image Buffers 3-7

Image Compression Manager Reference 3-8
Data Types 3-8

Image Compression Manager Function Control Flags 3-8
Constants 3-9
Functions 3-10

Working With Sequences 3-10
Working With Images 3-25
Working With Data Sources 3-26
Working With Image Description Records 3-29
Changing Sequence Compression Parameters 3-32
Controlling Hardware Scaling 3-33
Working With Video Fields 3-35
Image Transcoding Functions 3-40
Working With Graphics Importers 3-43

Chapter 4

Image Compressor Components

4-1

New Features of Image Compressor Components 4-3
Asynchronous Decompression 4-3
Hardware Cursors 4-4
Timecode Support 4-4
Working With Video Fields 4-4
Accelerated Video Support 4-5
Packetization Information 4-8

Image Compressor Components Reference 4-10
Data Types 4-10

The Frame Time Structure 4-10
The Decompression Data Source Structure 4-11
The Compressor Capability Structure 4-12

vii

The Compression Parameters Structure 4-14
The Decompression Parameters Structure 4-15

Functions 4-19
Image Compression Manager Utility Functions 4-36

Chapter 5

Image Transcoder Components

5-1

About Image Transcoding 5-3
Image Transcoding Support 5-3

Using Image Transcoder Components 5-4
Creating an Image Transcoder Component 5-5

Example Image Transcoder Component 5-6
Image Transcoder Components Reference 5-8

Functions 5-8

Chapter 6

Movie Controller Components

6-1

New Features of Movie Controller Components 6-3
Using Movie Controller Components 6-3

Changing the Shape of the Cursor 6-3
Movie Controller Components Reference 6-4

Movie Controller Actions 6-4
Movie Controller Functions 6-6

Handling Movie Events 6-6

Chapter 7

Sequence Grabber Components

7-1

New Features of Sequence Grabber Components 7-3
Improved Support for Digitizing Video in Windows 7-3

Sequence Grabber Components Reference 7-4
Constants 7-4

Flags 7-4
Sequence Grabber Component Functions 7-5

Configuring Sequence Grabber Components 7-5
Controlling Sequence Grabber Components 7-11
Working with Sequence Grabber Outputs 7-13

viii

Chapter 8

Sequence Grabber Channel Components

8-1

New Features of Sequence Grabber Channel Components 8-3
Support for Sound Data Compression 8-3
Support for Sound Capture at Any Sample Rate 8-3
*Working With Channel Characteristics 8-3

Sequence Grabber Channel Components Reference 8-4
Functions 8-4

Configuration Functions for All Channel Components 8-4

Chapter 9

Video Digitizer Components

9-1

New Features of Video Digitizer Components 9-3
Video Digitizer Components Reference 9-3

Constants 9-3
Input Formats 9-3

Video Digitizer Component Functions 9-4
Controlling Compressed Source Devices 9-4
Controlling Digitization 9-6
Controlling Packet Size 9-7
Utility Functions 9-7

Chapter 10

Text Channel Component

10-1

About the Text Channel Component 10-3
Text Channel Component Reference 10-6

Text Channel Component Functions 10-6

Chapter 11

Movie Data Exchange Components

11-1

New Features of Movie Data Exchange Components 11-3
Exporting Text 11-3
Text Descriptors 11-5
Time Stamps 11-13
Importing Text 11-14
Importing In Place 11-14

ix

Audio CD Import Component 11-15
Movie Data Exchange Components Reference 11-15

Constants 11-15
Flags for Movie Import and Export Components 11-15
Text Export Options 11-16

Data Types 11-17
Text Display Data Structure 11-17

Movie Data Exchange Components Functions 11-19
Exporting Text 11-19
Importing Movie Data 11-23
Exporting Movie Data 11-26
Configuring Movie Data Export Components 11-26

Chapter 12

Derived Media Handler Components

12-1

Derived Media Handler Components Reference 12-3
Constants 12-3

Media Video Parameters 12-3
Data Types 12-4
Derived Media Handler Component Functions 12-5

Managing Your Media Handler Component 12-5
General Data Management 12-6
Graphics Data Management 12-20
Sound Data Management 12-23

Chapter 13

Tween Media Handler Components

13-1

About the Tween Media Handler 13-3
Using the Tween Media Handler 13-4

Creating a Tween Track 13-5
Creating a Tween Component 13-10

Tween Media Handler Reference 13-11
Constants 13-12

Tween Component Constant 13-12
Tween Atom Types 13-12
Media Input Map 13-13

x

Tween Data Types 13-14
Data Types 13-16

Component Instance 13-16
Tween Record 13-17
Value Setting Function 13-17

Tween Component Functions 13-19

Chapter 14

Sprite Media Handler

14-1

About the Sprite Media Handler 14-3
Key Frame Samples and Override Samples 14-4
Sprite Track Media Format 14-5
Sprite Track Properties 14-8
Alternate Sources for Sprite Image Data 14-9

Using the Sprite Media Handler 14-10
Defining a Key Frame Sample 14-11

Creating the Movie, Sprite Track, and Media 14-11
Adding Images to the Key Frame Sample 14-12
Adding Sprites to the Key Frame Sample 14-16

Defining Override Samples 14-19
Setting Properties of the Sprite Track 14-21
Getting Sprite Data From a Modifier Track 14-22

Sprite Media Handler Reference 14-27
Constants 14-27

Sprite Track Formats 14-27
Sprite Media Atom Types 14-27

Sprite Media Handler Functions 14-30

Chapter 15

Preview Components

15-1

New Features of Preview Components 15-3
Single Fork Preview Support 15-3

Preview Components Reference 15-3
Resources 15-3

The Preview Resource 15-3

xi

Chapter 16

Data Handler Components

16-1

About Data Handler Components 16-4
Movie Playback 16-4
Movie Capture 16-5
Processing data 16-7
Identifying Containers With Data References 16-7

Using Data Handler Components 16-8
Selecting a Data Handler 16-8

Selecting by Component Type Value 16-9
Interrogating a Data Handler’s Capabilities 16-10

Managing Data References 16-10
Retrieving Movie Data 16-11
Storing Movie Data 16-12
Managing the Data Handler 16-13

Creating a Data Handler Component 16-13
General Information 16-14
A Sample Data Handler Component 16-15

Data Handler Components Reference 16-28
Data Handler Components Functions 16-28

Selecting a Data Handler 16-29
Working With Data References 16-36
Reading Movie Data 16-41
Writing Movie Data 16-50
Managing Data Handler Components 16-58
Completion Function 16-61

Chapter 17

Graphics Importer Components

17-1

About Graphics Importer Components 17-3
QuickTime Image File Format 17-4

Graphics Importer Components Reference 17-4
Data Types 17-4
Functions 17-5

Specifying the Data Source 17-5
Validating and Retrieving Image Data 17-11
Getting Image Characteristics 17-13
Setting Drawing Parameters 17-15

xii

Drawing Images 17-25
Saving Image Files 17-27

Chapter 18

QuickTime Settings Control Panel

18-1

New Features of the Control Panel 18-3
CD-ROM AutoStart 18-3
AutoPlay for Audio CDs 18-3
QuickTime Music Synthesizer 18-4

Chapter 19

QuickTime Music Architecture

19-1

About QuickTime Music Architecture 19-7
QuickTime Music Architecture Components 19-8

Note Allocator Component 19-9
Tune Player Component 19-10
Music Components 19-11
Instrument Components and Atomic Instruments 19-12

QuickTime Music Events 19-15
General Event 19-17
Note Event and Extended Note Event 19-20
Rest Event 19-22
Marker Event 19-23
Controller Event and Extended Controller Event 19-24
Knob Event 19-26

QuickTime Synthesizer Model 19-27
QuickTime Music Architecture Reference 19-28

Constants 19-29
Atom Types for Atomic Instruments 19-29
Instrument Knob Flags 19-30
Loop Type Constants 19-31
Music Component Type 19-31
Synthesizer Type Constants 19-31
Synthesizer Description Flags 19-32
Controller Numbers 19-33
Controller Range 19-36

xiii

Drum Kit Numbers 19-36
Tone Fit Flags 19-36
Knob Flags 19-37
Knob Value Constants 19-39
Music Packet Status 19-39
Atomic Instrument Information Flags 19-40
Setting Atomic Instruments 19-41
Instrument Info Flags 19-41
Synthesizer Connection Type Flags 19-42
Instrument Match Flags 19-42
Note Request Constants 19-43
Pick Instrument Flags 19-44
Note Allocator Type 19-44
Tune Queue Depth 19-45
Tune Player Type 19-45
Tune Queue Flags 19-45

Data Structures 19-46
Instrument Knob Record 19-46
Instrument Knob List 19-47
Atomic Instrument Sample Description Record 19-47
Synthesizer Description Structure 19-48
Tone Description Structure 19-50
Knob Description Record 19-51
Instrument About Information 19-52
MIDI Packet 19-52
Instrument Information Record 19-53
Instrument Information List 19-53
General MIDI Instrument Information Structure 19-54
Non-General MIDI Instrument Information Record 19-55
Non–General MIDI Instrument Information List 19-55
Complete Instrument Information List 19-56
Synthesizer Connections for MIDI Devices 19-57
QuickTime MIDI Port 19-58
Note Request Information Structure 19-58
Note Request Structure 19-59
Tune Status 19-59

Functions 19-60
Tune Player Functions 19-60

xiv

Note Allocator Functions: Note Channel Allocation and Use 19-74
Note Allocator Functions: Miscellaneous Interface Tools 19-91
Note Allocator Functions: System Configuration and Utility 19-96
Music Component Functions: Synthesizer 19-103
Music Component Functions: Instruments and Parts 19-114
Music Component Functions: Miscellaneous 19-125
Instrument Component Functions 19-128

Result Codes 19-132

Appendix A

General MIDI Reference

A-1

General MIDI Instrument Numbers A-1
General MIDI Drum Kit Numbers A-4
General MIDI Kit Names A-5

Appendix B

QuickTime File Format Changes

B-1

Motion JPEG B-1
M-JPEG Format A B-1
M-JPEG Format B B-1
YUV B-2
Uncompressed YUV2 B-2
QuickTime Image File Format B-3

Glossary

GL-1

Index

IN-1

xv

Figures, Tables, and Listings

Chapter 1

Movie Toolbox

1-1

Figure 1-1

Local coordinate system of a sprite 1-14

Figure 1-2

Display coordinate system of a sprite 1-14

Figure 1-3

Sprite world coordinate system 1-16

Figure 1-4

QT atom container with parent and child atoms 1-17

Figure 1-5

QT atom container example 1-18

Figure 1-6

QT atom container after inserting an atom 1-32

Figure 1-7

QT atom container after inserting a second atom 1-33

Figure 1-10

Sample “Save As...” dialog box 1-63

Figure 1-8

Two QT atom containers, A and B 1-34

Figure 1-9

QT atom container after child atoms have been inserted 1-35

Table 1-1

Input Types Supported by Each Apple-supplied Media
Handler 1-11

Listing 1-1

Creating a sprite world 1-23

Listing 1-2

Creating sprites 1-25

Listing 1-3

The

main

 function 1-27

Listing 1-4

Animating sprites 1-28

Listing 1-5

Disposing of sprites and the sprite world 1-30

Listing 1-6

Creating a new atom container 1-31

Listing 1-7

Disposing of atom containers 1-31

Listing 1-9

Inserting a container into another container 1-35

Listing 1-10

Finding a child atom by index 1-36

Listing 1-11

Finding a child atom by ID 1-38

Listing 1-12

Modifying an atom’s data 1-39

Listing 1-13

Removing atoms from a container 1-40

Listing 1-8

Inserting a child atom 1-34

Chapter 10

Text Channel Component

10-1

Table 10-1

Functions supported by the text channel component 10-4

Chapter 11

Movie Data Exchange Components

11-1

Figure 11-1

Text Export Settings dialog box 11-4

xvi

Figure 11-2

Text Import Settings dialog box 11-14

Listing 11-1

Formatting text using text descriptors 11-6

Chapter 13

Tween Media Handler Components

13-1

Listing 13-1

Creating a tween track and tween media 13-5

Listing 13-2

Creating a tween sample 13-6

Listing 13-3

Adding the tween sample to the media and the media to the
track 13-7

Listing 13-4

Creating a link between the tween track and the sound track 13-8

Listing 13-5

Binding a tween entry to its receiving track 13-9

Listing 13-6

A function to initialize a tween component 13-10

Listing 13-7

A function to set a value during a tween operation 13-10

Listing 13-8

A function to reset a tween component 13-11

Chapter 14

Sprite Media Handler

14-1

Figure 14-1

A key frame sample atom container 14-5

Figure 14-2

Atoms that describe a sprite and its properties 14-6

Figure 14-3

Atoms that describe sprite images 14-7

Figure 14-4

An example of an override sample atom container 14-8

Table 14-1

Sprite track properties 14-9

Listing 14-1

Creating a sprite track movie 14-11

Listing 14-2

Creating a track and media 14-12

Listing 14-3

Adding images to the key frame sample 14-12

Listing 14-4

The

AddPICTImageToKeyFrameSample

 function 14-13
Listing 14-5 The AddCompressedImageToKeyFrameSample function 14-15
Listing 14-6 Adding sprites to the key frame 14-16
Listing 14-7 The SetSpriteData function 14-17
Listing 14-8 The AddSpriteToSample function 14-18
Listing 14-9 The AddSpriteSampleToMedia function 14-19
Listing 14-10 Adding override samples 14-20
Listing 14-11 Defining a background color 14-22
Listing 14-12 Loading the movies 14-23
Listing 14-13 Adding the modifier track to the movie 14-24
Listing 14-14 Updating the media’s input map 14-25

xvii

Chapter 16 Data Handler Components 16-1

Figure 16-1 Playing a movie 16-5
Figure 16-2 Capturing movie data 16-6

Listing 16-1 Sample Macintosh Data Handler 16-16

Chapter 19 QuickTime Music Architecture 19-1

Figure 19-1 How QuickTime Music Architecture components work
together 19-9

Figure 19-2 An atomic instrument atom container. 19-13
Figure 19-3 A music fragment 19-16
Figure 19-4 Duration of notes and rests 19-17
Figure 19-5 A note request General event 19-18
Figure 19-6 Note event 19-20
Figure 19-7 Extended Note event 19-21
Figure 19-8 Rest event 19-22
Figure 19-9 Marker event of subtype End 19-23
Figure 19-10 Controller event 19-24
Figure 19-11 Extended Controller event 19-25
Figure 19-12 Knob event 19-26
Figure 19-13 Typical synthesizer 19-28

Table 19-1 Music track data 19-16

Appendix A General MIDI Reference A-1

Table A-1 General MIDI Instrument Numbers A-1
Table A-2 General MIDI Drum Kit Numbers A-4
Table A-3 General MIDI Kit Names A-5

xviii

xix

P R E F A C E

About This Book

This book documents version 2.5 of QuickTime for Macintosh. It also describes
all the features added or changed in QuickTime for Macintosh since version 1.5,
and therefore supersedes all existing documentation for the software releases
1.6.1, 2.0, and 2.1.

The original QuickTime-related Inside Macintosh books documented QuickTime
for Macintosh through the 1.5 software release. So, your main source for
information on programming in QuickTime on the Macintosh is now this book
plus the related Inside Macintosh books, Inside Macintosh: QuickTime, Inside
Macintosh: QuickTime Components, and Inside Macintosh: More Macintosh Toolbox.

A new book describing QuickTime file formats has been added to the
QuickTime for Macintosh documentation suite. QuickTime File Format
Specification, May 1996, supersedes Chapter 4 of Inside Macintosh: QuickTime,
”Movie Resource Formats.” In addition, Appendix B of this book, “QuickTime
File Format Changes,” provides new information that has not yet been
incorporated into the file format specification book.

Many chapters in this book update specific chapters in the Inside Macintosh
books. Within these update chapters, the section headings correspond to
sections found in the Inside Macintosh books, wherever possible. However, the
update chapters in this book contain only the changed information; you must
refer to the Inside Macintosh books for all unchanged features. This book also
contains chapters that describe completely new areas of functionality that were
not documented in the Inside Macintosh books.

QuickTime for Windows is documented in a separate set of books. However,
you will find in this book some references to differences between QuickTime
for the Windows platform and for the Macintosh platform.

Briefly, this book contains the following chapters:

■ Chapter 1, “Movie Toolbox,” updates Chapter 2 of Inside Macintosh:
QuickTime. This chapter describes features that are new to the Movie Toolbox
or have changed since Inside Macintosh: QuickTime was published. These
features include the Sprite Toolbox, QT atoms, modifier tracks, and timecode
tracks.

xx

P R E F A C E

■ Chapter 2, “Component Manager,” updates Chapter 6 of Inside Macintosh:
More Macintosh Toolbox. This chapter describes four new functions added in
QuickTime 2.5.

■ Chapter 3, “Image Compression Manager,” updates Chapter 3 of Inside
Macintosh: QuickTime. This chapter describes features that are new to the
Image Compression Manager or have changed since Inside Macintosh:
QuickTime was published. These features include support for ColorSync,
alpha channels, timecode data, and asynchronous decompression operations.

■ Chapter 4, “Image Compressor Components,” updates Chapter 4 of Inside
Macintosh: QuickTime Components. This chapter describes how compressor
and decompressor components have changed in order to support new
QuickTime image-compression features.

■ Chapter 5, “Image Transcoder Components”, describes new image
transcoding features introduced with QuickTime 2.5.

■ Chapter 6, “Movie Controller Components,” updates Chapter 2 of Inside
Macintosh: QuickTime Components. This chapter describes new movie
controller actions, a new function for determining whether a point is inside
the control area of a movie, and a new flag returned by the
MCGetControllerInfo function.

■ Chapter 7, “Sequence Grabber Components,” updates Chapter 5 of Inside
Macintosh: QuickTime Components. This chapter provides information about
new sequence-grabber features; in particular, the concept of a sequence
grabber output.

■ Chapter 8, “Sequence Grabber Channel Components,” updates Chapter 6 of
Inside Macintosh: QuickTime Components. This chapter describes how
sequence grabber channel components have changed in order to support
new sequence-grabber functionality.

■ Chapter 9, “Video Digitizer Components,” updates Chapter 8 of Inside
Macintosh: QuickTime Components. This chapter describes new video digitizer
component features, including support for timecode tracks.

■ Chapter 10, “Text Channel Components,” describes new text channel
components and text handling features introduced with QuickTime 2.5.

■ Chapter 11, “Movie Data Exchange Components,” updates Chapter 9 of
Inside Macintosh: QuickTime Components. This chapter presents information
about new data import and export features in QuickTime.

xxi

P R E F A C E

■ Chapter 12, “Derived Media Handler Components,” updates Chapter 10 of
Inside Macintosh: QuickTime Components. This chapter describes changes that
affect derived media handler components.

■ Chapter 13, “Tween Media Handler Components,” describes the tween
media handler and tween components introduced with QuickTime 2.5.

■ Chapter 14, “Sprite Media Handler,” describes the sprite media handler
introduced with QuickTime 2.5.

■ Chapter 15, “Preview Components,” updates Chapter 12 of Inside Macintosh:
QuickTime Components. This chapter describes new support for single-fork
movie previews.

■ Chapter 16, “Data Handler Components,” describes the interface that must
be supported by QuickTime data handler components.

■ Chapter 17, “Graphics Importer Components,” describes new components
for opening, displaying, and saving still images.

■ Chapter 18, “QuickTime Settings Control Panel” describes new features of
the control panel, including CD-ROM AutoStart.

■ Chapter 19, “QuickTime Music Architecture,” describes the music
architecture introduced with QuickTime 2.0, as well as new features in
QuickTime 2.5.

■ Appendix A, “General MIDI Reference,” lists the instrument numbers, drum
kit numbers, and MIDI kit names defined by the General MIDI specification.

■ Appendix B, “QuickTime File Format Changes,” contains changes and
additions to the Motion JPEG and YUV file formats as documented in
QuickTime File Format Specification, May 1996. It also provides information
about the QuickTime image file format introduced with QuickTime 2.5.

Format of an Update Chapter 0

The update chapters in this book follow a standard structure where possible.
Each chapter begins with an overview of the new features. Some of the
chapters give programming examples, then all the constants, data types, and
functions are described in a reference section. For example, Chapter 1, “Movie
Toolbox,” contains only three main sections, because only three apply:

xxii

P R E F A C E

■ “New Features of the Movie Toolbox.” This section gives background
information about the new or changed features in the Movie Toolbox since
the 1.5 software release, which was documented in Inside Macintosh:
QuickTime,

■ “Using the Movie Toolbox.” This section describes how to use the new
features of the Movie Toolbox.

■ “Movie Toolbox Reference.” This section describes all the constants, data
structures, and functions in the Movie Toolbox. Each function description
also follows a standard format, which gives the function declaration and
description of every parameter.

Format of a New Chapter 0

This book also contains chapters that describe completely new areas of
functionality that were not documented in the Inside Macintosh books. These
chapters follow a standard structure. Each begins with an overview, then some
chapters give programming examples, then all the constants, data types, and
functions are described in a reference section. For example, Chapter 14, “Sprite
Media Handler,” contains these sections:

■ “About the Sprite Media Handler.” This section gives you a general
overview of the sprite media handler and the features it provides.

■ “Using the Sprite Media Handler.” This section describes the tasks you can
accomplish using the sprite media handler, and gives programming
examples.

■ “Sprite Media Handler Reference.” This section describes the constants, data
types, and functions for use with the sprite media handler. Each function
description also follows a standard format, which gives the function
declaration and description of every parameter.

Conventions Used in This Book 0

This book provides various conventions to present information. Words that
require special treatment appear in specific fonts or font styles. Certain types of

xxiii

P R E F A C E

information, such as parameter blocks, use special fonts so that you can scan
them quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and functions are shown in Letter Gothic (this
is Letter Gothic).

Words that appear in boldface are key terms or concepts that are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this book.

Note
A note like this contains information that is interesting but
not essential to an understanding of the main text. ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. ▲

▲ W A R N I N G

A warning like this indicates potential problems that you
should be aware of as you design your game. Failure to
heed these warnings could result in system crashes or loss
of data. ▲

Development Environment 0

The functions described in this book are available using C interfaces. How you
access them depends on the development environment you are using.

Code listings in this book are shown in ANSI C. They suggest methods of using
various functions and illustrate techniques for accomplishing particular tasks.

xxiv

P R E F A C E

Although most code listings have been compiled and tested, Apple Computer
Inc., does not intend for you to use these code samples in your application.

For More Information 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple
computer platforms. Customers receive the Apple Developer Catalog featuring all
current versions of Apple development tools and the most popular third-party
development tools. ADC offers convenient payment and shipping options,
including site licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

C H A P T E R 1

Contents 1-1

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 Movie Toolbox

New Features of the Movie Toolbox 1-7
Preloading Tracks 1-7
Hints 1-7
Data References 1-8

Timecode Media Handler 1-8
Track References 1-9
Modifier Tracks 1-9

Data Handler Components 1-11
Sprite Toolbox 1-12

Sprite Characteristics 1-12
Sprite World Characteristics 1-15

QT Atoms 1-17
Using the Movie Toolbox 1-19

Loading a Movie 1-20
Creating Movies With Modifier Tracks 1-21
Creating and Initializing a Sprite World 1-22
Creating and Initializing Sprites 1-24
Animating Sprites 1-27
Disposing of a Sprite Animation 1-29
Sprite Hit Testing 1-30
Creating and Disposing of Atom Containers 1-31
Creating New Atoms 1-32
Copying Existing Atoms 1-34
Retrieving Atoms From an Atom Container 1-36
Modifying Atoms 1-39
Removing Atoms From an Atom Container 1-39

Movie Toolbox Reference 1-41

C H A P T E R 1

1-2 Contents

Constants 1-41
Movie Exporting Flags 1-41
Movie Importing Flags 1-42
Flattening Flags 1-42
Interesting Times Flags 1-43
Full Screen Flags 1-43
Text Sample Display Flags 1-44
Modifier Input Types 1-46
Text Atom Types 1-48
Background Sprites 1-49
Flags for Sprite Hit Testing 1-49
Sprite Properties 1-50
Flags for SpriteWorldIdle 1-51
Constants for QT Atom Functions 1-52

Data Types 1-52
Data Reference 1-52
Sample Reference 1-53
Modifier Track Graphics Mode 1-54
Sprite and Sprite World Identifiers 1-54
QT Atom 1-55
QT Atom Type and ID 1-55
QT Atom Container 1-55

Functions for Getting and Playing Movies 1-55
Movie Functions 1-56

NewMovieFromUserProc 1-56
NewMovieFromFile 1-59
NewMovieFromDataRef 1-59
ConvertFileToMovieFile 1-62
ConvertMovieToFile 1-63
FlattenMovie and FlattenMovieData 1-64

Enhancing Movie Playback Performance 1-65
SetTrackLoadSettings 1-65
GetTrackLoadSettings 1-67
GetTrackDisplayMatrix 1-68

Generating Pictures From Movies 1-68
Working with Progress and Cover Functions 1-69

SetMovieDrawingCompleteProc 1-69
SetMovieCoverProcs 1-70

C H A P T E R 1

Contents 1-3

GetMovieCoverProcs 1-70
Functions That Modify Movie Properties 1-71

Working With Movie Spatial Characteristics 1-71
SetMovieColorTable 1-71
GetMovieColorTable 1-72
SetTrackGWorld 1-73

Locating a Movie’s Tracks and Media Structures 1-74
GetMovieIndTrackType 1-74

Working With Track References 1-76
AddTrackReference 1-76
DeleteTrackReference 1-77
SetTrackReference 1-78
GetTrackReference 1-78
GetNextTrackReferenceType 1-79
GetTrackReferenceCount 1-80

Working With Sound 1-80
SetTrackSoundLocalizationSettings 1-80
GetTrackSoundLocalizationSettings 1-82

Functions for Editing Movies 1-83
PasteHandleIntoMovie 1-83

Adding Samples to Media Structures 1-83
SetMediaDefaultDataRefIndex 1-83
SetMediaPreferredChunkSize 1-84
GetMediaPreferredChunkSize 1-85

Editing Tracks 1-85
AddEmptyTrackToMovie 1-85

Using the Full Screen 1-86
BeginFullScreen 1-87
EndFullScreen 1-89

Handling Update Events 1-89
InvalidateMovieRegion 1-90

Handling Media Sample References 1-90
GetMediaSampleReferences 1-91
AddMediaSampleReferences 1-93

Managing the Video Frame Playback Rate 1-94
GetVideoMediaStatistics 1-94
ResetVideoMediaStatistics 1-95

Manipulating Media Input Maps 1-95

C H A P T E R 1

1-4 Contents

GetMediaInputMap 1-96
SetMediaInputMap 1-97

Media Functions 1-98
Selecting Data Handlers 1-98

GetDataHandler 1-98
Timecode Media Handler Functions 1-99

TCGetCurrentTimeCode 1-105
TCGetTimeCodeAtTime 1-106
TCTimeCodeToFrameNumber 1-107
TCFrameNumberToTimeCode 1-108
TCTimeCodeToString 1-108
TCSetSourceRef 1-109
TCGetSourceRef 1-110
TCSetTimeCodeFlags 1-110
TCGetTimeCodeFlags 1-111
TCSetDisplayOptions 1-112
TCGetDisplayOptions 1-113

Media Property Functions 1-113
GetMediaPropertyAtom 1-113
SetMediaPropertyAtom 1-114

Text Media Handler Functions 1-115
TextMediaSetTextSampleData 1-115

Sprite Toolbox Functions 1-116
Sprite World Functions 1-116

NewSpriteWorld 1-117
DisposeSpriteWorld 1-118
SetSpriteWorldClip 1-119
SetSpriteWorldMatrix 1-119
SpriteWorldIdle 1-120
InvalidateSpriteWorld 1-121
SpriteWorldHitTest 1-122
DisposeAllSprites 1-123

Sprite Functions 1-123
NewSprite 1-123
DisposeSprite 1-125
InvalidateSprite 1-125
SpriteHitTest 1-126
GetSpriteProperty 1-127

C H A P T E R 1

Contents 1-5

SetSpriteProperty 1-128
QT Atom Functions 1-129

Creating and Modifying QT Atom Containers 1-129
QTNewAtomContainer 1-129
QTInsertChild 1-130
QTInsertChildren 1-132
QTReplaceAtom 1-133
QTSwapAtoms 1-134
QTSetAtomID 1-134
QTSetAtomData 1-135
QTCopyAtom 1-136
QTLockContainer 1-137
QTGetAtomDataPtr 1-138
QTUnlockContainer 1-139
QTRemoveAtom 1-139
QTRemoveChildren 1-140
QTDisposeAtomContainer 1-141

Retrieving Atoms and Atom Data 1-141
QTGetNextChildType 1-141
QTCountChildrenOfType 1-142
QTFindChildByIndex 1-143
QTFindChildByID 1-144
QTNextChildAnyType 1-144
QTCopyAtomDataToHandle 1-145
QTCopyAtomDataToPtr 1-146
QTGetAtomTypeAndID 1-147

C H A P T E R 1

1-6 Contents

C H A P T E R 1

New Features of the Movie Toolbox 1-7

Movie Toolbox 1

This chapter discusses the changes to the Movie Toolbox as documented in
Chapter 2 of Inside Macintosh: QuickTime.

New Features of the Movie Toolbox 1

Preloading Tracks 1

There are occasions when it may be useful for you to preload some or all of a
track’s media data into memory. For example, if you are developing an
application that plays several movies at once, you may want to load the smaller
movies into memory in order to reduce CD-ROM seek activity. Text tracks,
which are typically rather small, are good candidates for preloading; in many
cases you can load a movie’s entire text track into memory. Another good use
of preloading is to preload small music tracks that play over scene changes,
giving the interactive experience a more continuous feel.

QuickTime 2.0 expanded your options for preloading tracks. In the past,
applications could use the Load...IntoRAM functions to preload a movie, track,
or media. Now, you can establish preloading guidelines as part of a track’s
definition. The Movie Toolbox then automatically preloads the track, according
to those guidelines, every time the movie is played, and without any special
effort by applications. You establish these preloading guidelines by calling the
new SetTrackLoadSettings function, see “Enhancing Movie Playback
Performance” (page 1-65) for more information about this function). Note that
the preloading information is preserved in flattened movies.

Hints 1

QuickTime 1.6.1 and 2.0 defined several new movie and media playback hints.
These new hints work with the SetMoviePlayHints and SetMediaPlayHints
functions.

hintsDontPurge
Instructs the Movie Toolbox not to dispose of movie data after
playing it. The Movie Toolbox leaves the data in memory, in a
purgeable handle. This can enhance the playback of small

C H A P T E R 1

Movie Toolbox

1-8 New Features of the Movie Toolbox

movies that are looping. However, it may consume large
amounts of memory and therefore affect the performance of the
Memory Manager. Use this hint carefully.

hintsInactive
Tells the Movie Toolbox that the movie is not in an active
window. This can allow the Movie Toolbox to more efficiently
allocate scarce system resources. The movie controller
component automatically sets this hint for all movies it
manages.

hintsHighQuality
Specifies that the given movie or media should render the
highest quality. For example, the video media handler turns off
fast dithering and uses high-quality dithering.

Because rendering at the highest quality takes much more time
and memory than rendering at a lesser quality, this mode is
usually not appropriate for real-time playback. However, since
this mode generates higher quality images, it is useful when
recompressing.

Data References 1

The Movie Toolbox now fully supports a media that refers to data in more than
one file. In the past, a media was restricted to a single data file. By allowing a
single media to refer to more than one file, the Movie Toolbox allows better
playback performance and easier editing, primarily by reducing the number of
tracks in a movie. Use the new SetMediaDefaultDataRefIndex function
(page 1-83) to control which of a media’s files you access when you add new
samples.

Timecode Media Handler 1

QuickTime 2.0 introduced support for timecode tracks. Timecode tracks allow
you to store external timecode information, such as SMPTE timecode, in your
QuickTime movies. QuickTime now provides a new timecode media handler
that interprets the data in these tracks.

See “Timecode Media Handler Functions” (page 1-99) for information about
these functions.

C H A P T E R 1

Movie Toolbox

New Features of the Movie Toolbox 1-9

Track References 1

While QuickTime has always allowed the creation of movies that contain more
than one track, it has not been able to specify relationships between those
tracks. Track references are a new feature of QuickTime that allow you to relate
a movie’s tracks to one another. The QuickTime track-reference mechanism
supports many-to-many relationships. That is, any movie track may contain
one or more track references, and any track may be related to one or more other
tracks in the movie.

Track references can be useful in a variety of ways. For example, track
references can be used to relate timecode tracks to other movie tracks. (See
“Timecode Media Handler” for more information about timecode tracks.) You
might consider using track references to identify relationships between video
and sound tracks, identifying the track that contains dialog and the track that
contains background sounds, for example. Another use of track references is to
associate one or more text tracks that contain subtitles with the appropriate
audio track or tracks.

Every movie track contains a list of its track references. Each track reference
identifies another, related track. That related track is identified by its track
identifier. The track reference itself contains information that allows you to
classify the references by type. This type information is stored in an OSType data
type. You are free to specify any type value you want—note, however, that
Apple has reserved all lower-case type values.

You may create as many track references as you want, and you may create
more than one reference of a given type. Each track reference of a given type is
assigned an index value. These index values start at 1 for each different
reference type. The Movie Toolbox maintains these index values so that they
always start at 1 and count by 1.

See “Working With Track References” (page 1-76) for detailed descriptions of
the Movie Toolbox functions that allow you to work with track references.

Modifier Tracks 1

The addition of modifier tracks in QuickTime 2.1 introduced new capabilities
for creating dynamic movies. For example, instead of playing video in a
normal way, a video track can send its image data to a sprite track. The sprite
track then uses that video data to replace the image of one of its sprites. When
the movie is played, the video track appears as a sprite.

C H A P T E R 1

Movie Toolbox

1-10 New Features of the Movie Toolbox

Modifier tracks are not a new type of track. Instead, they are a new way of
using the data in existing tracks. A modifier track does not present its data, but
instead sends it to another track which uses the data to modify how it presents
its own data. Any track can be either a sender or a presenter, but not both.
Previously, all tracks were presenters.

Another use of modifier tracks is to store a series of sound volume levels. These
sound levels can be sent to a sound track as it plays to dynamically adjust the
volume. A similar use of modifier tracks is to store location and size
information. This data can be sent to a video track to cause it to move and
resize as it plays.

Because a modifier track can send its data to more than one track, you can
easily synchronize actions between multiple tracks. For example, a single
modifier track containing matrices as its samples can make two separate video
tracks follow the same path.

See “Creating Movies With Modifier Tracks” (page 1-21) for more information
about using modifier tracks. See “Tween Media” (page x-x) for more
information.

Limitations of Spatial Modifier Tracks 1

A modifier track can cause a track to move outside of its original bounds. This
could cause problems, as applications don’t expect a QuickTime movie’s
dimensions or location to change over time. To ensure that the movie maintains
a constant location and size, the Movie Toolbox limits the area a spatially
modified track can be displayed in. A movie’s “natural” shape is defined by the
region returned by GetMovieBoundsRgn. The Movie Toolbox clips all spatially
modified tracks against the region returned by GetMovieBoundsRgn. This means
that a track can move outside of its initial bounds, but it cannot move beyond
the combined initial bounds of all tracks in the movie. Areas uncovered by a
moving track are handled by the Movie Toolbox in the same way as areas
uncovered by tracks with empty edits. For more information about how
QuickTime handles uncovered areas, see the description of the
SetMovieCoverProcs function on page 2-156 of Inside Macintosh: QuickTime.

If it is necessary for a to track move through a larger area than that defined by
the movie’s bounds region, the movie’s bounds region can be enlarged to any
desired size by creating a spatial track (such as a video track) of the desired size
but with no data. As long as the track is enabled, it will contribute to the
bounds of the movie.

C H A P T E R 1

Movie Toolbox

New Features of the Movie Toolbox 1-11

Media Handler Support 1

The following media handlers support sending their data to other tracks:
Video, Base, and Tween.

The Sound, Music and 3D media handlers do not support sending their data to
other tracks.

Not all media handlers support all input types. Media handlers can decide
which input types to support. Table 1-1 lists the input types supported by each
Apple-supplied media handler:

Data Handler Components 1

QuickTime 2.0 includes a new, memory-based data handler. This data handler
component works with movie data that is stored in memory, in a handle, rather
than in a file. This data handler has a component subtype value of
HandleDataHandlerSubType ('hndl').

To create a movie that uses the handle data handler, set the data reference type
to HandleDataHandlerSubType when you call the NewTrackMedia function. Note
that the movie data in memory is not automatically saved with the movie. If
you want to save the data that is in memory, use the FlattenMovie or
InsertTrackSegment functions to copy the data from memory to a file.

Table 1-1 Input Types Supported by Each Apple-supplied Media Handler

Video Text Sound MPEG Music Sprite Time Code 3D

Matrix ✓ ✓ ✓ ✓ ✓ ✓

Graphics
Mode

✓ ✓ ✓ ✓ ✓ ✓

Clip ✓ ✓ ✓ ✓ ✓ ✓

Volume ✓ ✓ ✓

Balance ✓ ✓ ✓

Sprite
Image

✓ ✓

3D
Sound

✓ ✓

C H A P T E R 1

Movie Toolbox

1-12 New Features of the Movie Toolbox

The handle data handler does not use aliases as its data reference, and therefore
does not use alias handles. Rather, it uses 4-byte memory handles as its data
reference. The data reference contains the actual handle that stores the needed
data. If you pass a handle value of nil, the data handler allocates and manages
the handle for you. If you pass a non-nil handle value, the data handler uses
your handle. It is then your responsibility to manage the handle, and dispose of
it when appropriate. Note that a single handle may be shared by several data
handler components. Whenever new data is added, the data handler resizes the
handle to accommodate new data.

Although data handler components have existed since QuickTime 1.0, their
interface is publicly defined for the first time in QuickTime 2.0. If you are
interested in developing a data handler, refer to the chapter “Data Handler
Components” later in this document.

Sprite Toolbox 1

The Sprite Toolbox is a set of data types and functions you can use to add
sprite-based animation to an application. The Sprite Toolbox handles
invalidating appropriate areas as sprite properties change, the composition of
sprites and their background on an offscreen buffer, and the transfer of the
result to the screen or an alternate destination.

To create a sprite track in a QuickTime movie, you use the sprite media
handler, which, in turn, makes use of the Sprite Toolbox. For information on
how to use the sprite media handler, see the chapter “Sprite Media Handler” in
this book.

This section describes the characteristics that govern creating sprite animation
in an application.

Sprite Characteristics 1

Sprite animation differs substantially from traditional video animation. With
traditional video animation, you describe a frame by specifying the color of
each pixel. By contrast, with sprite animation, you describe a frame by
specifying which sprites, or images, taken from a finite set of images, appear at
various locations.

You can think of a sprite animation as a play. In a QuickTime movie, the sprite
track bounds are the stage; in an application, a sprite world is the stage. The

C H A P T E R 1

Movie Toolbox

New Features of the Movie Toolbox 1-13

background is the play’s set; the background may be a single solid color, an
image, or a combination of images. The sprites are the actors in the play.

A sprite has properties that describe its location and appearance at a given
point in time. During the course of an animation, you modify a sprite’s
properties to cause it to change its appearance and move around the set. For
sprites in a sprite world, you modify a sprite’s properties by calling the
SetSpriteProperty function, passing a constant to indicate which property you
want to modify. SetSpriteProperty invalidates the appropriate portions of the
sprite world, which are redrawn when SpriteWorldIdle is called. For sprites in
a sprite track, you modify a sprite property by creating an override sample of
the appropriate type.

Each sprite has a corresponding image. During the animation, you can change
a sprite’s image. For example, you can assign a series of images to a sprite in
succession to perform cell-based animation. For sprites in a sprite world, you
control a sprite’s image by setting the sprite’s kSpritePropertyImageDescription
and kSpritePropertyImageDataPtr properties.

For sprites in a sprite track, all sprite images are stored in the sprite track’s key
frame sample. This allows the sprites in the sprite track to share images. A
sprite’s image index (kSpritePropertyImageIndex) specifies the sprite’s current
image in the pool of available images. All images assigned to a sprite must
share the same image description.

A sprite’s matrix property (kSpritePropertyMatrix) describes the sprite’s
location and scaling within its sprite world or sprite track. A sprite’s local
coordinate system is defined by its natural bounding box, as shown in
Figure 1-1.

C H A P T E R 1

Movie Toolbox

1-14 New Features of the Movie Toolbox

Figure 1-1 Local coordinate system of a sprite

A sprite’s display coordinate system — where a sprite is displayed within a
sprite world or a sprite track — is defined by the sprite’s matrix, as shown in
Figure 1-2.

Figure 1-2 Display coordinate system of a sprite

(0,0)

(80,50)

(0,0)

Sprite matrix dx

Sprite matrix dy

C H A P T E R 1

Movie Toolbox

New Features of the Movie Toolbox 1-15

By modifying a sprite’s matrix, you can modify the sprite’s location so that it
appears to move in a smooth path on the screen or so that it jumps from one
place to another. You can modify a sprite’s size so that it shrinks, grows, or
stretchs. Depending on which image compressor is used to create the sprite
images, other transformations, such as rotation, may be supported as well.
Translation only matrices provide the best performance.

A sprite’s layer property (kSpritePropertyLayer) is a numeric value that
specifies a sprite’s layer in the animation. Sprites with lower layer numbers
appear in front of sprites with higher layer numbers. To designate a sprite as a
background sprite, you should assign it the special layer number
kBackgroundSpriteLayerNum.

A sprite’s visible property (kSpritePropertyVisible) specifies whether or not
the sprite is visible. To make a sprite visible, you set the sprite’s visible
property to true.

A sprite’s graphics mode property (kSpritePropertyGraphicsMode) specifies a
graphics mode and blend color that indicates how to blend a sprite with any
sprites behind it and with the background. To set a sprite’s graphics mode, you
call SetSpriteProperty, passing a pointer to a ModifierTrackGraphicsModeRecord
structure.

Three other properties, kSpriteTrackPropertyBackgroundColor,
kSpriteTrackPropertyOffscreenBitDepth, and
kSpriteTrackPropertySampleFormat, describe properties of a sprite track in a
QuickTime movie. These properties are discussed in more detail in Chapter 14,
“Sprite Media Handler.”

Sprite World Characteristics 1

A sprite world is a graphics world for a sprite animation. To create a sprite
animation in an application, you must first create a sprite world. You do not
need to create a sprite world to create a sprite track in a QuickTime movie.

Once you have created a sprite world, you create sprites associated with that
sprite world. You can think of a sprite world as a stage on which your sprites
perform. When you dispose of a sprite world, its associated sprites are
disposed of as well.

When you call SetSpriteProperty to modify a property of a sprite,
SetSpriteProperty invalidates the appropriate regions of the sprite world.
When your application calls SpriteWorldIdle, the sprite world redraws its
invalid regions. A sprite’s sprite world coordinate system is defined by

C H A P T E R 1

Movie Toolbox

1-16 New Features of the Movie Toolbox

translating the sprite’s display coordinate system by the sprite world’s matrix,
as shown in Figure 1-3.

Figure 1-3 Sprite world coordinate system

To achieve the best performance for your sprite animation, you should observe
the following guidelines when creating a sprite world.

■ When you create a graphics world to be used for your sprite world, you will
achieve the best performance if the graphics world’s dimensions are a
multiple of 16 pixels.

■ Your sprite layer graphics world and background graphics world should
both be the same size and depth as the destination of your sprite animation.

■ Use translation-only matrices for creating sprite worlds and sprites.

■ Do not set a clipping region for your sprite world.

(0,0)

Sprite matrix dx

Sprite matrix dy

Sprite world
matrix dx

Sprite world matrix dy

Sprite
world

C H A P T E R 1

Movie Toolbox

New Features of the Movie Toolbox 1-17

■ Call the SpriteWorldIdle function frequently.

■ Avoid clipping sprites with the sprite world boundry.

■ Use the Animation compressor to create sprites with transparent areas.

QT Atoms 1

A QT atom container is a basic structure for storing information in QuickTime.
You can use a QT atom container to construct arbitrarily complex hierarchical
data structures. You can think of a newly created QT atom container as the root
of a tree that contains no children. A QT atom container contains QT atoms
(Figure 1-4). Each QT atom contains either data or other atoms. If a QT atom
contains other atoms, it is a parent atom and the atoms it contains are its child
atoms. If a QT atom contains data, it is called a leaf atom.

Figure 1-4 QT atom container with parent and child atoms

Each QT atom has an offset that describes the atom’s position within the QT
atom container. In addition, each QT atom has a type and an ID. The atom type
describes the kind of information the atom represents. The atom ID is used to
differentiate child atoms of the same type with the same parent; an atom’s ID

Atom type

Atom ID

Atom type

Atom ID

Atom type

Atom ID

QT atom
container

Atom data

Atom type

Atom ID

Atom data

Child atoms

Parent atom

C H A P T E R 1

Movie Toolbox

1-18 New Features of the Movie Toolbox

must be unique for a given parent and type. In addition to the atom ID, each
atom has a one-based index that describes its order relative to other child
atoms of the same parent. You can uniquely identify a QT atom in three ways:

■ by its offset

■ by its parent atom, type, and index

■ by its parent atom, type, and ID

You can store and retrieve atoms in a QT atom container by index, ID, or both.
For example, to use a QT atom container as a dynamic array or tree structure,
you can store and retrieve atoms by index. To use a QT atom container as a
database, you can store and retrieve atoms by ID. Or, you can create store and
retrieve atoms using ID and index to create an arbitrarily complex, extensible
data structure.

Figure 1-5 shows a QT atom container that has two child atoms. The first child
atom (offset = 10) is a leaf atom that has an atom type of 'abcd', an ID of 1000,
and an index of 1. The second child atom (offset = 20) has an atom type of
'abcd', an ID of 900, and an index of 2. Because the two child atoms have the
same type, they must have different IDs. The second child atom is also a parent
atom of three atoms.

Figure 1-5 QT atom container example

'abcd'

900

Index= 1
Offset= 10

Index= 2
Offset= 20

Index= 1
Offset= 30

Index= 2
Offset= 40

Index= 3
Offset= 50

QT atom
container

'abcd'

100

'abcd'

1000

'word'

100

"Hello"

'abcd'

1000

Data

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-19

The first child atom (offset = 30) has an atom type of 'abcd', an ID of 100, and
an index of 1. It does not have any children, nor does it have data. The second
child atom (offset = 40) has an atom type of 'word', an ID of 100, and an index
of 2. The atom has data, so it is a leaf atom. The second atom (offset = 40) has
the same ID as the first atom (offset = 30), but a different atom type. The third
child atom (offset = 50) has an atom type of 'abcd', an ID of 1000, and an index
of 3. Its atom type and ID are the same as that of another atom (offset = 10)
with a different parent.

For more information about the structure of QT atoms and atom containers, see
the book QuickTime File Format Specification, May 1996.

As a developer, you do not need to parse QT atoms yourself. Instead, you can
use the QT atom functions to create atom containers, add atoms to and remove
atoms from atom containers, search for atoms in atom containers, and retrieve
data from atoms in atom containers.

Most QT atom functions take two parameters to specify a particular atom: the
atom container that contains the atom and the offset of the atom in the atom
container data structure. You obtain an atom’s offset by calling either
QTFindChildByID or QTFindChildByIndex. An atom’s offset may be invalidated if
the QT atom container that contains it is modified.

When calling any QT atom function for which you specify a parent atom as a
parameter, you can pass the constant kParentAtomIsContainer as an atom offset
to indicate that the specified parent atom is the atom container itself. For
example, you call the QTFindChildByIndex function and pass
kParentAtomIsContainer constant for the parent atom parameter to indicate that
the requested child atom is a child of the atom container itself.

Using the Movie Toolbox 1

This section describes new or changed operations your application may
perform with the Movie Toolbox. The following topics are discussed:

■ “Loading a Movie” describes how to load a movie from a non-HFS volume.

■ “Creating a Movie With Modifier Tracks” describes how media handlers can
send their data to another media handler rather than presenting their media
directly.

C H A P T E R 1

Movie Toolbox

1-20 Using the Movie Toolbox

■ “Creating and Initializing a Sprite World” describes the steps for creating
and initializing a sprite world.

■ “Creating and Initializing Sprites” discusses how to create sprites and add
them to a sprite world.

■ “Animating Sprites” shows how to animate sprites by altering their
properties.

■ “Disposing of a Sprite Animation” shows how to dispose of sprite-related
data structures when you have finished displaying a sprite animation.

■ “Sprite Hit Testing” discusses how to perform hit testing operations for
sprites.

■ “Creating and Disposing of Atom Containers” discusses how to create a new
QT atom container and how to dispose of a QT atom container when you
have finished using it.

■ “Creating New Atoms” describes how to create new atoms and insert them
into an atom container.

■ “Copying Existing Atoms” discusses how to copy and manipulate existing
atoms within an atom container.

■ “Retrieving Atoms From an Atom Container” shows how to retrieve atoms
and their data from an atom container.

■ “Modifying Atoms” shows how to modify the data of atoms stored in an
atom container.

■ “Removing Atoms From an Atom Container” describes how to remove
atoms from an atom container.

Loading a Movie 1

QuickTime 2.0 made the data handler component interface available to
developers. Data handlers provide a way to access data stored in any location,
in any kind of container. Using a data handler, you can access data on a
Macintosh hard disk, stored in memory, or stored on a network volume on a
non-HFS volume. Although data handlers allow a movie data to be stored on
any kind of device, before QuickTime 2.0, the movie resource had to be stored
on an HFS volume. QuickTime 2.1 provides you with a new function, named
NewMovieFromDataRef, that allows a movie to be created from any device that

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-21

has a corresponding data handler. Use the NewMovieFromDataRef function
(page 1-59) when you need to instantiate movies from other types of devices.

Creating Movies With Modifier Tracks 1

QuickTime 2.1 provides additional functionality for media handlers. By way of
modifier tracks, media handlers can now send their data to another media
handler rather than presenting their media directly. See “Modifier Tracks”
(page 1-9) earlier in this chapter for a complete discussion of this feature.

To create a movie with modifier tracks, first you create a movie with all the
desired tracks, then you create the modifier track. To link the modifier tracks to
the track that it will modify, use the existing AddTrackReference function as
shown in the following code:

long addedIndex;

AddTrackReference(aVideoTrack, aModifierTrack, kTrackModifierReference,
&addedIndex);

The reference doesn’t completely describe the modifier track’s relationship to
the track it modifies. Instead, the reference simply tells the modifier track to
send its data to the specified track. The receiving track doesn’t know what it
should do with that data. A single track may also be receiving data from more
than one modifier track. To describe how each modifier input should be used,
each track’s media also has an input map. The media’s input map describes
how the data being sent to each input of a track should be interpreted by the
receiving track. After creating the reference, it is necessary to update the
receiving track’s media input map. When AddTrackReference is called, it returns
the index of the reference added. That index is the index of the input which
needs to be described in the media input map. If the modifier track created
above contained regions to change the shape of the video track, the following
code updates the input map appropriately:

QTAtomContainer inputMap;
QTAtom inputAtom;
OSType inputType;
Media aVideoMedia = GetTrackMedia(aVideoTrack);
GetMediaInputMap (aVideoMedia, &inputMap);
QTInsertChild(inputMap, kParentAtomIsContainer, kTrackModifierInput,

addedIndex, 0,0, nil, &inputAtom);

C H A P T E R 1

Movie Toolbox

1-22 Using the Movie Toolbox

inputType = kTrackModifierTypeClip;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,

sizeof(inputType), &inputType, nil);
SetMediaInputMap(aVideoMedia, inputMap);
QTDisposeAtomContainer(inputMap);

The media input map allows you to store additional information for each
input. In the preceding example, only the type of the input is specified. In other
types of references, you may need to specify additional data.

When a modifier track is playing an empty track edit, is disabled or deleted, all
receiving tracks are notified that the track input is inactive. When an input
becomes inactive, it resets to its default value. For example, if a track was
receiving data from a clip modifier track and that input becomes inactive, the
shape of the track will revert to the shape it would have if there were no clip
modifier track.

Creating and Initializing a Sprite World 1

To create a sprite animation in an application, first create a sprite world to
contain your sprites. To do this, perform the following steps:

■ Allocate a sprite layer graphics world that corresponds to the size and bit
depth of your destination graphics world.

■ If you plan to have a background image behind your sprites that is static or
that changes infrequently, create a background graphics world that is the
same size and depth as the sprite layer graphics world. You do not need to
do this if you plan to have a solid background color behind your sprites.
Animations that use a solid background color require less memory and
perform slightly better than animations that use a background image.

■ Call LockPixels on the pixel maps of the sprite layer and background
graphics worlds. These graphics worlds must remain valid for the lifetime of
the sprite world.

■ Call the NewSpriteWorld function to create the new sprite world.

The sample code function CreateSpriteStuff, Listing 1-1, calculates the bounds
of the destination window and calls NewGWorld to create a new sprite layer
graphics world. Then, it calls LockPixels to lock the pixel map of the sprite
layer graphics world.

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-23

Next, CreateSpriteStuff calls NewSpriteWorld to create a new sprite world,
passing the destination graphics world (WindowPtr) and the sprite layer
graphics world. CreateSpriteStuff passes a background color to
NewSpriteWorld instead of specifying a background graphics world. The newly
created sprite world is returned in the global variable gSpriteWorld.

Finally, CreateSpriteStuff calls the sample code function CreateSprites to
create sprites to populate the sprite world with sprites.

Listing 1-1 Creating a sprite world

// global variables
GWorldPtr spritePlane = nil;
SpriteWorld gSpriteWorld = nil;
Rect gBounceBox;
RGBColor gBackgroundColor;

void CreateSpriteStuff (Rect *windowBounds, CGrafPtr windowPtr)
{

OSErr err;
Rect bounds;

// calculate the size of the destination
bounds = *windowBounds;
OffsetRect (&bounds, -bounds.left, -bounds.top);
gBounceBox = bounds;
InsetRect (&gBounceBox, 16, 16);

// create a sprite layer graphics world with a bit depth of 16
NewGWorld (&spritePlane, 16, &bounds, nil, nil, useTempMem);
if (spritePlane == nil)

NewGWorld (&spritePlane, 16, &bounds, nil, nil, 0);

if (spritePlane)
{

LockPixels (spritePlane->portPixMap);
gBackgroundColor.red = gBackgroundColor.green =

gBackgroundColor.blue = 0;

// create a sprite world

C H A P T E R 1

Movie Toolbox

1-24 Using the Movie Toolbox

err = NewSpriteWorld (&gSpriteWorld, (CGrafPtr)windowPtr,
spritePlane, &gBackgroundColor, nil);

// create sprites
CreateSprites ();

}
}

Creating and Initializing Sprites 1

Once you have created a sprite world, you can create sprites within it. To do
this, you must first obtain image descriptions and image data for your sprites.
This image data may be any image data that has been compressed using
QuickTime’s Image Compression Manager.

You create sprites and add them to your sprite world using the NewSprite
function. If you want to create a sprite that is drawn to the background
graphics world, you should specify the constant kBackgroundSpriteLayerNum for
the layer parameter.

The sample code function CreateSprites, shown in Listing 1-2, creates the
sprites for the sample application. First, the function initializes some global
arrays with position and image information for the sprites.

Next, CreateSprites iterates through all the sprite images, preparing each
image for display. For each image, CreateSprites calls the sample code function
MakePictTransparent function, which strips any surrounding background color
from the image. MakePictTransparent does this by using the animation
compressor to recompress the PICT images using a key color. Then,
CreateSprites calls ExtractCompressData, which extracts the compressed data
from the PICT image. This is one technique for creating compressed images;
there are other, more optimized ways to store and retrieve sprite images.

Once the images have been prepared, CreateSprites calls NewSprite to create
each sprite in the sprite world. CreateSprites creates each sprite in a different
layer.

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-25

Listing 1-2 Creating sprites

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24
#define kBackgroundPictID 158
#define kFirstSpaceShipPictID (kBackgroundPictID + 1)
#define kSpaceShipWidth 106
#define kSpaceShipHeight 80

// global variables
SpriteWorld gSpriteWorld = nil;
Sprite gSprites[kNumSprites];
Rect gDestRects[kNumSprites];
Point gDeltas[kNumSprites];
short gCurrentImages[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
ImageDescriptionHandle gImageDescriptions[kNumSpaceShipImages];

void CreateSprites (void)
{

long i;
Handle compressedData = nil;
PicHandle picture;
CGrafPtr savePort;
GDHandle saveGD;
OSErr err;
RGBColor keyColor;

SetRect (&gDestRects[0], 132, 132, 132 + kSpaceShipWidth,
132 + kSpaceShipHeight);

SetRect (&gDestRects[1], 50, 50, 50 + kSpaceShipWidth,
50 + kSpaceShipHeight);

SetRect (&gDestRects[2], 100, 100, 100 + kSpaceShipWidth,
100 + kSpaceShipHeight);

SetRect (&gDestRects[3], 130, 130, 130 + kSpaceShipWidth,
130 + kSpaceShipHeight);

gDeltas[0].h = -3;
gDeltas[0].v = 0;
gDeltas[1].h = -5;

C H A P T E R 1

Movie Toolbox

1-26 Using the Movie Toolbox

gDeltas[1].v = 3;
gDeltas[2].h = 4;
gDeltas[2].v = -6;
gDeltas[3].h = 6;
gDeltas[3].v = 4;

gCurrentImages[0] = 0;
gCurrentImages[1] = kNumSpaceShipImages / 4;
gCurrentImages[2] = kNumSpaceShipImages / 2;
gCurrentImages[3] = kNumSpaceShipImages * 4 / 3;

keyColor.red = keyColor.green = keyColor.blue = 0xFFFF;

// recompress PICT images to make them transparent
for (i = 0; i < kNumSpaceShipImages; i++)
{

picture = (PicHandle) GetPicture (i + kFirstSpaceShipPictID);
DetachResource ((Handle)picture);

MakePictTransparent (picture, &keyColor);
ExtractCompressData (picture, &gCompressedPictures[i],

&gImageDescriptions[i]);
HLock (gCompressedPictures[i]);

KillPicture (picture);
}

// create the sprites for the sprite world
for (i = 0; i < kNumSprites; i++)
{

MatrixRecord matrix;

SetIdentityMatrix (&matrix);

matrix.matrix[2][0] = ((long)gDestRects[i].left << 16);
matrix.matrix[2][1] = ((long)gDestRects[i].top << 16);

err = NewSprite (&(gSprites[i]), gSpriteWorld,
gImageDescriptions[i],* gCompressedPictures[i],

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-27

&matrix, true, i);
}

}

Animating Sprites 1

To animate a sprite, you use the SetSpriteProperty function to change one or
more of the sprite’s properties, such as its matrix, layer, or image data. In
addition to modifying a property, SetSpriteProperty invalidates the
appropriate areas of the sprite’s sprite world.

The SpriteWorldIdle function is responsible for redrawing a sprite world’s
invalid regions. Your application should call this function after modifying
sprite properties to give the sprite world the opportunity to redraw.

Listing 1-3 shows the sample application’s main function. It performs all of the
application’s initialization tasks, including initializing the sprite world and its
sprites. It displays the window and loops until the user clicks the button in the
window. To perform the animation, each time through the loop, main calls the
sample code function MoveSprites to modify the properties of the sprites and
then calls SpriteWorldIdle to give the sprite world the opportunity to redraw
its invalid areas.

Listing 1-3 The main function

// global variables
SpriteWorld gSpriteWorld = nil;

void main (void)
{

// ...
// initialize everything and create a window
// create a sprite world and the sprites in it
// show the window
// ...

while (!Button())
{

// animate the sprites

C H A P T E R 1

Movie Toolbox

1-28 Using the Movie Toolbox

MoveSprites ();
SpriteWorldIdle (gSpriteWorld, 0, 0);

}

// ...
// dispose of the sprite world and its sprites
// shut down everything else
// ...

}

The MoveSprites function, shown in Listing 1-4, is responsible for modifying
the properties of the sprites. For each sprite, the function calls
SetSpriteProperty twice, once to change the sprite’s matrix and once to change
the sprite’s image data pointer.

Listing 1-4 Animating sprites

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24

// global variables
Rect gBounceBox;
Sprite gSprites[kNumSprites];
Rect gDestRects[kNumSprites];
Point gDeltas[kNumSprites];
short gCurrentImages[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];

void MoveSprites (void)
{

short i;
MatrixRecord matrix;

SetIdentityMatrix (&matrix);

// for each sprite
for (i = 0; i < kNumSprites; i++)
{

// modify the sprite’s matrix

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-29

OffsetRect (&gDestRects[i], gDeltas[i].h, gDeltas[i].v);

if ((gDestRects[i].right >= gBounceBox.right) ||
(gDestRects[i].left <= gBounceBox.left))
gDeltas[i].h = -gDeltas[i].h;

if ((gDestRects[i].bottom >= gBounceBox.bottom) ||
(gDestRects[i].top <= gBounceBox.top))
gDeltas[i].v = -gDeltas[i].v;

matrix.matrix[2][0] = ((long)gDestRects[i].left << 16);
matrix.matrix[2][1] = ((long)gDestRects[i].top << 16);

SetSpriteProperty (gSprites[i], kSpritePropertyMatrix, &matrix);

// change the sprite’s image
gCurrentImages[i]++;
if (gCurrentImages[i] >= (kNumSpaceShipImages * (i+1)))

gCurrentImages[i] = 0;
SetSpriteProperty (gSprites[i], kSpritePropertyImageDataPtr,

*gCompressedPictures[gCurrentImages[i] / (i+1)]);
}

}

Disposing of a Sprite Animation 1

When an application has finished displaying a sprite animation, it should do
the following things:

■ dispose of the sprite world associated with the animation. Disposing of a
sprite world automatically destroys the sprites in the sprite world.

■ dispose of the sprite image data

■ dispose of graphics worlds associated with the sprite animation

In the sample application, main calls the sample code function
DisposeEverything to dispose of sprite-related structures. This function, shown
in Listing 1-5, iterates through the sprites, disposing of each sprite’s image
data. Then, DisposeEverything calls DisposeSpriteWorld to dispose of the sprite
world and all of the sprites in it. Finally, the function calls DisposeGWorld to
dispose of the graphics world associated with the sprite world.

C H A P T E R 1

Movie Toolbox

1-30 Using the Movie Toolbox

Listing 1-5 Disposing of sprites and the sprite world

// constants
#define kNumSprites 4
#define kNumSpaceShipImages 24

// global variables
SpriteWorld gSpriteWorld = nil;
Sprite gSprites[kNumSprites];
Handle gCompressedPictures[kNumSpaceShipImages];
ImageDescriptionHandle gImageDescriptions[kNumSpaceShipImages];

void DisposeEverything (void)
{

short i;
// dispose of the sprite world and associated graphics world
if (gSpriteWorld)

DisposeSpriteWorld (gSpriteWorld);

// dispose of each sprite’s image data
for (i = 0; i < kNumSprites; i++)
{

if (gCompressedPictures[i])
DisposeHandle (gCompressedPictures[i]);

if (gImageDescriptions[i])
DisposeHandle ((Handle)gImageDescriptions[i]);

}
DisposeGWorld (spritePlane);

}

Sprite Hit Testing 1

The Sprite Toolbox provides two functions for performing hit testing
operations with sprites, SpriteWorldHitTest and SpriteHitTest.

The SpriteWorldHitTest function determines whether any sprites exist at a
specified location in a sprite world’s display coordinate system. This function
retrieves the frontmost sprite at the specified location.

The SpriteHitTest function determines whether a particular sprite exists at a
specified location in the sprite’s display coordinate system. This function is

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-31

useful for hit testing a subset of the sprites in a sprite world and for detecting
multiple sprites at a single location.

You can pass flags to either hit testing function to control the operation more
precisely. For example, you may want the hit test operation to detect a sprite
whose bounding box contains the specified location. The allowable flags are
described in “Flags for Sprite Hit Testing” (page 1-49).

Creating and Disposing of Atom Containers 1

Before you can add atoms to an atom container, you must first create the
container by calling QTNewAtomContainer. The code sample shown in Listing 1-6
calls QTNewAtomContainer to create an atom container and then calls
SetSpriteData to add data for a background sprite to the container.

Listing 1-6 Creating a new atom container

QTAtomContainer spriteData;
OSErr err
// create an atom container to hold a sprite’s data
err=QTNewAtomContainer (&spriteData);

When you have finished using an atom container, you should dispose of it by
calling the QTDisposeAtomContainer function. The sample code shown in
Listing 1-7 calls QTDisposeAtomContainer to dispose of two atom containers,
sample and spriteData.

Listing 1-7 Disposing of atom containers

if (sample)
QTDisposeAtomContainer (sample);

if (spriteData)
QTDisposeAtomContainer (spriteData);

C H A P T E R 1

Movie Toolbox

1-32 Using the Movie Toolbox

Creating New Atoms 1

You use the QTInsertChild function to create new atoms and insert them in a
QT atom container. The QTInsertChild function creates a new child atom for a
parent atom or a leaf. The caller specifies an atom type and atom ID for the new
atom. If you specify a value of 0 for the atom ID, QTInsertChild assigns a
unique ID to the atom.

QTInsertChild inserts the atom in the parent’s child list at the index specified
by the index parameter; any existing atoms at the same index or greater are
moved toward the end of the child list. If you specify a value of 0 for the index
parameter, QTInsertChild inserts the atom at the end of the child list.

The following code sample creates a new QT atom container and calls
QTInsertChild to add an atom. The resulting QT atom container is shown in
Figure 1-6. The offset value 10 is returned in the firstAtom parameter.

QTAtom firstAtom;
QTAtomContainer container;
OSErr err
err=QTNewAtomContainer (&container);
if (!err)

err=QTInsertChild (container, kParentAtomIsContainer, 'abcd',
1000, 1, 0, nil, &firstAtom);

Figure 1-6 QT atom container after inserting an atom

'abcd'

1000

Index= 1
Offset= 10

QT atom
container

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-33

The following code sample calls QTInsertChild to create a second child atom.
Because a value of 1 is specified for the index parameter, the second atom is
inserted in front of the first atom in the child list; the index of the first atom is
changed to 2. The offset value 10 is returned in the secondAtom parameter. The
offset of the first atom is changed to 20. The resulting QT atom container is
shown in Figure 1-7.

QTAtom secondAtom;

FailOSErr (QTInsertChild (container, kParentAtomIsContainer, 'abcd',
2000, 1, 0, nil, &secondAtom));

Figure 1-7 QT atom container after inserting a second atom

You call the QTFindChildByID function to retrieve the changed offset of the first
atom that was inserted, as shown in the following example. In this example,
the QTFindChildByID function returns an offset of 20.

firstAtom = QTFindChildByID (container, kParentAtomIsContainer, 'abcd',
1000, nil);

Listing 1-8 shows how the QTInsertChild function inserts a leaf atom into the
atom container sprite. The new leaf atom contains a sprite image index as its
data.

'abcd'

1000

Index= 1
Offset= 10

Index= 2
Offset= 20

'abcd'

2000

QT atom
container

C H A P T E R 1

Movie Toolbox

1-34 Using the Movie Toolbox

Listing 1-8 Inserting a child atom

if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,
kSpritePropertyImageIndex, 1, nil)) == 0)

FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
kSpritePropertyImageIndex, 1, 1, sizeof(short),&imageIndex,
nil));

Copying Existing Atoms 1

QuickTime provides several functions for copying existing atoms within an
atom container. The QTInsertChildren function inserts a container of atoms as
children of a parent atom in another atom container. Figure 1-8 shows two
example QT atom containers, A and B.

Figure 1-8 Two QT atom containers, A and B

The following code sample calls QTFindChildByID to retrieve the offset of the
atom in container A. Then, the code sample calls the QTInsertChildren function
to insert the atoms in container B as children of the atom in container A.
Figure 1-9 shows what container A looks like after the atoms from container B
have been inserted.

'abcd'

1000

Index= 1
Offset= 10

Index= 1
Offset= 10

Index= 2
Offset= 20

QT atom
container A

QT atom
container B

'defg'

900

'hijk'

2000

Data

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-35

QTAtom targetAtom;

targetAtom = QTFindChildByID (containerA, kParentAtomIsContainer, 'abcd',
1000, nil);

FailOSErr (QTInsertChildren (containerA, targetAtom, containerB));

Figure 1-9 QT atom container after child atoms have been inserted

In Listing 1-9, the QTInsertChild function inserts a parent atom into the atom
container theSample. Then, the sample code calls QTInsertChildren to insert the
container theSprite into the container theSample. The parent atom is
newSpriteAtom.

Listing 1-9 Inserting a container into another container

FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
kSpriteAtomType, spriteID, 0, 0, nil, &newSpriteAtom));

FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

'abcd'

1000

Index= 1
Offset= 10

Index= 1
Offset= 20

Index= 2
Offset= 30

QT atom
container A

'defg'

900

'hijk'

2000

Data

C H A P T E R 1

Movie Toolbox

1-36 Using the Movie Toolbox

QuickTime provides three other functions you can use to manipulate atoms in
an atom container. The QTReplaceAtom function replaces an atom and its
children with a different atom and its children. You can call the QTSwapAtoms
function to swap the contents of two atoms in an atom container; after
swapping, the ID and index of each atom remains the same. The QTCopyAtom
function copies an atom and its children to a new atom container.

Retrieving Atoms From an Atom Container 1

QuickTime provides functions you can use to retrieve information about the
types of a parent atom’s children, to search for a specific atom, and to retrieve a
leaf atom’s data.

You can use the QTCountChildrenOfType and QTGetNextChildType functions to
retrieve information about the types of an atom’s children. The
QTCountChildrenOfType function returns the number of children of a given atom
type for a parent atom. The QTGetNextChildType function returns the next atom
type in the child list of a parent atom.

You can use the QTFindChildByIndex, QTFindChildByID, and QTNextChildAnyType
functions to retrieve an atom. You call the QTFindChildByIndex function to
search for and retrieve a parent atom’s child by its type and index within that
type. Listing 1-10 shows the sample code function SetSpriteData, which
updates an atom container that describes a sprite. For each property of the
sprite that needs to be updated, SetSpriteData calls QTFindChildByIndex to
retrieve the appropriate atom from the atom container. If the atom is found,
SetSpriteData calls QTSetAtomData to replace the atom’s data with the new
value of the property. If the atom is not found, SetSpriteData calls
QTInsertChild to add a new atom for the property.

Listing 1-10 Finding a child atom by index

OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
short *visible, short *layer, short *imageIndex)

{
OSErr err = noErr;
QTAtom propertyAtom;

// if the sprite’s visible property has a new value
if (visible)

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-37

{
// retrieve the atom for the visible property
// if none exists, insert one
if ((propertyAtom = QTFindChildByIndex (sprite,

kParentAtomIsContainer, kSpritePropertyVisible, 1,
nil)) == 0)
FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,

kSpritePropertyVisible, 1, 1, sizeof(short), visible,
nil))

// if an atom does exist, update its data
else

FailOSErr (QTSetAtomData (sprite, propertyAtom,
sizeof(short), visible));

}

// ...
// handle other sprite properties
// ...

bail:
return err;

}

You call the QTFindChildByID function to search for and retrieve a parent atom’s
child by its type and ID. The sample code function AddSpriteToSample, shown
in Listing 1-11, adds a sprite, represented by an atom container, to a key
sample, represented by another atom container. AddSpriteToSample calls
QTFindChildByID to determine whether the atom container theSample contains
an atom of type kSpriteAtomType with the ID spriteID. If not,
AddSpriteToSample calls QTInsertChild to insert an atom with that type and ID.
A value of 0 is passed for the index parameter to indicate that the atom should
be inserted at the end of the child list. A value of 0 is passed for the dataSize
parameter to indicate that the atom does not have any data. Then,
AddSpriteToSample calls QTInsertChildren to insert the atoms in the container
theSprite as children of the new atom. FailIf and FailOSErr are macros that
exit the current function when an error occurs.

C H A P T E R 1

Movie Toolbox

1-38 Using the Movie Toolbox

Listing 1-11 Finding a child atom by ID

OSErr AddSpriteToSample (QTAtomContainer theSample,
QTAtomContainer theSprite, short spriteID)

{
OSErr err = noErr;
QTAtom newSpriteAtom;

FailIf (QTFindChildByID (theSample, kParentAtomIsContainer,
kSpriteAtomType, spriteID, nil), paramErr);

FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
kSpriteAtomType, spriteID, 0, 0, nil, &newSpriteAtom));

FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

bail:
return err;

}

Once you have retrieved a child atom, you can call QTNextChildAnyType
function to retrieve subsequent children of a parent atom. QTNextChildAnyType
returns an offset to the next atom of any type in a parent atom’s child list. This
function is useful for iterating through a parent atom’s children quickly.

QuickTime also provides functions for retrieving an atom’s type, ID, and data.
You can call QTGetAtomTypeAndID function to retrieve an atom’s type and ID. You
can access an atom’s data in one of three ways.

■ To copy an atom’s data to a handle, you can use the QTCopyAtomDataToHandle
function.

■ To copy an atom’s data to a pointer, you can use the QTCopyAtomDataToPtr
function.

■ To access an atom’s data directly, you should lock the atom container in
memory by calling QTLockContainer. Once the container is locked, you can
call QTGetAtomDataPtr to retrieve a pointer to an atom’s data. When you have
finished accessing the atom’s data, you should call the QTUnlockContainer
function to unlock the container in memory.

C H A P T E R 1

Movie Toolbox

Using the Movie Toolbox 1-39

Modifying Atoms 1

QuickTime provides functions that you can call to modify attributes or data
associated with an atom in an atom container. To modify an atom’s ID, you call
the function QTSetAtomID.

You use the QTSetAtomData function to update the data associated with a leaf
atom in an atom container. The QTSetAtomData function replaces a leaf atom’s
data with new data. The code sample in Listing 1-12 calls QTFindChildByIndex
to determine whether an atom container contains a sprite’s visible property. If
so, the sample calls QTSetAtomData to replace the atom’s data with a new visible
property.

Listing 1-12 Modifying an atom’s data

QTAtom propertyAtom;

// if the atom isn’t in the container, add it
if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,

kSpritePropertyVisible, 1, nil)) == 0)
FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,

kSpritePropertyVisible, 1, 0, sizeof(short), visible, nil))

// if the atom is in the container, replace its data
else

FailOSErr (QTSetAtomData (sprite, propertyAtom, sizeof(short),
visible));

Removing Atoms From an Atom Container 1

To remove atoms from an atom container, you can use the QTRemoveAtom and
QTRemoveChildren functions. The QTRemoveAtom function removes an atom and
its children, if any, from a container. The QTRemoveChildren function removes an
atom’s children from a container, but does not remove the atom itself. You can
also use QTRemoveChildren to remove all the atoms in an atom container. To do
so, you should pass the constant kParentAtomIsContainer for the atom
parameter.

The code sample shown in Listing 1-13 adds override samples to a sprite track
to animate the sprites in the sprite track. The sample and spriteData variables

C H A P T E R 1

Movie Toolbox

1-40 Using the Movie Toolbox

are atom containers. The spriteData atom container contains atoms that
describe a single sprite. The sample atom container contains atoms that
describes an override sample.

Each iteration of the for loop calls QTRemoveChildren to remove all atoms from
both the sample and the spriteData containers. The sample code updates the
index of the image to be used for the sprite and the sprite’s location and calls
SetSpriteData (Listing 1-10), which adds the appropriate atoms to the
spriteData atom container. Then, the sample code calls AddSpriteToSample
(Listing 1-11) to add the spriteData atom container to the sample atom
container. Finally, when all the sprites have been updated, the sample code
calls AddSpriteSampleToMedia to add the override sample to the sprite track.

Listing 1-13 Removing atoms from a container

QTAtomContainer sample, spriteData;

// ...
// add the sprite key sample
// ...

// add override samples to make the sprites spin and move
for (i = 1; i <= kNumOverrideSamples; i++)
{

QTRemoveChildren (sample, kParentAtomIsContainer);
QTRemoveChildren (spriteData, kParentAtomIsContainer);

// ...
// update the sprite
// - update the imageIndex
// - update the location
// ...

// add atoms to spriteData atom container
SetSpriteData (spriteData, &location, nil, nil, &imageIndex);

// add the spriteData atom container to sample
err = AddSpriteToSample (sample, spriteData, 2);

// ...

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-41

// update other sprites
// ...

// add the sample to the media
err = AddSpriteSampleToMedia (newMedia, sample,

kSpriteMediaFrameDuration, false);
}

Movie Toolbox Reference 1

This section describes the new and changed constants and functions in the
Movie Toolbox.

Constants 1

This section describes the new constants provided by the Movie Toolbox.

Movie Exporting Flags 1

The flags parameter to the ConvertMovieToFile function specifies a set of movie
conversion flags. QuickTime 2.0 provides these additional flags:

enum {
showUserSettingsDialog = 2,
movieToFileOnlyExport = 4,
movieFileSpecValid = 8

};

Flag descriptions

showUserSettingsDialog
If this flag is set, the Save As dialog box will be displayed
to allow the user to choose the type of file to export to,
optional export settings, and the file name to export to.

movieToFileOnlyExport
If this flag is set and the showUserSettingsDialog flag is set,
the Save As dialog box restricts the user to those file

C H A P T E R 1

Movie Toolbox

1-42 Movie Toolbox Reference

formats that are supported by movie data export
components. If this flag is not set, the user will also be able
to save the movie either as a self-contained movie or as a
reference movie.

movieFileSpecValid
If this flag is set and the showUserSettingsDialog flag is set,
the name field of the outputFile parameter is used as the
default name of the exported file in the Save As dialog.

Movie Importing Flags 1

The flags parameter to the ConvertFileToMovieFile and PasteHandleIntoMovie
functions specifiy a set of movie conversion flags. QuickTime 1.6.1 provides
one additional flag:

enum {
showUserSettingsDialog = 2

};

Flag description

showUserSettingsDialog
If this flag is set, the user settings dialog box for that
import operation can be displayed. For example, when
importing a picture, this flag would display the Standard
Compression dialog box so that the user could select the
compression method.

Flattening Flags 1

The flags parameter to the FlattenMovieData function specifies a set of movie
flattening flags. QuickTime 2.1 provides one new flag that you must set when
specifying a data reference to flatten a movie to, instead of a file:

enum {
flattenFSSpecPtrIsDataRefRecordPtr = 1L << 4

};

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-43

Flag description

flattenFSSpecPtrIsDataRefRecordPtr
Set this flag to 1 if the FSSpec pointer is a DataReferencePtr.
This capability enables you to flatten movies to non-file
system devices.

Interesting Times Flags 1

The interestingTimeFlags parameter to the interesting time functions
(GetMovieNextInterestingTime, GetTrackNexttInterestingTime, and
GetMediaNextInterestingTime) specifies a set of bit flags that specify search
criteria. Normally, you use one of the interesting time functions to step forward
to the next frame. These functions work well for most media types, including
video and text. However, because QuickTime stores an entire MPEG stream as
a single sample, stepping to the next sample skips to the end of the sequence.
To solve this problem, QuickTime 2.1 introduced a new flag for the interesting
time calls: nextTimeStep. This flag returns the time of the next frame, even if
there are multiple frames per sample, for all media types including video, text,
and MPEG. Applications which implement single stepping capabilities should
always use this flag instead of nextTimeMediaSample.

enum {
nextTimeStep = 1 << 4

};

Flag description

nextTimeStep Searches for the next frame in the movie’s media. Set this
flag to 1 to step to the next frame.

Full Screen Flags 1

The flags parameter to the BeginFullScreen function specifies a set of bit flags
that control certain aspects of the full-screen mode. QuickTime defines these
constants that you can use in the flags parameter.

enum {
fullScreenHideCursor = 1L << 0,
fullScreenAllowEvents = 1L << 1,

C H A P T E R 1

Movie Toolbox

1-44 Movie Toolbox Reference

fullScreenDontChangeMenuBar = 1L << 2,
fullScreenPreflightSize = 1L << 3

};

Flag description

fullScreenHideCursor
If this flag is set, BeginFullScreen hides the cursor. This is
useful if you are going to play a QuickTime movie and do
not want the cursor to be visible over the movie.

fullScreenAllowEvents
If this flag is set, your application intends to allow other
applications to run (by calling WaitNextEvent to grant them
processing time). In this case, BeginFullScreen does not
change the monitor resolution, because other applications
might depend on the current resolution.

fullScreenDontChangeMenuBar
If this flag is set, BeginFullScreen does not hide the menu
bar. This is useful if you want to change the resolution of
the monitor but still need to allow the user to access the
menu bar.

fullScreenPreflightSize
If this flag is set, BeginFullScreen doesn’t change any
monitor settings, but returns the actual height and width
that it would use if this bit were not set. This allows
applications to test for the availability of a monitor setting
without having to switch to it.

Text Sample Display Flags 1

The displayflags parameter to the AddTESample and AddTextSample functions
control the behavior of the text media handler. QuickTime 2.5 provides these
additional flags:

enum {
dfContinuousScroll = 1 << 9,
dfFlowHoriz = 1 << 10,
dfContinuousKaraoke = 1 << 11,
dfDropShadow = 1 << 12,
dfAntiAlias = 1 << 13,
dfKeyedText = 1 << 14,

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-45

dfInverseHilite = 1 << 15,
dfTextColorHilite = 1 << 16

};

Flag description

dfContinuousScroll
If this flag is set, the text media handler lets new samples
cause previous samples to scroll out. You must also set
dfScrollIn and/or dfScrollOff for this to take effect.

dfFlowHoriz
If this flag is set, the text media handler lets horizontally
scrolled text flow within the text box instead of extending
to the right.

dfContinuousKaraoke
If this flag is set, the text media handler highlights ignores
the starting offset when highlighting text. Instead, it
highlights text from the beginning of the text sample to the
ending offset.

dfDropShadow
If this flag is set, the text media handler displays text with
a drop shadow. When you use the SetTextSampleData
function, the position and translucency of the drop
shadow is under your application’s control. For more
information, see SetTextSampleData later in this chapter.

dfAntiAlias
If this flag is set, the text media handler displays text with
anti-aliasing. Note that although anti-aliased text looks
smoother, anti-aliasing can slow down performance.

dfKeyedText
If this flag is set, the text media handler renders text over
the background without drawing the background color.
This technique is also known as “masked text.”

dfInverseHilite
If this flag is set, the text media handler highlights text
using inverse video instead of the highlight color.

dfTextColorHilite
If this flag is set, the text media handler highlights text by
changing the color of the text.

C H A P T E R 1

Movie Toolbox

1-46 Movie Toolbox Reference

Modifier Input Types 1

The media input map describes the meaning of each input to a track. Each
track has particular attributes such as size, position, and volume associated
with it. The media input map of that track describes the mapping of track
modifier inupts to track properties. When you want to modify the attributes of
a track, you insert a track modifier input such as kTrackModifierTypeMatrix into
the input map. The values stored in the modifier input you inserted will affect
the values that are currently stored with the track.

Custom media handlers can define additional input types as necessary. Apple
Computer reserves all input types consisting entirely of lower-case letters.

The following input types are currently defined:

enum {

kTrackModifierTypeMatrix = 1,
kTrackModifierTypeClip = 2,
kTrackModifierTypeGraphicsMode = 5,
kTrackModifierTypeVolume = 3,
kTrackModifierTypeBalance = 4,
kTrackModifierTypeImage = 'vide',
kTrackModifierObjectMatrix = 6,
kTrackModifierObjectGraphicsMode = 7,
kTrackModifierType3d4x4Matrix = 8,
kTrackModifierCameraData = 9
kTrackModifierSoundLocalization = 10

};

Constant descriptions

kTrackModifierTypeMatrix
Data sent to this input should be in the form of a
QuickTime MatrixRecord. The matrix is concatenated with
the track and movie matrices to determine the tracks final
location and size. The matrix modifier describes relative,
not absolute, position and scaling.

kTrackModifierTypeClip
Data sent to this input should be in the form of a
QuickDraw region. The region is intersected with the
track’s source box. See Inside Macintosh: QuickTime for
details on how a movie’s tracks are composited together.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-47

kTrackModifierTypeGraphicsMode
Data sent to this input should be in the form of a
ModifierTrackGraphicsModeRecord data type. The contents
of the record are used as the graphics mode setting for the
track. The graphics mode is not combined with the track’s
current graphics mode, but rather overrides it . See “Data
Types” later in this chapter for information about the
ModifierTrackGraphicsModeRecord data structure.

kTrackModifierTypeVolume
Data sent to this input should be in the form of a 16-bit
fixed-point number. This is the same format in which
QuickTime sound volume levels are stored. The volume
level is used as a scaling factor on the sound track’s level.
It is multiplied with the track and movie volumes to
determine the track’s overall volume.

kTrackModifierTypeBalance
Data sent to this input should be in the form of a 8-bit
fixed-point number. This is the same format in which
QuickTime balance values are stored. The balance value is
used as the balance setting for the track. Unlike the volume
modifier, it is not concatenated with the track’s current
balance level, but overrides the current balance level.

kTrackModifierTypeImage
Data sent to this input should be compressed video data,
typically from a video track. This input type can be used
with sprite and 3D tracks. For sprite tracks, the image data
is used to replace the image of a specified image index in
the sprite track. The index of the image to replace must be
specified in the media input map when the reference is
created. For 3D tracks, the image is used to provide a
texture for the object specified in the input map.

kTrackModifierObjectMatrix
Data sent to this input should be in the form of a
QuickTime MatrixRecord. The matrix is sent to a particular
object within the receiving track, as specified by the
kTrackModifierObjectID atom in the input map. The matrix
acts as an override to the object’s current matrix. For
example, the matrix could be sent to a sprite within a
sprite track. It would cause the sprite to move, not the
entire sprite track as would kTrackModifierMatrix.

C H A P T E R 1

Movie Toolbox

1-48 Movie Toolbox Reference

kTrackModifierObjectGraphicsMode
Data sent to this input should be in the form of a
ModifierTrackGraphicsModeRecord data type. The contents
of the record are used to vary the opacity of an object
within the track. For example, you would use data sent to
this input to vary the opacity of a sprite within a sprite
track, rather than modifying the opacity of the entire sprite
track. See “Data Types” later in this chapter for
information about the ModifierTrackGraphicsModeRecord
data structure.

kTrackModifierType3d4x4Matrix
Data sent to this input should be in the form of a
QuickDraw 3D 4x4 matrix—TQ3Matrix4x4. This data is sent
to objects within a QuickDraw 3D track. This matrix is
concatenated with the all other matrices which effect the
specified object. The structure is defined in the book 3D
Graphics Programming with QuickDraw 3D.

kTrackModifierCameraData
Data sent to this input should be in the form of a
QuickDraw 3D Camera data structure—TQ3CameraData.
This data is sent to a camera within a QuickDraw 3D track.
The structure is defined in the book 3D Graphics
Programming with QuickDraw 3D.

kTrackModifierSoundLocalization
Data sent to this input should be in the form of a sound
localization data record—SSpLocalizationData. This data
overrides the sound localization settings already in use by
the track.

Text Atom Types 1

The dataType parameter to the AddTESample and AddTextSample functions
indicates the type of data in the handle. The following two types have been
added:

enum {
dropShadowOffsetType = 'drpo',
dropShadowTranslucencyType = 'drpt'

};

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-49

Constant descriptions

dropShadowOffsetType
The drop shadow offset.

dropShadowTranslucencyType
The drop shadow translucency.

Background Sprites 1

You assign the following constant to a sprite’s kSpritePropertyLayer property
to designate the sprite as a background sprite.

enum {
kBackgroundSpriteLayerNum = 32767

};

Flags for Sprite Hit Testing 1

You can pass the following flags to the SpriteWorldHitTest function
(page 1-122) and the SpriteHitTest function (page 1-126) to control sprite hit
testing.

enum {
spriteHitTestBounds = 1L << 0,
spriteHitTestImage = 1L << 1

};

Flag descriptions

spriteHitTestBounds
The specified location must be within the sprite’s
bounding box.

spriteHitTestImage
The specified location must be within the shape of the
sprite’s image.

C H A P T E R 1

Movie Toolbox

1-50 Movie Toolbox Reference

Sprite Properties 1

The following constants represent the different properties of a sprite. When
you call the SetSpriteProperty function (page 1-128) to set a sprite property,
you pass one of these constants to specify the property you wish to modify.

enum {
kSpritePropertyMatrix = 1,
kSpritePropertyImageDescription = 2,
kSpritePropertyImageDataPtr = 3,
kSpritePropertyVisible = 4,
kSpritePropertyLayer = 5,
kSpritePropertyGraphicsMode = 6,
kSpritePropertyImageIndex = 100

};

Constant descriptions

kSpritePropertyMatrix
A matrix of type MatrixRecord that defines the sprite’s
display coordinate system.

kSpritePropertyImageDescription
An image description handle that describes the sprite’s
image data.

kSpritePropertyImageDataPtr
A pointer to the sprite’s image data.

kSpritePropertyVisible
A Boolean value that indicates whether the sprite is visible.

kSpritePropertyLayer
A short integer value that defines the sprite’s layer. You set
this property to kBackgroundSpriteLayerNum to designate
the sprite as a background sprite.

kSpritePropertyGraphicsMode
A ModifierTrackGraphicsModeRecord value that specifies
the graphics mode to be used when drawing the sprite.

kSpritePropertyImageIndex
In a sprite track, the index of the sprite’s image in the pool
of shared images.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-51

Flags for SpriteWorldIdle 1

You can pass the following flags as input to the SpriteWorldIdle function
(page 1-120) to control drawing of the sprite world.

enum {
kOnlyDrawToSpriteWorld = 1L << 0,
kSpriteWorldPreFlight = 1L << 1

};

Flag descriptions

kOnlyDrawToSpriteWorld
You set this flag to indicate that drawing should take place
in the sprite world only; drawing to the final destination
should be suppressed.

kSpriteWorldPreFlight
You can set this flag to determine whether the sprite world
has any invalid areas that need to be drawn. If so, the
SpriteWorldIdle function returns the
kSpriteWorldNeedsToDraw flag in the flagsOut parameter.

The following flags may be returned in the flagsOut parameter of the
SpriteWorldIdle function.

enum {
kSpriteWorldDidDraw = 1L << 0,
kSpriteWorldNeedsToDraw = 1L << 1

};

Flag descriptions

kSpriteWorldDidDraw
If set, this flag indicates that SpriteWorldIdle updated the
sprite world.

kSpriteWorldNeedsToDraw
If set, this flag indicates that the sprite world has invalid
areas that need to be drawn.

C H A P T E R 1

Movie Toolbox

1-52 Movie Toolbox Reference

Constants for QT Atom Functions 1

You can pass the kParentAtomIsContainer constant to QT atom functions that
take an atom container and a parent atom as parameters. When passed in place
of the parent atom, this constant indicates that the parent atom is the atom
container itself.

enum {
kParentAtomIsContainer = 0

};

Data Types 1

This section describes new data structures provided by the Movie Toolbox.

Data Reference 1

To fully specify a data reference, it is necessary to provide the data reference
itself, along with the type of the data reference (that is, the data reference
handle does not contain the type of the data reference). The
DataReferenceRecord data structure contains both of these pieces of
information, making it possible to pass them to functions as a single parameter.
The FlattenMovieData function uses the information in the data reference
structure to flatten a movie to a data reference instead of to a file.

struct DataReferenceRecord {
OSType dataRefType;
Handle dataRef;

};

typedef struct DataReferenceRecord DataReferenceRecord;
typedef DataReferenceRecord *DataReferencePtr;

Field descriptions

dataRefType Specifies the type of data reference. For an alias data
reference, you set the parameter to rAliasType, indicating
that the reference is an alias. For a handle data reference,
set the parameter to HandleDataHandlerSubType.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-53

dataRef Specifies the actual data reference. This parameter contains
a handle to the information that identifies the file to be
used.
The type of information stored in the handle depends on
the value of the dataRefType parameter. For example, if
your application is loading the movie from a file, this
parameter would contain an alias to the movie file.

Sample Reference 1

The SampleReferenceRecord structure is used to describe information about a
sample or group of similar samples. This data structure is used by the
GetMediaSampleReferences and AddMediaSampleReferences functions.

struct SampleReferenceRecord {
long dataOffset;
long dataSize;
TimeValue durationPerSample;
long numberOfSamples;
short sampleFlags;

};

typedef struct SampleReferenceRecord SampleReferenceRecord;
typedef SampleReferenceRecord *SampleReferencePtr;

Field descriptions

dataOffset Specifies the offset into the movie data file. This field
specifies the offset into the file of the sample data.

dataSize Specifies the total number of bytes of sample data
identified by the reference. All samples referenced by a
single SampleReferenceRecord must be the same size.

durationPerSample Specifies the duration of each sample in the reference. You
must specify this parameter in the media's time scale. All
samples referenced by a single SampleReferenceRecord
must be the same duration.

numberOfSamples Specifies the number of samples contained in the reference.
sampleFlag Contains flags that control the operation. The following

flag is available (set unused flags to 0):

C H A P T E R 1

Movie Toolbox

1-54 Movie Toolbox Reference

mediaSampleNotSync
Indicates that the sample to be added is not a
sync sample. Set this flag to 1 if the sample is not
an async sample. Set this flag to 0 if the sample
is a sync sample.

Modifier Track Graphics Mode 1

The modifier track graphics mode structure contains information that defines
the graphics mode setting for a track. Data in this structure indicates the
graphics mode setting and the RGB op-color which is used with certain
graphics modes. Data sent to the kTrackModifierTypeGraphicsMode input type
should be in the form of a modifier track graphics mode structure.

struct ModifierTrackGraphicsModeRecord {
long graphicsMode;
RGBColor opColor;

};
typedef struct ModifierTrackGraphicsModeRecord
ModifierTrackGraphicsModeRecord;

Field descriptions

graphicsMode Specifies the graphics mode setting.
opColor Contains an RGB color structure indicating the op-color to

use with the graphics mode.

Sprite and Sprite World Identifiers 1

The sprite world and sprite data structures are private data structures. You
identify a sprite world or a sprite data structure to the Sprite Toolbox by means
of a data type that is supplied by the Sprite Toolbox. The following data types
are currently defined:

Sprite Specifies the sprite for an operation. Your application
obtains a sprite identifier when you create a new sprite by
calling the NewSprite function (page 1-123).

SpriteWorld Specifies the sprite world for an operation. Your
application obtains a sprite world identifier when you
create a sprite world by calling the NewSpriteWorld
function (page 1-117).

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-55

QT Atom 1

The QTAtom data type represents the offset of an atom within an atom container.

typedef long QTAtom;

QT Atom Type and ID 1

The QTAtomType data type represents the type of a QT atom. To be valid, a QT
atom’s type must have a non-zero value.

typedef long QTAtomType;

The QTAtomID data type represents the ID of a QT atom. To be valid, a QT
atom’s ID must have a non-zero value.

typedef long QTAtomID;

QT Atom Container 1

The QTAtomContainer data type is a handle to a QT atom container. Your
application never modifies the contents of a QT atom container directly.
Instead, you use the functions provided by QuickTime for creating and
manipulating QT atom containers.

typedef Handle QTAtomContainer;

Functions for Getting and Playing Movies 1

The Movie Toolbox contains new and changed functions for getting and
playing movies.

C H A P T E R 1

Movie Toolbox

1-56 Movie Toolbox Reference

Movie Functions 1

NewMovieFromUserProc 1

The NewMovieFromUserProc function creates a movie from data that you provide.
Your application defines a function that delivers the movie data to the Movie
Toolbox. The Movie Toolbox calls your function, specifying the amount of data
required and the location for the data.

pascal OSErr NewMovieFromUserProc (Movie *theMovie, short newMovieFlags,
Boolean *dataRefWasChanged, GetMovieUPP getProc,
void *refCon, Handle defaultDataRef,
OSType dataRefType);

theMovie Contains a pointer to a field that is to receive the new movie’s
identifier. If the function cannot load the movie, the returned
identifier is set to nil.

newMovieFlags
Controls the operation of the NewMovieFromUserProc function.
The following flags are valid (be sure to set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set
this flag to 1 to make the new movie active. You
can make a movie active or inactive by calling
the SetMovieActive function.

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox
resolves data references in the movie resource. If
you set this flag to 0, the toolbox tries to
completely resolve all data references in the
resource. This may involve searching for files on
remote volumes. If you set this flag to 1, the
Movie Toolbox only looks in the specified data
reference.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-57

If the Movie Toolbox cannot completely resolve
all the data references, it still returns a valid
movie identifier. In this case, the Movie Toolbox
also sets the current error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the
user to locate files. If you set this flag to 0, the
Movie Toolbox asks the user to locate files that it
cannot find on available volumes. If the Movie
Toolbox cannot locate a file even with the user’s
help, the function returns a valid movie
identifier and sets the current error value to
couldNotResolveDataRef.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox
automatically selects enabled tracks from
alternate track groups. If you set this flag to 1,
the Movie Toolbox does not automatically select
tracks for the movie—you must enable and
disable tracks yourself.

dataRefWasChanged
Contains a pointer to a Boolean value. The Movie Toolbox sets
the Boolean to indicate whether it had to change any data
references while resolving them. The toolbox sets the Boolean
value to true if any references were changed. Use the
UpdateMovieResource function to preserve these changes.

Set the dataRefWasChanged parameter to nil if you do not want
to receive this information.

getProc Contains a pointer to a function in your application. This
function is responsible for providing the movie data to the
Movie Toolbox.

refCon Contains a reference constant (defined as a void pointer). The
Movie Toolbox provides this value to the function identified by
the getProc parameter.

C H A P T E R 1

Movie Toolbox

1-58 Movie Toolbox Reference

defaultDataRef
Specifies the default data reference. This parameter contains a
handle to the information that identifies the file to be used to
resolve any data references and as a starting point for any Alias
Manager searches.

The type of information stored in the handle depends upon the
value of the dataRefType parameter. For example, if your
application is loading the movie from a file, you would refer to
the file’s alias in the defaultDataRef parameter, and set the
dataRefType parameter to rAliasType.

If you do not want to identify a default data reference, set the
parameter to nil.

dataRefType Specifies the type of data reference. If the data reference is an
alias, you must set the parameter to rAliasType, indicating that
the reference is an alias.

DESCRIPTION

Your application must define a function that provides the movie data to the
Movie Toolbox. You specify that function to the Movie Toolbox with the
getProc parameter. That function must support the following interface:

pascal OSErr MyGetMovieProc (long offset, long size, void *dataPtr,
void *refCon);

offset Specifies the offset into the movie resource (not the movie file).
This is the location from which your function retrieves the
movie data.

size Specifies the amount of data requested by the Movie Toolbox, in
bytes.

dataPtr Specifies the destination for the movie data.

refCon Contains a reference constant (defined as a void pointer). This is
the same value you provided to the Movie Toolbox when you
called the NewMovieFromUserProc function.

Normally, when a movie is loaded from a file (say, by means of the
NewMovieFromFile function), the Movie Toolbox uses that file as the default data
reference. Since the NewMovieFromUserProc function does not require a file

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-59

specification, your application should specify the file to be used as the default
data reference using the defaultDataRef and dataRefType parameters.

SPECIAL CONSIDERATIONS

The Movie Toolbox automatically sets the movie’s graphics world based upon
the current graphics port. Be sure that your application’s graphics world is
valid before you call this function.

RESULT CODES

Memory Manager errors
Resource Manager errors

NewMovieFromFile 1

The NewMovieFromFile function (QuickTime 2.0 or higher) works with some files
that do not contain movie resources. In some cases, the data in a file is already
sufficiently well-formatted for QuickTime or its components to understand. For
example, the AIFF movie data import component can understand AIFF sound
files and import the sound data into a QuickTime movie. When the
NewMovieFromFile function encounters a file that does not contain a movie
resource, the function tries to find a movie import component that can
understand the data and create a movie. For more information about new
capabilities of movie data import components, see the chapter “Movie Data
Exchange Components” elsewhere in this document. This also works for
MPEG, µLaw (.AU), and Wave (.WAV) file types.

NewMovieFromDataRef 1

Use the new NewMovieFromDataRef function to create a movie from any device
with a corresponding data handler. You are no longer restricted to instantiating

paramErr –50 Invalid parameter specified
noMovieFound –2048 Toolbox cannot find a movie in the movie file

C H A P T E R 1

Movie Toolbox

1-60 Movie Toolbox Reference

a movie from a file stored on an HFS volume. With this new function, you can
now instantiate a movie from any device.

pascal OSErr NewMovieFromDataRef (
Movie *theMovie,
short flags,
short *id,
Handle dataRef,
OSType dataRefType);

theMovie Contains a pointer to a field that is to receive the new movie’s
identifier. If the function cannot load the movie, the returned
identifier is set to nil.

flags Controls the operation of the NewMovieFromDataRef function. The
following flags are valid (be sure to set unused flags to 0):

newMovieActive
Controls whether the new movie is active. Set
this flag to 1 to make the new movie active. You
can make a movie active or inactive by calling
the SetMovieActive function.

newMovieDontResolveDataRefs
Controls how completely the Movie Toolbox
resolves data references in the movie resource. If
you set this flag to 0, the toolbox tries to
completely resolve all data references in the
resource. This may involve searching for files on
remote volumes. If you set this flag to 1, the
Movie Toolbox only looks in the specified data
reference.

If the Movie Toolbox cannot completely resolve
all the data references, it still returns a valid
movie identifier. In this case, the Movie Toolbox
also sets the current error value to
couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs
Controls whether the Movie Toolbox asks the
user to locate files. If you set this flag to 0, the
Movie Toolbox asks the user to locate files that it
cannot find on available volumes. If the Movie

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-61

Toolbox cannot locate a file even with the user’s
help, the function returns a valid movie
identifier and sets the current error value to
couldNotResolveDataRef.

newMovieDontAutoAlternate
Controls whether the Movie Toolbox
automatically selects enabled tracks from
alternate track groups. If you set this flag to 1,
the Movie Toolbox does not automatically select
tracks for the movie—you must enable and
disable tracks yourself.

id Contains a pointer to the field that specifies the resource
containing the movie data that is to be loaded. If the field
referred to by the id parameter is set to 0, the Movie Toolbox
loads the first movie resource it finds in the specified file. The
toolbox then returns the movie’s resource ID number in the
field referred to by the id parameter. The following enumerated
constant is available:

movieInDataForkResID
Indicates the movie was loaded from the data
fork. If the resource was stored in the file’s data
fork, the Movie Toolbox sets the returned value
to movieInDataForkResID(-1). In this case, you
cannot add a movie resource to the file unless
you create a resource fork in the movie file.

If the id parameter is set to nil, the Movie Toolbox loads the
first movie resource it finds in the specified file and does not
return that resource ‘s ID number.

dataRef Specifies the default data reference. This parameter contains a
handle to the information that identifies the file to be used to
resolve any data references and as a starting point for any Alias
Manager searches.

The type of information stored in the handle depends upon the
value of the dataRefType parameter. For example, if your
application is loading the movie from a file, you would refer to
the file’s alias in the DataRef parameter, and set the dataRefType
parameter to rAliasType.

C H A P T E R 1

Movie Toolbox

1-62 Movie Toolbox Reference

If you do not want to identify a default data reference, set the
parameter to nil.

dataRefType Specifies the type of data reference. If the data reference is an
alias, you must set the parameter to rAliasType, indicating that
the reference is an alias.

DISCUSSION

NewMovieFromDataRef is intended for use by specialized applications that need
to instantiate movies from devices not visible to the file system. Most
applications should continue to use NewMovieFromFile.

RESULT CODES

File Manager errors
Memory Manager errors
Resource Manager error

ConvertFileToMovieFile 1

As of QuickTime 1.6.1, the ConvertFileToMovieFile function supported a user
settings dialog box for import operations. Your application controls whether
this dialog appears by setting the value of the flags parameter in the
ConvertFileToMovieFile function. This function supports the following new
flag:

showUserSettingsDialog
Controls whether the user settings dialog for the specified
import operation can appear. Set this flag to 1 to display the
user settings dialog.

badImageDescription –2001 Problem with an image description
badPublicMovieAtom –2002 Movie file corrupted
cantFindHandler –2003 Cannot locate a handler
cantOpenHandler –2004 Cannot open a handler

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-63

ConvertMovieToFile 1

The ConvertMovieToFile function now supports a “Save As...” dialog box. The
dialog allows the user to specify the file name and type. Supported types
include standard QuickTime movies, flattened movies, single-fork flattened
movies, and any format that is supported by a movie data export component.
Figure 1 shows a sample “Save As...” dialog box.

Figure 1-10 Sample “Save As...” dialog box

Your application controls whether this dialog appears by setting the value of
the flags parameter to the ConvertMovieToFile function. The function supports
the following flags:

C H A P T E R 1

Movie Toolbox

1-64 Movie Toolbox Reference

showUserSettingsDialog
If this bit is set, the Save As dialog box will be displayed to
allow the user to choose the type of file to export to, as well as
the file name to export to.

movieToFileOnlyExport
If this bit is set and the showUserSettingsDialog bit is set, the
Save As dialog box restricts the user to those file formats that
are supported by movie data export components.

movieFileSpecValid
If this bit is set and the showUserSettingsDialog bit is set, the
name field of the outputFile parameter is used as the default
name of the exported file in the Save As dialog.

The following code shows how to call this function to provide a simple export
capability.

err = ConvertMovieToFile (theMovie, /* identifies movie */
nil, /* all tracks */
nil, /* no output file */
0, /* no file type */
0, /* no creator */
-1, /* script */
nil, /* no resource ID */
createMovieFileDeleteCurFile |

showUserSettingsDialog |
movieToFileOnlyExport,

0); /* no specific component */

FlattenMovie and FlattenMovieData 1

The Movie Toolbox, through the new SetTrackLoadSettings function, now
allows you to set a movie’s preloading guidelines when you create the movie.
The preload information is preserved when you save or flatten the movie
(using either the FlattenMovie or FlattenMovieData functions). In flattened
movies, the tracks that are to be preloaded are stored at the start of the movie,
rather than being interleaved with the rest of the movie data. This greatly
improves preload performance because it is not necessary for the device storing
the movie data to seek during retrieval of the data to be preloaded.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-65

For more information about preloading, see the discussion of the
SetTrackLoadSettings function in “Enhancing Movie Playback Performance.”

Instead of flattening to a file, you can now also specify a data reference to
flatten a movie to, instead of a file. The FSSpec parameter to the
FlattenMovieData function usually contains a pointer to the file system
specification for the movie file to be created. In place of the FSSpec parameter,
QuickTime 2.1 enables you to pass a pointer to a data reference structure. The
data reference structure defines the data reference to flatten the movie data to.
For more information about this structure, see “Data Types” earlier in this
chapter.

Enhancing Movie Playback Performance 1

Two new functions allow you to get and set a portion of a preloaded track.
There is also a new function for working with modifier tracks.

SetTrackLoadSettings 1

The SetTrackLoadSettings function allows you to specify a portion of a track
that is to be loaded into memory whenever it is played.

pascal void SetTrackLoadSettings (Track theTrack, TimeValue preloadTime,
TimeValue preloadDuration, long preloadFlags,
long defaultHints);

theTrack Specifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

preloadTime Specifies the starting point of the portion of the track to be
preloaded. Set this parameter to –1 if you want to preload the
entire track (in this case the function ignores the
preloadDuration parameter). This should be specified in the
movie’s time scale.

preloadDuration
Specifies the amount of the track to be preloaded, starting from
the time specified in the preloadTime parameter. If you are
preloading the entire track, the function ignores this parameter.

C H A P T E R 1

Movie Toolbox

1-66 Movie Toolbox Reference

preloadFlags Controls when the Movie Toolbox preloads the track. The
function supports the following flag values:

preloadAlways Specifies that the Movie Toolbox should always
preload this track, even if the track is disabled.

preloadOnlyIfEnabled
Specifies that the Movie Toolbox should preload
this track only when the track is enabled.

Set this parameter to 0 if you do not want to preload the track.

defaultHints Specifies playback hints for the track. You may specify any of
the supported hints flags. See “Hints,” earlier in this chapter, for
some flags that are new with QuickTime 2.0.

DESCRIPTION

The SetTrackLoadSettings allows you to control how the Movie Toolbox
preloads the tracks in your movie. By using these settings, you make this
information part of the movie, so that the preloading takes place every time the
movie is opened, without an application having to call the LoadTrackIntoRAM
function. Consequently, you should use this feature carefully, so that your
movies do not consume large amounts of memory when opened.

SPECIAL CONSIERATIONS

The Movie Toolbox transfers this preload information when you call the
CopyTrackSettings function. In addition, the preload information is preserved
when you save or flatten a movie (using either the FlattenMovie or
FlattenMovieData functions). In flattened movies, the tracks that are to be
preloaded are stored at the start of the movie, rather than being interleaved
with the rest of the movie data. This improves preload performance.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-67

RESULT CODES

GetTrackLoadSettings 1

The GetTrackLoadSettings function allows you to retrieve a track’s preload
information.

pascal void GetTrackLoadSettings (Track theTrack,
TimeValue *preloadTime, TimeValue *preloadDuration,
long *preloadFlags, long *defaultHints);

theTrack Specifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

preloadTime Specifies a field to receive the starting point of the portion of the
track to be preloaded. The Movie Toolbox returns a value of –1
if the entire track is to be preloaded.

preloadDuration
Specifies a field to receive the amount of the track to be
preloaded, starting from the time specified in the preloadTime
parameter. If the entire track is to be preloaded, this value is
meaningless.

preloadFlags Specifies a field to receive the flags that control when the Movie
Toolbox preloads the track. The function supports the following
flag values:

preloadAlways Specifies that the Movie Toolbox always
preloads this track.

preloadOnlyIfEnabled
Specifies that the Movie Toolbox preloads this
track only when the track is enabled.

defaultHints Specifies a field to receive the playback hints for the track.

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 1

Movie Toolbox

1-68 Movie Toolbox Reference

RESULT CODES

GetTrackDisplayMatrix 1

The GetTrackDisplayMatrix function returns a matrix which is the
concatenation of all matrices currently effecting the track’s location, scaling,
and so on. This includes the movie’s matrix, the track’s matrix, and the
modifier matrix. Since modifier information is passed between tracks at
MoviesTask time, the information returned by this call will represent the matrix
in effect at the last MoviesTask call.

pascal OSErr GetTrackDisplayMatrix(
Track theTrack,
MatrixRecord *matrix);

theTrack Specifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

matrix Contains a pointer to a matrix structure.

Note
To determine the entire clip of a track at the current time
using GetTrackDisplayBoundsRgn. The results of
GetTrackDisplayBoundsRgn take into account any clip
regions provided by modifier tracks.

RESULT CODES

Generating Pictures From Movies 1

When memory is low, the GetMoviePict function now reports out of memory
errors instead of returning empty pictures.

invalidTrack –2009 This track is corrupted or invalid

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-69

Working with Progress and Cover Functions 1

SetMovieDrawingCompleteProc 1

The SetMovieDrawingCompleteProc function allows you to assign a
drawing-complete function to a movie. The Movie Toolbox calls this function
based upon guidelines you establish when you assign the function to the movie.

pascal void SetMovieDrawingCompleteProc (Movie theMovie, long flags,
MovieDrawingCompleteProcPtr proc, long refCon);

theMovie Specifies the movie for this operation. Your application obtains
this identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle.

flags Contains information that controls when your drawing
complete function is called. The following values are supported:

movieDrawingCallWhenChanged
Specifies that the Movie Toolbox should call
your drawing-complete function only when the
movie has changed.

movieDrawingCallAlways
Specifies that the Movie Toolbox should call
your drawing-complete function every time
your application calls the MoviesTask function.

proc Contains a pointer to your drawing-complete function. Set this
parameter to nil if you want to remove your function.

refCon Contains a value that the Movie Toolbox provides to your
drawing-complete function.

DESCRIPTION

Your drawing-complete function must support the following interface:

typedef pascal OSErr (*MovieDrawingCompleteProcPtr)(Movie theMovie, long
refCon);

C H A P T E R 1

Movie Toolbox

1-70 Movie Toolbox Reference

theMovie Specifies the movie for this operation.

refCon Contains the reference constant you supplied when your
application called the SetMovieDrawingCompleteProc function.

Note
Some media handlers may take less efficient playback
paths when a drawing complete proc is used. This function
should only be used when absolutely necessary.

RESULT CODES

SetMovieCoverProcs 1

If a movie with semi-transparent tracks has a movie uncover procedure (set
with the SetMovieCoverProcs function), the uncover procedure is now called
before each frame to fill or erase the background. Before QuickTime 1.6.1, the
Movie Toolbox performed the erase, which limited a cover procedure-aware
application’s options.

GetMovieCoverProcs 1

The GetMovieCoverProcs function allows you to retrieve the cover functions that
you set with the SetMovieCoverProcs function.

pascal OSErr GetMovieCoverProcs(
Movie theMovie,
MovieRgnCoverUPP *uncoverProc,
MovieRgnCoverUPP *coverProc,
long *refcon)

theMovie Specifies the movie for this operation. Your application obtains
this identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-71

uncoverProc Where to return the current uncover procedure. This value is set
to nil if no uncover procedure was specified.

coverProc Where to return the current cover procedure. This value is set to
nil if no cover prodecure was specified.

refcon Specifies a reference constant. The Movie Toolbox passes this
value to your cover functions.

DISCUSSION

The GetMovieCoverProcs function returns the uncover and cover functions for
the movie as well as the reference constant for the cover functions.

RESULT CODES

Functions That Modify Movie Properties 1

Working With Movie Spatial Characteristics 1

SetMovieColorTable 1

The SetMovieColorTable function allows you to associate a color table with a
movie.

pascal OSErr SetMovieColorTable (Movie theMovie, CTabHandle ctab);

theMovie Specifies the movie for this operation. Your application obtains
this identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle.

ctab Contains a handle to the color table. Set this parameter to nil to
remove the movie’s color table.

invalidMovie –2010 This movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

1-72 Movie Toolbox Reference

DESCRIPTION

The color table you supply may be used to modify the palette of indexed
display devices at playback time. If you are using the movie controller, be sure
to set the mcFlagsUseWindowPalette flag. If you are not using the movie
controller, you should retrieve the movie’s color table (using the
GetMovieColorTable function) and supply it to the Palette Manager.

The Movie Toolbox makes a copy of the color table, so it is your responsibility
to dispose of the color table when you are done with it. If the movie already
has a color table, the Movie Toolbox uses the new table to replace the old one.

The CopyMovieSettings function copies the movie’s color table, along with the
other settings information.

RESULT CODES

Memory Manager errors

GetMovieColorTable 1

The GetMovieColorTable function allows you to retrieve a movie’s color table.

pascal OSErr GetMovieColorTable (Movie theMovie, CTabHandle *ctab);

theMovie Specifies the movie for this operation. Your application obtains
this identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle.

ctab Contains a pointer to a field that is to receive a handle to the
movie’s color table. If the movie does not have a color table, the
Movie Toolbox sets the field to nil.

DESCRIPTION

The Movie Toolbox returns a copy of the color table, so it is your responsibility
to dispose of the color table when you are done with it.

invalidMovie –2010 The movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-73

RESULT CODES

Memory Manager errors

SetTrackGWorld 1

The SetTrackGWorld function allows you to force a track to draw into a
particular GWorld. This GWorld may be different from that of the movie.

pascal void SetTrackGWorld(
Track theTrack,
CGrafPtr port,
GDHandle gdh,
TrackTransferUPP proc,
long refCon)

theTrack Specifies the track for this operation. Your application obtains
this identifier from such functions as GetMovieTrack,
GetMovieIndTrack, and GetMovieIndTrackType.

port Points to the graphics port structure or graphics world to which
to draw the track. Set this parameter to nil to use the movie’s
graphics port.

gdh Contains a handle to the movie’s graphics device structure. Set
this parameter to nil to use the current device. If the port
parameter specifies a graphics world, set this parameter to nil
to use that graphics world’s graphics device.

proc Contains a pointer to your transfer procedure. Set this
parameter to nil if you want to remove your transfer procedure.

refCon Contains a value to pass to your transfer procedure.

DISCUSSION

After the SetTrackGWorld function draws a track, it calls your transfer
procedure to copy the track to the actual movie GWorld. When your transfer
procedure is called, the current GWorld is set to the correct destination. You can
also install a transfer procedure and set the GWorld to nil. Setting GWorld to

invalidMovie –2010 The movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

1-74 Movie Toolbox Reference

nil calls your transfer procedure only as a notification that the track has been
drawn; no transfer needs to take place.

RESULT CODES

Locating a Movie’s Tracks and Media Structures 1

GetMovieIndTrackType 1

The GetMovieIndTrackType function allows you to search for all of a movie’s
tracks that share a given media type or media characteristic.

pascal Track GetMovieIndTrackType (Movie theMovie, long index, OSType
trackType, long flags);

theMovie Specifies the movie for this operation. Your application obtains
this identifier from such functions as NewMovie,
NewMovieFromFile, and NewMovieFromHandle.

index Specifies the index value of the track for this operation. This is
not that same as the track’s index value in the movie. Rather,
this parameter is an index into the set of tracks that meet your
other selection criteria.

trackType Contains either a media type or a media characteristic value.
The Movie Toolbox applies this value to the search, and returns
information about tracks that meet this criterion. You indicate
whether you have specified a media type or characteristic value
by setting the flags parameter appropriately.

flags Contains flags that control the search operation. The following
flags are valid (note that you may not set both
movieTrackMediaType and movieTrackCharacteristic to 1):

invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-75

movieTrackMediaType
Indicates that the trackType parameter contains
a media type value. Set this flag to 1 if you are
supplying a media type value (such as
VideoMediaType).

movieTrackCharacteristic
Indicates that the trackType parameter contains
a media characteristic value. Set this flag to 1 if
you are supplying a media characteristic value
(such as VisualMediaCharacteristic).

movieTrackEnabledOnly
Specifies that the Movie Toolbox should only
search enabled tracks. Set this track to 1 to limit
the search to enabled tracks.

function result Returns the track identifier of your selected track or nil.

DESCRIPTION

The Movie Toolbox returns the track identifier that corresponds to the track
that meets your selection criteria. If the Movie Toolbox cannot find a matching
track, in returns a value of nil.

Note that the index parameter does not work the same way that is does in the
GetMovieIndTrack function. With the GetMovieIndTrackType function, the index
parameter specifies an index into the set of tracks that meet your other
selection criteria. For example, in order to find the third track that supports the
sound characteristic, you would call the function in the following manner:

theTrack = GetMovieIndTrackType (theMovie,
3,
AudioMediaCharacteristic,
movieTrackCharacteristic);

C H A P T E R 1

Movie Toolbox

1-76 Movie Toolbox Reference

RESULT CODES

Working With Track References 1

Track references allow you to relate tracks to one another. For example, this can
be useful to identify the text track that contains the subtitles for a movie’s
audio track, and relating the text track to a particular audio track. See “Track
References”, earlier in this chapter, for more information about track references.

The AddTrackReference function allows you to relate one track to another. The
DeleteTrackReference function removes that relationship. The
SetTrackReference and GetTrackReference functions allow you to modify an
existing track reference so that it identifies a different track. The
GetNextTrackReferenceType and GetTrackReferenceCount functions allow you to
scan all of a track’s track references.

AddTrackReference 1

The AddTrackReference function allows you to add a new track reference to a
track.

pascal OSErr AddTrackReference (Track theTrack, Track refTrack,
OSType refType, long *addedIndex);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refTrack Specifies the track to be identified in the track reference.

refType Specifies the type of reference.

addedIndex Contains a pointer to a long. The Movie Toolbox returns the
index value assigned to the new track reference. If you do not
want this information, set this parameter to nil.

paramErr –50 Invalid parameter specified
invalidMovie –2010 The movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-77

RESULT CODES

Memory Manager errors

DeleteTrackReference 1

The DeleteTrackReference function allows you to remove a track reference
from a track.

pascal OSErr DeleteTrackReference (Track theTrack, OSType refType, long
index);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refType Specifies the type of reference.

index Specifies the index value of the reference to be deleted. You
obtain this index value when you create the track reference.

DESCRIPTION

This function deletes a track reference from a track. If there are additional track
references with higher index values, the Movie Toolbox automatically
renumbers those references, decrementing their index values by 1.

RESULT CODES

Memory Manager errors

invalidTrack –2009 This track is corrupted or invalid

paramErr –50 Invalid parameter specified
invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 1

Movie Toolbox

1-78 Movie Toolbox Reference

SetTrackReference 1

The SetTrackReference function allows you to modify an existing track
reference. You may change the track reference so that it identifies a different
track in the movie.

extern pascal OSErr SetTrackReference (Track theTrack, Track refTrack,
OSType refType, long index);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refTrack Specifies the track to be identified in the track reference. The
Movie Toolbox uses this information to update the existing
track reference.

refType Specifies the type of reference.

index Specifies the index value of the reference to be changed. You
obtain this index value when you create the track reference.

RESULT CODES

GetTrackReference 1

The GetTrackReference function allows you to retrieve the track identifier
contained in an existing track reference.

pascal Track GetTrackReference (Track theTrack, OSType refType, long
index);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refType Specifies the type of reference.

paramErr –50 Invalid parameter specified
invalidTrack –2009 This track is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-79

index Specifies the index value of the reference found. You obtain this
index value when you create the track reference.

function result Returns the track identifier contained in the specified track
reference.

DESCRIPTION

This function returns the track identifier that is contained in the specified track
reference. If the Movie Toolbox cannot locate the track reference corresponding
to your specifications, it returns a value of nil.

GetNextTrackReferenceType 1

The GetNextTrackReferenceType function allows you to determine all of the
track reference types that are defined for a given track.

pascal OSType GetNextTrackReferenceType (Track theTrack, OSType refType);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refType Specifies the type of reference. Set this parameter to 0 to retrieve
the first track reference type. On subsequent requests, use the
previous value returned by this function.

function result Returns an operating-system data type.

DESCRIPTION

This function returns an operating-system data type containing the next track
reference type value defined for the track. There is no implied ordering of the
returned values. When you reach the end of the track’s reference types, this
function sets the returned value to 0. You can use this value to stop your
scanning loop.

C H A P T E R 1

Movie Toolbox

1-80 Movie Toolbox Reference

GetTrackReferenceCount 1

The GetTrackReferenceCount function allows you to determine how many track
references of a given type exist for a track.

pascal long GetTrackReferenceCount (Track theTrack, OSType refType);

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

refType Specifies the type of reference. The Movie Toolbox determines
the number of track references of this type.

function result Returns a long integer or 0.

DESCRIPTION

This function returns long integer that contains the number of track references
of the specified type in the track. If there are no references of the type you have
specified, the function returns a value of 0.

Working With Sound 1

The following calls operate on the static 3D Sound Setting for a track. By
constantly setting the value it is possible for an application to make a track’s
sound move in 3D space. If it is necessary to store dynamically changing 3D
Sound settings for the track, this can be done using the Modifier Track
mechanism in conjunction with a Tween Track. This is described below.

SetTrackSoundLocalizationSettings 1

SetTrackSoundLocalizationSettings replaces the current 3D Sound settings for
the specified track with the new SSpLocalizationData record contained in the
settings handle. The effect of the new 3D Sound setting will take place
immediately. This call will aways store the new record passed, even if the track
or the computer is not capable of actually meeting the request. You can pass a

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-81

nil handle to indicate that no 3D Sound effects should be used for this track.
When the movie is saved, the 3D Sound settings is saved with it.

SetTrackSoundLocalizationSettings makes a copy of the handle passed, so the
caller is responsible for disposing of the settings handle.

pascal OSErr SetTrackSoundLocalizationSettings (Track theTrack, Handle
settings)

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

settings The settings you want to apply, in the format of a Sound
Sprockets SSpLocalizationData record.

The following example source code shows how to set the static 3D Sound
Setting for a track using SetTrackSoundLocalizationSettings.

void setTrackSoundLocalization(Track t)
{

SSpLocalizationData loc;
Handle h;
OSErr err;

loc.cpuLoad = 0;
loc.medium = kSSpMedium_Air;
loc.humidity = 0;
loc.roomSize = 250;
loc.roomReflectivity = -5;
loc.reverbAttenuation = -5;
loc.sourceMode = kSSpSourceMode_Localized;
loc.referenceDistance = 1;
loc.coneAngleCos = 0;
loc.coneAttenuation = 0;
loc.currentLocation.elevation = 0;
loc.currentLocation.azimuth = 0;
loc.currentLocation.distance = 2;
loc.currentLocation.projectionAngle = 0;
loc.currentLocation.sourceVelocity = 0;
loc.currentLocation.listenerVelocity = 0;
loc.reserved0 = 0;
loc.reserved1 = 0;

C H A P T E R 1

Movie Toolbox

1-82 Movie Toolbox Reference

loc.reserved2 = 0;
loc.reserved3 = 0;
loc.virtualSourceCount = 0;

err = PtrToHand(&loc, &h, sizeof(loc));
err = SetTrackSoundLocalizationSettings(t, h);

DisposeHandle(h);
}

GetTrackSoundLocalizationSettings 1

GetTrackSoundLocalizationSettings returns a handle containing a copy of the
current 3D Sound settings for the specified track.

pascal OSErr GetTrackSoundLocalizationSettings (Track theTrack, Handle
*settings)

theTrack Identifies the track for this operation. Your application obtains
this track identifier from such Movie Toolbox functions as
NewMovieTrack and GetMovieTrack.

settings The settings you want to retrieve, in the format of a Sound
Sprockets SSpLocalizationData record.

DISCUSSION

If there are no 3D Sound settings, the returned handle is set to nil. The caller of
this routine is reponsible for disposing of the returned handle.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-83

Functions for Editing Movies 1

PasteHandleIntoMovie 1

As of QuickTime 1.6.1, the PasteHandleIntoMovie function supports a user
settings dialog box for import operations. Your application controls whether
this dialog appears by setting the value of the flags parameter in the
PasteHandleIntoMovie function. This function supports the following new flag:

showUserSettingsDialog
Controls whether the user settings dialog for the specified
import operation can appear. Set this flag to 1 to display the
user settings dialog.

Adding Samples to Media Structures 1

SetMediaDefaultDataRefIndex 1

The SetMediaDefaultDataRefIndex function allows you to specify which of a
media’s data references is to be accessed during an editing session.

pascal OSErr SetMediaDefaultDataRefIndex (Media theMedia, short index);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia.

index Specifies the data reference to access. Values of the index
parameter range from 1 to the number of data references in the
media (you can determine the number of data references by
calling the GetMediaDataRefCount function). Once set, the default
data reference index persists. Set this parameter to 0 to revert to
the media’s default data reference.

C H A P T E R 1

Movie Toolbox

1-84 Movie Toolbox Reference

DESCRIPTION

Prior to QuickTime 2.0, the Movie Toolbox did not allow the creation of tracks
that have data in several files. Therefore, there was not a mechanism for
controlling which data reference is affected by a media editing session. The
SetMediaDefaultDataRefIndex function allows you to specify the index of the
data reference to be edited. After calling this function, you can start editing that
data reference by calling the BeginMediaEdits function.

RESULT CODES

SetMediaPreferredChunkSize 1

The SetMediaPreferredChunkSize function allows you to specify a maximum
chunk size for a media.

pascal OSErr SetMediaPreferredChunkSize (Media theMedia, long
maxChunkSize);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia.

maxChunkSize Specifies the maximum chunk size, in bytes.

DISCUSSION

The term chunk refers to the collection of sample data that is added to a movie
when you call the AddMediaSample function. When QuickTime loads a movie for
playback, it loads the data a chunk at a time. Consequently, both the size and
number of chunks in a movie can affect playback performance. The Movie
Toolbox tries to optimize playback performance by consolidating adjacent
sample references into a single chunk (up to the limit you prescribe with this
function).

invalidMedia –2008 The media is corrupted or invalid
badDataRefIndex –2050 Data reference index value is invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-85

RESULT CODES

GetMediaPreferredChunkSize 1

The GetMediaPreferredChunkSize function allows you to retrieve the maximum
chunk size for a media.

pascal OSErr GetMediaPreferredChunkSize (Media theMedia, long
*maxChunkSize);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia.

maxChunkSize Specifies a field to receive the maximum chunk size, in bytes.

RESULT CODES

Editing Tracks 1

The Movie Toolbox contains one new function for editing tracks.

AddEmptyTrackToMovie 1

The AddEmptyTrackToMovie function duplicates a track from a movie into the
same movie, or into another movie. The newly created track has the same
media type and track settings as the specified track. However, no data is copied
from the source track to the new track.

noMediaHandler –2006 Media has no media handler
invalidMedia –2008 The media is corrupted or invalid

noMediaHandler –2006 Media has no media handler
invalidMedia –2008 The media is corrupted or invalid

C H A P T E R 1

Movie Toolbox

1-86 Movie Toolbox Reference

To copy data from the source track to the new track, use the
InsertTrackSegment function after calling AddEmptyTrackToMovie.

pascal OSErr AddEmptyTrackToMovie(Track srcTrack,
Movie dstMovie,
Handle dataRef,
OSType dataRefType,
Track *dstTrack);

srcTrack Specifies the source track for this operation. Your application
obtains this track identifier from such Movie Toolbox functions
as NewMovieTrack and GetMovieTrack.

dstMovie Specifies the destination movie for this operation. This can be
the same movie as the source track or a different movie.

dataRef Contains a handle to the data reference. The type of information
stored in the handle depends upon the data reference type
specified by the dataRefType parameter.

dataRefType Specifies the type of data reference. If the data reference is an
alias, you must set the parameter to rAliasType , indicating that
the reference is an alias.

dstTrack The newly created track’s identifier is returned in this
parameter. If AddEmptyTrackToMovie fails, the resulting track
identifier is set to nil.

DISCUSSION

The AddEmptyTrackToMovie function returns the newly created, empty track.
This function has been available since QuickTime 2.0.

Using the Full Screen 1

QuickTime 2.1 introduced two functions that you can use to put a device into
full-screen mode (that is, select where and when the menu bar is not visible).

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-87

BeginFullScreen 1

You can use the BeginFullScreen function to begin full-screen mode for a
specified monitor.

pascal OSErr BeginFullScreen (
Ptr *restoreState,
GDHandle whichGD,
short *desiredWidth,
short *desiredHeight,
WindowPtr *newWindow,
RGBColor *eraseColor,
long flags);

restoreState On exit, a pointer to a block of private state information that
contains information on how to return from full-screen mode.
This value is passed to EndFullScreen to enable it to return the
monitor to its previous state.

whichGD A handle to the graphics device to put into full-screen mode.
Set this parameter to nil to select the main screen.

desiredWidth On entry, a pointer to a short integer that contains the desired
width, in pixels, of the images to be displayed. On exit, that
short integer is set to the actual number of pixels that can be
displayed horizontally. Set this parameter to 0 to leave the
width of the display unchanged.

desiredHeight On entry, a pointer to a short integer that contains the desired
height, in pixels, of the images to be displayed. On exit, that
short integer is set to the actual number of pixels that can be
displayed vertically. Set this parameter to 0 to leave the height
of the display unchanged.

newWindow On entry, a window-creation value. If this parameter is nil, no
window is created for you. If this parameter has any other
value, BeginFullScreen creates a new window that is large
enough to fill the entire screen and returns a pointer to that
window in this parameter. You should not dispose of that
window yourself; instead, EndFullScreen will do so.

C H A P T E R 1

Movie Toolbox

1-88 Movie Toolbox Reference

eraseColor The color to use when erasing the full-screen window created
by BeginFullScreen if newWindow is not nil on entry. If this
parameter is nil, BeginFullScreen uses black when initially
erasing the window’s content area.

flags The flags parameter specifies a set of bit flags that control
certain aspects of the full-screen mode. QuickTime defines these
constants that you can use in the flags parameter.

enum {
fullScreenHideCursor = 1L << 0,
fullScreenAllowEvents = 1L << 1,
fullScreenDontChangeMenuBar = 1L << 2,
fullScreenPreflightSize = 1L << 3

};

Flag description

fullScreenHideCursor
If this flag is set, BeginFullScreen hides the cursor. This is
useful if you are going to play a QuickTime movie and do
not want the cursor to be visible over the movie.

fullScreenAllowEvents
If this flag is set, your application intends to allow other
applications to run (by calling WaitNextEvent to grant them
processing time). In this case, BeginFullScreen does not
change the monitor resolution, because other applications
might depend on the current resolution.

fullScreenDontChangeMenuBar
If this flag is set, BeginFullScreen does not hide the menu
bar. This is useful if you want to change the resolution of
the monitor but still need to allow the user to access the
menu bar.

fullScreenPreflightSize
If this flag is set, BeginFullScreen doesn’t change any
monitor settings, but returns the actual height and width
that it would use if this bit were not set. This allows
applications to test for the availability of a monitor setting
without having to switch to it.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-89

DISCUSSION

The BeginFullScreen function returns, in the restoreState parameter, a pointer
to a block of private state information that indicates how to return from
full-screen mode. You pass that pointer as a parameter to the EndFullScreen
function (described next).

The Macintosh Interface Standard states that the menu bar must always be
present, and that information must always appear in windows. However,
many multimedia applications have chosen to change the look and feel of the
interface based on there needs. The number of details to keep track of when
doing this continues to increase. To help solve this problem, QuickTime 2.1
added functions to put a GDevice into full screen mode.

EndFullScreen 1

You can use the EndFullScreen function to end full-screen mode for a graphics
device.

pascal OSErr EndFullScreen (Ptr fullState, long flags);

fullState The pointer to private state information returned by a previous
call to BeginFullScreen.

flags Reserved. Set this parameter to nil.

DISCUSSION

The EndFullScreen function restores the graphics device and other settings to
the state specified by the private state information pointed to by the fullState
parameter. The resulting state is that that was in effect prior to the immediately
previous call to the BeginFullScreen function.

Handling Update Events 1

QuickTime 2.1 introduced a new function, InvalidateMovieRegion, to use in
place of the UpdateMovie function to indicate the area of a movie that needs to
be redrawn.

C H A P T E R 1

Movie Toolbox

1-90 Movie Toolbox Reference

InvalidateMovieRegion 1

Use the new InvalidateMovieRegion function instead of the UpdateMovie
function to invalidate a small area of a movie. InvalidateMovieRegion marks all
areas of the movie that intersect the invalidRgn parameter. The next time you
call the MoviesTask function, the Movie Toolbox redraws the marked areas.

pascal OSErr InvalidateMovieRegion (
Movie theMovie,
RgnHandle invalidRgn);

theMovie Identifies the movie whose area you wish to invalidate. Your
application obtains this movie identifier from such functions as
NewMovie, NewMovieFromFile, and NewMovieFromHandle.

invalidRgn Contains a region indicating the area of the movie to invalidate.
If necessary, QuickTime will make a copy of this region. To
invalidate the entire movie area, pass nil for this parameter.

DESCRIPTION

The InvalidateMovieRegion function provides a way to invalidate a portion of
the movie’s area instead of its entire area, as does UpdateMovie. This allows for
higher performance update handling when a movie has many tracks, or covers
a large area. For handling of update events, applications should continue to use
UpdateMovie.

RESULT CODES

Handling Media Sample References 1

You could always use GetMediaSampleReference to access samples in a movie
one at a time. QuickTime 2.1 introduced GetMediaSampleReferences (note that
this is the plural form of the GetMediaSampleReference function), that you can
use to obtain information about groups of samples. QuickTime 2.1 also
introduced AddMediaSampleReferences that you can use to work with groups of
samples that have already been added to a movie.

invalidMovie –2010 The movie is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-91

GetMediaSampleReferences 1

The GetMediaSampleReferences function allows your application to obtain
reference information about groups of samples that are stored in a movie.

pascal OSErr GetMediaSampleReferences (
Media theMedia,
TimeValue time,
TimeValue *sampleTime,
SampleDescriptionHandle sampleDescriptionH,
long *sampleDescriptionIndex,
long maxNumberOfEntries,
long *actualNumberofEntries,
SampleReferencePtr sampleRefs);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia. For information about these
functions, see Inside Macintosh: QuickTime.

time Specifies the starting time of the sample references to be
retrieved. You must specify this value in the media’s time scale.

sampleTime Contains a pointer to a time value. The
GetMediaSampleReferences function updates this time value to
indicate the actual time of the first returned sample data. If you
are not interested in this information, set this parameter to nil.

sampleDescriptionH
Contains a handle to a sample description. The
GetMediaSampleReference function returns the sample
description corresponding to the returned sample data. The
function resizes this handle as appropriate. If you do not want
the sample description, set this parameter to nil.

GetMediaSampleReferences only returns a single sample
description. If the sample description changes within the
media, GetMediaSampleReferences will return only as many
samples as use a single sample description. You must call it
again to get the next group of samples using the next sample
description.

C H A P T E R 1

Movie Toolbox

1-92 Movie Toolbox Reference

sampleDescriptionIndex
Contains a pointer to a long integer. The
GetMediaSampleReferences function returns an index value to
the sample descriptions that correspond to the returned sample
data. You can use this index to retrieve the media sample
descriptions with the GetMediaSampleDescription function. If
you do not want this information, set this parameter to nil.

maxNumberOfEntries
Specifies the maximum number of entries to be returned. The
sample references pointer provided by the sampleRefs
parameter must be large enough to receive the number of
entries specified by this parameter. The Movie Toolbox does not
return more entries than you specify with this parameter. It
may, however, return fewer.

actualNumberOfEntries
Contains a pointer to a long integer. The
GetMediaSampleReferences function updates the field referred to
by this parameter with the number of entries referred to by the
returned reference.

sampleRefs Contains a pointer to the number of SampleReferenceRecords
specified in the maxNumberOfEntries parameter. On return from
this call, the number of sample reference records indicated by
the value returned in actualNumberOfEntries will be filled in.

DESCRIPTION

Using this function instead of GetMediaSampleReference can greatly increase the
performance of operations which need access to information about each
sample in a movie. No information is returned from this call that wasn’t
previously available from GetMediaSampleReference.

RESULT CODES

Memory Manager errors

invalidMedia -2008 This media is corrupted or invalid.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-93

AddMediaSampleReferences 1

The AddMediaSampleReferences function allows your application to add groups
of samples to a movie data file.

pascal OSErr AddMediaSampleReferences (
Media theMedia,
SampleDescriptionHandle sampleDescriptionH,
long numberOfSamples,
SampleReferencePtr sampleRefs,
TimeValue *sampleTime);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia. For information about these
functions, see Inside Macintosh: QuickTime.

sampleDescriptionH
Contains a handle to a sample description. Some media
structures may require sample descriptions. There are different
sample descriptions for different types of samples. For example,
a media that contains compressed video requires that you
supply an image description. A media that contains sound
requires that you supply a sound description structure. For
information about the Image Compression Manager and the
sound description structure, see Inside Macintosh: QuickTime.

If you do not want the sample description, set this parameter to
nil.

numberOfSamples
Specifies the number of samples contained in the reference. For
details, see the AddMediaSample function description in Inside
Macintosh: QuickTime.

sampleRefs Contains a pointer to the number of SampleReferenceRecords
specified in the numberOfSamples parameter.

sampleTime Contains a pointer to a time value. After adding the reference to
the media, the AddMediaSampleReferences function returns the
time where the reference was inserted in the time value referred
to by this parameter. If you do not want to receive this
information, set this parameter to nil.

C H A P T E R 1

Movie Toolbox

1-94 Movie Toolbox Reference

DISCUSSION

Using this function instead of AddMediaSampleReference can greatly improve
the performance of operations which involve adding a large number of
samples to a movie at one time. AddMediaSampleReferences provides no
capabilities that weren’t previously available with AddMediaSampleReference.

RESULT CODES

Memory Manager errors

Managing the Video Frame Playback Rate 1

QuickTime 2.1 introduced two new functions for determining the rate at which
a QuickTime movie plays back each video frame. You should use these
functions for debugging.

GetVideoMediaStatistics 1

The GetVideoMediaStatistics function returns the play-back frame rate of a
movie. This call can only be used on video or MPEG media handlers.

pascal Fixed GetVideoMediaStatistics (
MediaHandler mh);

mh Contains a reference to a video media handler. You obtain this
reference from the GetMediaHandler function.

function result Returns the movie’s play-back frame rate in frames-per-second.

DESCRIPTION

The GetVideoMediaStatistics returns the average frame rate since the last time
ResetVideoMediaStatistics was called. Because of sampling errors, the values
returned from GetVideoMediaStatistics are accurate only after waiting at least
one second after calling ResetVideoMediaStatistics.

invalidMedia -2008 This media is corrupted or invalid.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-95

Note
Because not all QuickTime movies have a constant frame
rate, the results of this call can be difficult to correctly
interpret. For this reason, the results of this function
should not be displayed in a place where a novice user is
likely to see it.

ResetVideoMediaStatistics 1

Use the ResetVideoMediaStatistics function to reset the video media handler’s
counters before using GetVideoMediaStatistics to determine the frame rate of a
movie. This call can only be used on video or MPEG media handlers.

pascal HandlerError ResetVideoMediaStatistics (
MediaHandler mh);

mh Contains a reference to a video media handler. You obtain this
reference from the GetMediaHandler function.

function result Returns a handle error.

DESCRIPTION

The ResetVideoMediaStatistics function resets the video media handler’s
frame rate counters.

RESULT CODES

Manipulating Media Input Maps 1

The Movie Toolbox contains two functions for maintaining media input maps:
GetMediaInputMap and SetMediaInputMap.

Each track has particular attributes such as size, position, and volume
associated with it. The media input map of that track describes where the
variable parameters are stored so that modifier tracks know where to send their

badComponentInstance 0x80008001 Invalid component instance specified.

C H A P T E R 1

Movie Toolbox

1-96 Movie Toolbox Reference

data. When a track is copied, its input map is also copied. CopyTrackSettings
also transfers the media input map.

GetMediaInputMap 1

The GetMediaInputMap function returns a copy of the input map associated with
the specified media. The caller is responsible for disposing of the input map
with QTDisposeAtomContainer.

pascal OSErr GetMediaInputMap (
Media theMedia,
QTAtomContainer *inputMap,);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia.

inputMap Specifies the media input map for this operation. You must
dispose of the map referred to by this parameter when you are
done with it using QTDisposeAtomContainer.

DISCUSSION

Use the GetMediaInputMap function to specify the media you want to get so you
can modify its input map.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-97

RESULT CODES

SetMediaInputMap 1

The SetMediaInputMap function replaces the media’s existing input map with
the given input map.

pascal OSErr SetMediaInputMap (
Media theMedia,
QTAtomContainer inputMap);

theMedia Specifies the media for this operation. Your application obtains
this media identifier from such Movie Toolbox functions as
NewTrackMedia and GetTrackMedia.

inputMap Specifies the media input map for this operation. If the input
map is set to nil, the media’s input map is reset to an empty
input map.

DISCUSSION

Use the SetMediaInputMap function to specify the media you want to set so you
can modify or empty its input map.

SetMediaInputMap makes a copy of the inputMap passed to it. Typically, an
application will call GetMediaInputMap to get the current input map before
modifying it. Use QTNewAtomContainer to create an empty input map. See the
description of QTNewAtomContainer later in this chapter.

invalidMedia –2008 The media is corrupted or invalid
paramErr –50 Invalid parameter specified
memFullErr -108 Not enough room in heap zone

C H A P T E R 1

Movie Toolbox

1-98 Movie Toolbox Reference

RESULT CODES

Media Functions 1

Selecting Data Handlers 1

GetDataHandler 1

The GetDataHandler function allows you to retrieve the best data handler
component to use with a given data reference.

pascal Component GetDataHandler (Handle dataRef,
OSType dataHandlerSubType, long flags);

dataRef Contains a handle to the data reference. The type of information
stored in the handle depends upon the data reference type
specified by the dataHandlerSubType parameter.

dataHandlerSubType
Identifies both the type of data reference and, by implication,
the component subtype value assigned to the data handler
components that operate on data references of that type.

flags Indicates the way in which you intend to use the data handler
component. Note that not all data handlers necessarily support
all services—for example, some data handler components may
not support streaming writes.

The following flags are defined (set the appropriate flags to 1):

kDataHCanRead Specifies that you intend to use the data handler
component to read data.

invalidMedia –2008 The media is corrupted or invalid
paramErr –50 Invalid parameter specified
memFullErr -108 Not enough room in heap zone

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-99

kDataHCanWrite
Specifies that you intend to use the data handler
component to write data.

kDataHCanStreamingWrite
Indicates that you intend to do streaming writes
(as part of a movie-capture operation, for
example).

DESCRIPTION

Once you have used this function to get information about the best data
handler component for your data reference, you can open and use the
component using Component Manager functions. See “Data Handler
Components,” for more information.

If the function returns a value of nil, the Movie Toolbox was unable to find an
appropriate data handler component. For more information about the error,
call the GetMoviesError Movie Toolbox function.

RESULT CODES

Memory Manager errors

Timecode Media Handler Functions 1

This section discusses the functions and structures that allow you to use the
timecode media handler.

The timecode media handler allows QuickTime movies to store timing
information that is derived from the movie’s original source material. Every
QuickTime movie contains QuickTime-specific timing information, such as
frame duration. This information affects how QuickTime interprets and plays
the movie.

The timecode media handler allows QuickTime movies to store additional
timing information that is not created by or for QuickTime. This additional
timing information would typically be derived from the original source
material, say as a SMPTE timecode. In essence, you can think of the timecode
media handler as providing a link between the “digital” QuickTime-specific
timing information and the original “analog” timing information from the
source material.

C H A P T E R 1

Movie Toolbox

1-100 Movie Toolbox Reference

A movie’s timecode is stored in a timecode track. Timecode tracks contain:

■ Source identification information (this identifies the source, say, a given
videotape)

■ Timecode format information (this specifies the characteristics of the
timecode and how to interpret the timecode information)

■ Frame numbers (these allow QuickTime to map from a given movie time—
in terms of QuickTime time values—to its corresponding timecode value)

Apple has defined the information that is stored in the track in a manner that is
independent of any specific timecode standard. The format of this information
is sufficiently flexible to accommodate all known timecode standards,
including, for example, SMPTE timecode. The timecode format information
provides QuickTime the parameters for understanding the timecode and
converting QuickTime time values into timecode time values (and vice versa).

One key timecode attribute relates to the technique used to synchronize
timecode values with video frames. Most video source material is recorded at
whole-number frame rates. For example, both PAL and SECAM video contains
exactly 25 frames per second. However, some video source material is not
recorded at whole-number frame rates. In particular, NTSC color video
contains 29.97 frames per second (though it is typically referred to as 30
frames-per-second video). However, NTSC timecode values correspond to the
full 30 frames-per-second rate (this is a holdover from NTSC black-and-white
video). For such video sources, you need a mechanism that corrects the skew
that will develop over time between timecode values and actual video frames.

A common method for maintaining synchronization between timecode values
and video data is called dropframe. Contrary to its name, the dropframe
technique actually skips timecode values at a predetermined rate in order to
keep the timecode and video data synchronized. It does not actually drop
video frames. In NTSC color video, which uses the dropframe technique, the
timecode values skip two frame values every minute, except for minute values
that are evenly divisible by ten. So NTSC timecode values, which are expressed
as HH:MM:SS:FF (hours, minutes, seconds, frames) skip from 00:00:59:29 to
00:01:00:02 (skipping 00:01:00:00 and 00:01:00:01). There is a flag in the
timecode definition structure that indicates whether the timecode uses the
dropframe technique.

You can have the Movie Toolbox display the timecode when a movie is played.
Use the TCSetTimeCodeFlags function to turn the timecode display on and off.
Note that the timecode track must be enabled for this display to work.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-101

You store the timecode’s source identification information in a user data item.
Create a user data item with a type value of TCSourceRefNameType. Store the
source information as a text string. This information might contain the name of
the videotape from which the movie was created, for example. For more
information about working with user data, see Inside Macintosh: QuickTime.

The timecode media handler provides functions that allow you to manipulate
the source identification information. The following sample code demonstrates
one way to set the source tape name in a timecode media’s sample description.

void setTimeCodeSourceName (Media timeCodeMedia,
TimeCodeDescriptionHandle tcdH,
Str255 tapeName, ScriptCode

tapeNameScript)

{
UserData srcRef;

if (NewUserData(&srcRef) == noErr) {
Handle nameHandle;

if (PtrToHand(&tapeName[1], &nameHandle, tapeName[0]) == noErr) {

if (AddUserDataText (srcRef, nameHandle,'name', 1,
tapeNameScript) == noErr) {

TCSetSourceRef (GetMediaHandler (timeCodeMedia),
tcdH,
srcRef);

}
DisposeHandle(nameHandle);

}
DisposeUserData(srcRef);

}
}

You create a timecode track and media in the same manner that you create any
other track. Call the NewMovieTrack function to create the timecode track, and
use the NewTrackMedia function to create the track’s media. Be sure to specify a
media type value of TimeCodeMediaType when you call the NewTrackMedia
function.

You define the relationship between a timecode track and one or more movie
tracks using the Movie Toolbox’s new track reference functions (see “Track

C H A P T E R 1

Movie Toolbox

1-102 Movie Toolbox Reference

References” and “Functions for Working With Track References” elsewhere in
this chapter for more information). You then proceed to add samples to the
track, as appropriate.

Each sample in the timecode track provides timecode information for a span of
movie time. The sample includes duration information. As a result, you
typically add each timecode sample after you have created the corresponding
content track or tracks.

The timecode media sample description contains the control information that
allows QuickTime to interpret the samples. This includes the timecode format
information. The actual sample data contains a frame number that identifies
one or more content frames that use this timecode. Stored as a long, this value
identifies the first frame in the group of frames that use this timecode. In the
case of a movie made from source material that contains no edits, you would
only need one sample. When the source material contains edits, you typically
need one sample for each edit, so that QuickTime can re-sync the timecode
information with the movie. Those samples contain the frame numbers of the
frames that begin each new group of frames.

The timecode description structure defines the format and content of a
timecode media sample description.

typedef struct TimeCodeDescription {
long descSize; /* size of the structure */
long dataFormat; /* sample type */
long resvd1; /* reserved--set to 0 */
short resvd2; /* reserved--set to 0 */
short dataRefIndex;/* data reference index */
long flags; /* reserved--set to 0 */
TimeCodeDef timeCodeDef;/* timecode format information */
long srcRef[1]; /* source information */

} TimeCodeDescription, *TimeCodeDescriptionPtr,
**TimeCodeDescriptionHandle;

Field descriptions

descSize Specifies the size of the sample description, in bytes.
dataFormat Indicates the sample description type (TimeCodeMediaType).
resvd1 Reserved for use by Apple. Set this field to 0.
resvd2 Reserved for use by Apple. Set this field to 0.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-103

dataRefIndex Contains an index value indicating which of the media’s
data references contains the sample data for this sample
description.

flags Reserved for use by Apple. Set this field to 0.
timeCodeDef Contains a timecode definition structure that defines

timecode format information.
srcRef Contains the timecode’s source information. This is

formatted as a user data item that is stored in the sample
description. The media handler provides functions that
allow you to get and set this data.

The timecode definition structure contains the timecode format information.
This structure is defined as follows:

typedef struct TimeCodeDef {
long flags; /* timecode control flags */
TimeScale fTimeScale; /* timecode's time scale */
TimeValue frameDuration;/* how long each frame lasts */
unsigned charnumFrames;/* number of frames per second */

} TimeCodeDef;

Field descriptions
flags Contains flags that provide some timecode format

information. The following flags are defined:
tcDropFrame Indicates that the timecode “drops” frames occasionally in

order to stay in sync. Some timecodes run at other than a
whole number of frames per second. For example, NTSC
video runs at 29.97 frames per second. In order to
resynchronize between the timecode rate and a 30
frames-per-second playback rate, the timecode will drop a
frame at a predictable time (in much the same way that
leap years keep the calendar in sync). Set this flag to 1 if
the timecode uses the dropframe technique.

tc24HourMax Indicates that the timecode values wrap at 24 hours. Set
this flag to 1 if the timecode hour value wraps (that is,
returns to 0) at 24 hours.

tcNegTimesOK Indicates that the timecode supports negative time values.
Set this flag to 1 if the timecode allows negative values.

tcCounter Indicates that the timecode should be interpreted as a
simple counter, rather than as a time value. This allows the

C H A P T E R 1

Movie Toolbox

1-104 Movie Toolbox Reference

timecode to contain either time information or counter
(such as a tape counter) information. Set this flag to 1 if the
timecode contains counter information.

fTimeScale Contains the time scale for interpreting the frameDuration
field. This field indicates the number of time units per
second.

frameDuration Specifies how long each frame lasts, in the units defined by
the fTimeScale field.

numFrames Indicates the number of frames stored per second. In the
case of timecodes that are interpreted as counters, this field
indicates the number of frames stored per timer “tick.”

The best way to understand how to format and interpret the timecode
definition structure is to consider an example. If you were creating a movie
from an NTSC video source recorded at 29.97 frames per second, using SMPTE
timecode, you would format the timecode definition structure as follows:

TimeCodeDef.flags = tcDropFrame | tc24HourMax;
TimeCodeDef.fTimeScale = 2997;/* units */
TimeCodeDef.frameDuration = 100;/* relates units to frames */
TimeCodeDef.numFrames = 30;/* whole frames per second */ i).timecode

media handler:timecode definition structure;

The movie’s natural frame rate of 29.97 frames per second is obtained by
dividing the fTimeScale value by the frameDuration (2997÷100). Note that the
flags field indicates that the timecode uses the dropframe technique to resync
the movie’s natural frame rate of 29.97 frames per second with its playback rate
of 30 frames per second.

Given a timecode definition, you can freely convert from frame numbers to
time values and from time values to frame numbers. For a time value of
00:00:12:15 (HH:MM:SS:FF), you would obtain a frame number of 375 (12*30 +
15). The timecode media handler provides a number of functions that allow
you to perform these conversions.

When you use the timecode media handler to work with time values, the
media handler uses timecode records to store the time values. The timecode
record allows you to interpret the time information as either a time value
(HH:MM:SS:FF) or a counter value. The timecode record is defined as follows:

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-105

typedef union TimeCodeRecord {
TimeCodeTimet; /* value interpreted as time */
TimeCodeCounterc; /* value interpreted as counter */

} TimeCodeRecord;

typedef struct TimeCodeTime {
unsigned charhours; /* time: hours */
unsigned charminutes; /* time: minutes */
unsigned charseconds; /* time: seconds */
unsigned charframes; /* time: frames */

} TimeCodeTime;

typedef struct TimeCodeCounter {
long counter; /* counter value */

} TimeCodeCounter;

Note that, when you are working with timecodes that allow negative time
values, the minutes field of the TimeCodeTime structure
(TimeCodeRecord.t.minutes) indicates whether the time value is positive or
negative. If the tctNegFlag bit of the minutes field is set to 1, the time value is
negative.

TCGetCurrentTimeCode 1

The TCGetCurrentTimeCode function retrieves the timecode and source
identification information for the current movie time.

pascal HandlerError TCGetCurrentTimeCode (MediaHandler mh, long
*frameNum, TimeCodeDef *tcdef, TimeCodeRecord
*tcrec, UserData *srcRefH);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

frameNum Contains a pointer to a field that is to receive the current frame
number. Set this field to nil if you do not want to retrieve the
frame number.

C H A P T E R 1

Movie Toolbox

1-106 Movie Toolbox Reference

tcdef Contains a pointer to a timecode definition structure. The
media handler returns the movie’s timecode definition
information. Set this parameter to nil if you do not want this
information.

tcrec Contains a pointer to a timecode record structure. The media
handler returns the current time value. Set this parameter to nil
if you do not want this information.

srcRefH Contains a pointer to a field that is to receive a handle
containing the source information. It is your responsibility to
dispose of this user data when you are done with it. Set this
field to nil if you do not want this information.

RESULT CODES

TCGetTimeCodeAtTime 1

The TCGetTimeCodeAtTime function returns a track’s timecode information
corresponding to a specific media time.

pascal HandlerError TCGetTimeCodeAtTime (MediaHandler mh, TimeValue
mediaTime, long *frameNum, TimeCodeDef *tcdef,
TimeCodeRecord *tcdata, UserData *srcRefH);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

mediaTime Specifies the time value for which you want to retrieve
timecode information. This time value is expressed in the
media’s time coordinate system.

frameNum Contains a pointer to a field that is to receive the current frame
number. Set this field to nil if you do not want to retrieve the
frame number.

invalidTime –2015 This time value is invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-107

tcdef Contains a pointer to a timecode definition structure. The
media handler returns the movie’s timecode definition
information. Set this parameter to nil if you do not want this
information.

tcrec Contains a pointer to a timecode record structure. The media
handler returns the current time value. Set this parameter to nil
if you do not want this information.

srcRefH Contains a pointer to a field that is to receive a handle
containing the source information. It is your responsibility to
dispose of this user data when you are done with it. Set this
field to nil if you do not want this information.

RESULT CODES

Memory Manager errors

TCTimeCodeToFrameNumber 1

The TCTimeCodeToFrameNumber function converts a timecode time value into its
corresponding frame number.

pascal HandlerError TCTimeCodeToFrameNumber (MediaHandler mh,
TimeCodeDef *tcdef, TimeCodeRecord *tcrec,
long *frameNumber);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

tcdef Contains a pointer to the timecode definition structure to use
for the conversion.

tcrec Contains a pointer to the timecode record structure containing
the time value to convert.

frameNumber Contains a pointer to a field that is to receive the frame number
that corresponds to the time value in the tcrec parameter.

invalidTime –2015 This time value is invalid

C H A P T E R 1

Movie Toolbox

1-108 Movie Toolbox Reference

RESULT CODES

TCFrameNumberToTimeCode 1

The TCFrameNumberToTimeCode function converts a frame number into its
corresponding timecode time value.

pascal HandlerError TCFrameNumberToTimeCode (MediaHandler mh, long
frameNumber, TimeCodeDef *tcdef, TimeCodeRecord
*tcrec);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

frameNumber Specifies the frame number that is to be converted.

tcdef Contains a pointer to the timecode definition structure to use
for the conversion.

tcrec Contains a pointer to the timecode record structure that is to
receive the time value.

RESULT CODES

TCTimeCodeToString 1

The TCTimeCodeToString function converts a time value into a text string
(HH:MM:SS:FF). If the timecode uses the dropframe technique, the separators
are semi-colons (;) rather than colons (:).

pascal HandlerError TCTimeCodeToString(MediaHandler mh, TimeCodeDef
*tcdef, TimeCodeRecord *tcrec, StringPtr tcStr);

paramErr –50 Invalid parameter specified

paramErr –50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-109

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

tcdef Contains a pointer to the timecode definition structure to use
for the conversion.

tcrec Contains a pointer to the timecode record structure to use for
the conversion.

tcStr A pointer to a text string that is to receive the converted time
value.

RESULT CODES

TCSetSourceRef 1

The TCSetSourceRef function allows you to change the source information in
the timecode media sample reference.

pascal HandlerError TCSetSourceRef (MediaHandler mh,
TimeCodeDescriptionHandle tcdH, UserData srefH);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

tcdH Specifies a handle containing the timecode media sample
reference that is to be updated.

srefH Specifies a handle to the source information to be placed in the
sample reference. It is your application’s responsibility to
dispose of this user data when you are done with it.

RESULT CODES

Memory Manager errors

paramErr –50 Invalid parameter specified

paramErr –50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-110 Movie Toolbox Reference

TCGetSourceRef 1

The TCGetSourceRef function allows you to retrieve the source information from
the timecode media sample reference.

pascal HandlerError TCGetSourceRef (MediaHandler mh,
TimeCodeDescriptionHandle tcdH, UserData *srefH);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

tcdH Specifies a handle containing the timecode media sample
reference for this operation.

srefH Specifies a pointer to a handle that will receive the source
information. It is your application’s responsibility to dispose of
this user data when you are done with it.

RESULT CODES

Memory Manager errors

TCSetTimeCodeFlags 1

The TCSetTimeCodeFlags function allows you to change the flags that affect how
the Movie Toolbox handles the timecode information.

pascal HandlerError TCSetTimeCodeFlags (MediaHandler mh, long flags,
long flagsMask);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

flags Specifies the new flag values. The following flags are defined:

paramErr –50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-111

tcdfShowTimeCode
Controls the display of timecode information.
Set this flag to 1 to cause timecode information
to be displayed when the movie plays. Set this
flag to 0 to turn off the display.

Note that the timecode track must be enabled in
order for the timecode information to be
displayed.

flagsMask Specifies which of the flag values are to change. The media
handler modifies only those flag values that correspond to bits
that are set to 1 in this parameter. Use the flag values from the
flags parameter. For example, in order to turn off timecode
display, you would set the tcdfShowTimeCode flag to 1 in the
flagsMask parameter, and to 0 in the flags parameter.

TCGetTimeCodeFlags 1

The TCGetTimeCodeFlags function allows you to retrieve the timecode control
flags.

pascal HandlerError TCGetTimeCodeFlags (MediaHandler mh, long *flags;

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

flags Contains a pointer to a field that is to receive the control flags.
The following flags are defined:

tcdfShowTimeCode
Controls the display of timecode information. If
this flag is set to 1, the timecode information is
displayed when the movie is played.

Note that the timecode track must be enabled in
order for the timecode information to be
displayed.

C H A P T E R 1

Movie Toolbox

1-112 Movie Toolbox Reference

TCSetDisplayOptions 1

The TCSetDisplayOptions function allows you to set the text characteristics that
apply to timecode information that is displayed in a movie.

pascal HandlerError TCSetDisplayOptions (MediaHandler mh,
TCTextOptionsPtr textOptions);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

textOptions Contains a pointer to a text options structure. This structure
contains font and style information.

DESCRIPTION

You provide the text style information in a text options structure. This structure
is defined as follows (for more information about working with text
characteristics, see Inside Macintosh: Text):

typedef struct TCTextOptions {
short txFont; /* font */
short txFace; /* font style */
short txSize; /* font size */
RGBColor foreColor; /* foreground color */
RGBColor backColor; /* background color */

} TCTextOptions, *TCTextOptionsPtr;

Field descriptions

txFont Specifies the number of the font.
txFace Specifies the font’s style (bold, italic, and so on).
txSize Specifies the font’s size.
foreColor Specifies the foreground color.
backColor Specifies the background color.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-113

TCGetDisplayOptions 1

The TCGetDisplayOptions function allows you to retrieve the text characteristics
that apply to timecode information that is displayed in a movie.

pascal HandlerError TCGetDisplayOptions (MediaHandler mh,
TCTextOptionsPtr textOptions);

mh Specifies the timecode media handler. You obtain this identifier
by calling the GetMediaHandler function.

textOptions Contains a pointer to a text options structure. This structure
will receive font and style information.

RESULT CODES

Media Property Functions 1

This section discusses functions for setting and retrieving the property atom
container of a media handler.

GetMediaPropertyAtom 1

The GetMediaPropertyAtom function retrieves the property atom container of a
media handler.

pascal OSErr GetMediaPropertyAtom (Media theMedia,
QTAtomContainer *propertyAtom)

theMedia Contains a reference to the media handler for this operation.

propertyAtom Contains a pointer to a QT atom container. On return, the atom
container contains the property atoms for the track associated
with the media handler.

paramErr –50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-114 Movie Toolbox Reference

DISCUSSION

You can call the GetMediaPropertyAtom to retrieve the properties of the track
associated with the specified media handler. The contents of the returned QT
atom container are defined by the media handler. The caller is responsible for
disposing of the QT atom container.

RESULT CODES

SetMediaPropertyAtom 1

The SetMediaPropertyAtom function sets the property atom container of a media
handler.

pascal OSErr SetMediaPropertyAtom (Media theMedia,
QTAtomContainer propertyAtom)

theMedia Contains a reference to the media handler for this operation.

propertyAtom Specifies a QT atom container that contains the property atoms
for the track associated with the media handler.

DISCUSSION

You can call the SetMediaPropertyAtom to set properties for the track associated
with the specified media handler. The contents of the QT atom container are
defined by the media handler.

memFullErr -108 Not enough room in heap zone
invalidMedia –2008 The media is corrupted or invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-115

RESULT CODES

Text Media Handler Functions 1

QuickTime 1.6.1 added five new flags, two constants, and one new function to
the text media handler interface. The new flags and constants are defined in
“Text Sample Display Flags,” and “Text Sample Types,” respectively. The new
function is defined in this section.

TextMediaSetTextSampleData 1

The TextMediaSetTextSampleData function allows you to set values before
calling the AddTextSample or AddTESample function.

pascal ComponentResult TextMediaSetTextSampleData(
MediaHandler mh,
void *data,
OSType dataType)

mh Contains a reference to the text media handler. You obtain this
reference from the GetMediaHandler function.

data Contains a pointer to the data, defined by the dataType
parameter.

RESULT CODES

DISCUSSION

The following sample code demonstrates how to use the
TextMediaSetTextSampleData function:

memFullErr –108 Not enough room in heap zone
invalidMedia –2008 The media is corrupted or invalid

memFullErr -108 Not enough room in heap zone
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-116 Movie Toolbox Reference

short trans = 127;
Point dropOffset;
MediaHandler mh;

dropOffset.h = dropOffset.v = 4
TextMediaSetTextSampleData(mh,(void *)&dropOffset,dropShadowOffsetType);
TextMediaSetTextSampleData(mh,(void *)&trans,dropShadowTranslucencyType);

Note
Be sure to turn on the dfDropShadow display flag after you
call AddTextSample or AddTESample. Passing nil for the
textColor parameter in AddTextSample or AddTESample
defaults to black.Passing nil for the backColor parameter
in AddTextSample or AddTESample defaults to white.

RESULT CODES

Sprite Toolbox Functions 1

This section describes the functions provided by the Movie Toolbox for sprite
support.

Sprite World Functions 1

This section describes functions that you use to create and manipulate sprite
worlds.

badComponentInstance 0x80008001 Invalid component instance specified.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-117

NewSpriteWorld 1

The NewSpriteWorld function creates a new sprite world.

pascal OSErr NewSpriteWorld (SpriteWorld *newSpriteWorld,
GWorldPtr destination,
GWorldPtr spriteLayer,
RGBColor *backgroundColor,
GWorldPtr background);

newSpriteWorld
Contains a pointer to a field that is to receive the new sprite
world’s identifier. On return, this field contains the identifier for
the newly created sprite world.

destination Contains a pointer to a graphics world to be used as the
destination.

spriteLayer Contains a pointer to a graphics world to be used as the sprite
layer.

backgroundColor
Contains a pointer to an RGB color to be used as the
background color. If you pass a background graphics world to
this function by setting the background parameter, you can set
this parameter to nil.

background Contains a pointer to a graphics world to be used as the
background. If you pass a background color to this function by
setting the backgroundColor parameter, you can set this
parameter to nil.

DISCUSSION

You call this function to create a new sprite world with associated destination
and sprite layer graphics worlds, and either a background color or a
background graphics world. Once created, you can manipulate the sprite
world and add sprites to it using other Sprite Toolbox functions. The sprite
world created by this function has an identity matrix. The sprite world does
not have a clip shape.

The newSpriteWorld, destination, and spriteLayer parameters are all required.
You should specify a background color, a background graphics world, or both.

C H A P T E R 1

Movie Toolbox

1-118 Movie Toolbox Reference

You should not pass nil for both parameters. If you specify both a background
graphics world and a background color, the sprite world is filled with the
background color before the background sprites are drawn. If no background
color is specified, black is the default. If you specify a background graphics
world, it should have the same dimensions and depth as the graphics world
specified by spriteLayer. If you draw to the graphics worlds associated with a
sprite world using standard QuickDraw and QuickTime functions, your
drawing is erased by the sprite world’s background color.

Before calling NewSpriteWorld, you should call LockPixels on the pixel maps of
the sprite layer and background graphics worlds. These graphics worlds must
remain valid for the lifetime of the sprite world. The sprite world does not own
the graphics worlds that are associated with it; it is the caller’s responsibility to
dispose of the graphics worlds when they are no longer needed.

RESULT CODES

DisposeSpriteWorld 1

The DisposeSpriteWorld function disposes of a sprite world.

pascal void DisposeSpriteWorld (SpriteWorld theSpriteWorld);

theSpriteWorld
Specifies the sprite world to dispose.

DISCUSSION

You call this function to dispose of a sprite world created by the NewSpriteWorld
function. This function also disposes of all of the sprites associated with the
sprite world. This function does not dispose of the graphics worlds associated
with the sprite world. It is safe to pass nil to this function.

noErr 0 No error
paramErr -50 Invalid parameter specified
memFullErr -108 Not enough memory available
gWorldsNotSameDepthAndSizeErr -2066 Dimensions and pixel depth of

the two graphics worlds do not
match

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-119

SetSpriteWorldClip 1

The SetSpriteWorldClip function sets a sprite world’s clip shape to the
specified region.

pascal OSErr SetSpriteWorldClip (SpriteWorld theSpriteWorld,
RgnHandle clipRgn);

theSpriteWorld
Specifies the sprite world for this operation.

clipRgn Specifies the new clip shape for the sprite world.

DISCUSSION

You call this function to change the clip shape of a sprite world. You may pass a
value of nil for the clipRgn parameter to indicate that there is no longer a clip
shape for the sprite world.

The clip shape should be specified in the sprite world’s source space, the
coordinate system of the sprite layer’s graphics world before the sprite world’s
matrix is applied to it. The specified region is owned by the caller and is not
copied by this function.

RESULT CODES

SetSpriteWorldMatrix 1

The SetSpriteWorldMatrix function sets a sprite world’s matrix to the specified
matrix.

pascal OSErr SetSpriteWorldMatrix (SpriteWorld theSpriteWorld,
const MatrixRecord *matrix);

theSpriteWorld
Specifies the sprite world for this operation.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-120 Movie Toolbox Reference

matrix Contains a pointer to the new matrix for the sprite world.

DISCUSSION

You call this function to change the matrix of a sprite world. You may pass a
value of nil for the matrix parameter to set the sprite world’s matrix to an
identity matrix.

If a sprite world’s matrix is not an identity matrix, translation and scaling may
occur when transferring from the sprite layer graphics world to the destination
graphics world.

RESULT CODES

SpriteWorldIdle 1

The SpriteWorldIdle function allows a sprite world to update its invalid areas.

pascal OSErr SpriteWorldIdle (SpriteWorld theSpriteWorld,
long flagsIn,
long *flagsOut);

theSpriteWorld
Specifies the sprite world for this operation.

flagsIn Contains flags describing actions that may take place during the
idle.

flagsOut On return, contains a pointer to flags describing actions that
took place during the idle.

DISCUSSION

You call this function to allow a sprite world the opportunity to redraw its
invalid areas. This is the only function that causes drawing to occur; you
should call it as often as is necessary.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-121

The flagsIn parameter contains flags that describe allowable actions during the
idle period. For the default behavior, you should set the value of this parameter
to 0. The flagsOut parameter is optional; if you do not need the information
returned by this parameter, set the value of this parameter to nil.

RESULT CODES

InvalidateSpriteWorld 1

The InvalidateSpriteWorld function invalidates a rectangular area of a sprite
world.

pascal OSErr InvalidateSpriteWorld (SpriteWorld theSpriteWorld,
Rect *invalidArea);

theSpriteWorld
Specifies the sprite world for this operation.

invalidArea Contains a pointer to the rectangular area that should be
invalidated.

DISCUSSION

Typically, your application calls this function when the sprite world’s
destination window receives an update event. Invalidating an area of the sprite
world will cause the area to be redrawn the next time that SpriteWorldIdle is
called.

The invalid rectangle pointed to by the invalidArea parameter should be
specified in the sprite world’s source space, the coordinate system of the sprite
layer’s graphics world before the sprite world’s matrix is applied to it. To
invalidate the entire sprite world, pass nil for this parameter.

When you modify sprite properties, invalidation takes place automatically; you
do not need to call InvalidateSpriteWorld.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-122 Movie Toolbox Reference

RESULT CODES

SpriteWorldHitTest 1

The SpriteWorldHitTest function determines whether any sprites are at a
specified location in a sprite world.

pascal OSErr SpriteWorldHitTest (SpriteWorld theSpriteWorld,
long flags,
Point loc,
Sprite *spriteHit);

theSpriteWorld
Specifies the sprite world for this operation.

flags Specifies flags to control the hit testing operation. Allowable
flags are spriteHitTestBounds and spriteHitTestImage.

loc Specifies a point in the sprite world’s display space to test for
the existence of a sprite.

spriteHit Contains a pointer to a field that is to receive a sprite identifier.
On return, this field contains the identifier of the frontmost
sprite at the location specified by loc. If no sprite exists at the
location, the function sets the value of this parameter to nil.

DISCUSSION

You call this function to determine whether any sprites exist at a specified
location in a sprite world’s display coordinate system. If you are drawing the
sprite world in a window, you should call GlobalToLocal to convert the location
to your window’s local coordinate system before passing it to
SpriteWorldHitTest.

You can pass flags to this function to control the hit testing operation more
precisely. For example, you may want the hit test operation to detect a sprite
whose bounding box contains the specified location.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-123

RESULT CODES

DisposeAllSprites 1

The DisposeAllSprites function disposes all sprites associated with a sprite
world.

pascal void DisposeAllSprites (SpriteWorld theSpriteWorld);

theSpriteWorld
Specifies the sprite world for this operation.

DISCUSSION

This function calls the DisposeSprite function for each sprite associated with
the sprite world.

Sprite Functions 1

This section describes functions that you use to create and manipulate sprites.

NewSprite 1

The NewSprite function creates a new sprite in the specified sprite world.

pascal OSErr NewSprite (Sprite *newSprite,
SpriteWorld itsSpriteWorld,
ImageDescriptionHandle idh,
Ptr imageDataPtr,
MatrixRecord *matrix,
Boolean visible,
short layer);

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-124 Movie Toolbox Reference

newSprite Contains a pointer to field that is to receive the new sprite’s
identifier. On return, this field contains the identifier of the
newly created sprite.

itsSpriteWorld
Specifies the sprite world with which the new sprite should be
associated.

idh Contains a handle to an image description of the sprite’s image.

imageDataPtr Contains a pointer to the sprite’s image data.

matrix Contains a pointer to the sprite’s matrix. If you pass nil for the
matrix parameter, an identity matrix is assigned to the sprite.

visible Specifies whether the sprite is visible.

layer Specifies the sprite’s layer.

DISCUSSION

You call this function to create a new sprite associated with a sprite world.
Once you have created the sprite, you can manipulate it using the
SetSpriteProperty function.

The newSprite, itsSpriteWorld, visible, and layer parameters are required.
Sprites with lower layer values appear in front of sprites with higher layer
values. If you want to create a sprite that is drawn to the background graphics
world, you should specify the constant kBackgroundSpriteLayerNum for the
layer parameter.

You can defer assigning image data to the sprite by passing nil for both the idh
and imageDataPtr parameters. If you choose to defer assigning image data, you
must call SetSpriteProperty to assign the image description handle and image
data to the sprite before the next call to SpriteWorldIdle. The caller owns the
image description handle and the image data pointer; it is the caller’s
responsibility to dispose of them after it disposes of a sprite.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-125

RESULT CODES

DisposeSprite 1

The DisposeSprite function disposes of a sprite.

pascal void DisposeSprite (Sprite theSprite);

theSprite The sprite for this operation.

DISCUSSION

You call this function to dispose of a sprite created by the NewSprite function.
The image description handle and image data pointer associated with the
sprite are not disposed by this function.

InvalidateSprite 1

The InvalidateSprite function invalidates the portion of a sprite’s sprite world
that is occupied by the sprite.

pascal void InvalidateSprite (Sprite theSprite);

theSprite The sprite for this operation.

DISCUSSION

In most cases, you do not need to call this function. When you call the
SetSpriteProperty function to modify a sprite’s properties, SetSpriteProperty
takes care of invalidating the appropriate regions of the sprite world. However,
you might call this function if you change a sprite’s image data, but retain the
same image data pointer.

noErr 0 No error
paramErr -50 Invalid parameter specified
memFullErr -108 Not enough memory available

C H A P T E R 1

Movie Toolbox

1-126 Movie Toolbox Reference

SpriteHitTest 1

The SpriteHitTest function determines whether a location in a sprite’s display
coordinate system intersects the sprite.

pascal OSErr SpriteHitTest (Sprite theSprite,
long flags,
Point loc,
Boolean *wasHit);

theSprite Specifies the sprite for this operation.

flags Specifies flags to control the hit testing operation. Allowable
flags are spriteHitTestBounds and spriteHitTestImage.

loc Specifies a point in the sprite world’s display space to test for
the existence of a sprite.

wasHit Contains a pointer to a Boolean. On return, the value of the
Boolean is true if the sprite is at the specified location.

DISCUSSION

You call this function to determine whether a sprite exists at a specified
location in the sprite’s display coordinate system. This function is useful for hit
testing a subset of the sprites in a sprite world and for detecting multiple hits
for a single location.

You should apply the sprite’s matrix to the location before passing it to
SpriteHitTest. To convert a location to local coordinates, you should use the
GlobalToLocal function to convert the location to your window’s local
coordinate system and then apply the inverse of the sprite world’s matrix to
the location.

You can pass flags to this function to control the hit testing operation more
precisely. For example, you may want the hit test operation to detect a sprite
whose bounding box contains the specified location.

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-127

RESULT CODES

GetSpriteProperty 1

The GetSpriteProperty function retrieves the value of the specified sprite
property.

pascal OSErr GetSpriteProperty (Sprite theSprite,
long propertyType,
void *propertyValue);

theSprite Specifies the sprite for this operation.

propertyType Specifies the property whose value should be retrieved.

propertyValue
On return, contains a pointer to a variable in which the
property will be returned.

DISCUSSION

You call this function to retrieve a value of a sprite property. You set the
propertyType parameter to the property you want to retrieve. The following
table lists the sprite properties and the data types of the corresponding
property values.

noErr 0 No error
paramErr -50 Invalid parameter specified

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord

kSpritePropertyImageDescription ImageDescriptionHandle

kSpritePropertyImageDataPtr Ptr

kSpritePropertyVisible Boolean

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord

C H A P T E R 1

Movie Toolbox

1-128 Movie Toolbox Reference

In the case of the kSpritePropertyImageDescription and
kSpritePropertyImageDataPtr properties, this function does not return a copy of
the data; rather, the pointers returned are references to the sprite’s data.

RESULT CODES

SetSpriteProperty 1

The SetSpriteProperty function sets the specified property of a sprite.

pascal OSErr SetSpriteProperty (Sprite theSprite,
long propertyType,
void *propertyValue);

theSprite Specifies the sprite for this operation.

propertyType Specifies the property to be set.

propertyValue
Specifies the new value of the property.

DISCUSSION

You animate a sprite by modifying its properties. You call this function to
modify a property of a sprite. This function invalidates the sprite’s sprite world
as needed.

You set the propertyType parameter to the property you want to modify.
Depending on the property type, you set the propertyValue parameter to either
a pointer to the property value or the property value itself, cast as a void*. The

noErr 0 No error
invalidSpritePropertyErr -2065 The specified sprite property does not

exist

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-129

following table lists the sprite properties and the data types of the
corresponding property values.

RESULT CODES

QT Atom Functions 1

This section describes the functions used to create and manipulate QT atom
containers.

Creating and Modifying QT Atom Containers 1

QTNewAtomContainer 1

The QTNewAtomContainer function allows you to create a new atom container.

pascal OSErr QTNewAtomContainer (QTAtomContainer *atomData);

atomData Contains a pointer to an unallocated atom container data
structure. On return, this parameter points to an allocated atom
container.

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyImageDescription ImageDescriptionHandle

kSpritePropertyImageDataPtr Ptr

kSpritePropertyVisible Boolean

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

noErr 0 No error
memFullErr -108 Not enough memory available
invalidSpritePropertyErr -2065 Specified sprite property does not exist

C H A P T E R 1

Movie Toolbox

1-130 Movie Toolbox Reference

DISCUSSION

This function creates a new, empty atom container structure. Once you have
created an atom container, you can manipulate it using the atom container
functions.

RESULT CODES

QTInsertChild 1

The QTInsertChild function creates a new child atom for the specified parent
atom.

pascal OSErr QTInsertChild (QTAtomContainer container,
QTAtom parentAtom,
QTAtomType atomType,
QTAtomID id,
short index,
long dataSize,
void *data,
QTAtom *newAtom);

container Specifies the atom container that contains the parent atom. The
atom container must not be locked.

parentAtom Specifies the parent atom within the atom container.

atomType Specifies the type of the new atom to be inserted.

id Specifies the ID of the new atom to be inserted. This ID must be
unique among atoms of the same type for the specified parent.
If you set this parameter to 0, this function will assign a unique
ID to the atom.

noErr 0 No error
paramErr -50 Invalid parameter specified
memFullError -108 Not enough memory available

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-131

index Specifies the index of the new atom among atoms with the
same parent. To insert the first atom for the specified parent,
you should set the index parameter to 1. To insert an atom as
the last atom in the child list, you should set the index
parameter to 0.

dataSize Specifies the size of the data for the new atom. If the new atom
is to be a leaf atom or if you want to add the atom’s data later,
you should pass 0 for this parameter.

data Contains a pointer to a buffer containing the data for the new
atom. If you set the value of the dataSize parameter to 0, you
should pass nil for this parameter.

newAtom Contains a pointer to data of type QTAtom. On return, this
parameter points to the newly created atom. You can pass nil
for this parameter if you do not need a reference to the newly
created atom.

DISCUSSION

You call this function to create a new child atom. The new child atom has the
specified atom type and atom ID, and is inserted into its parent atom’s child list
at the specified index; any existing atoms at the same index or greater are
moved toward the end of the child list. Index values greater than the index of
the last atom in the child list plus 1 are invalid.

To create the new atom as a leaf atom that contains data, you should specify the
data and its size using the data and dataSize parameters.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block
atomIndexInvalidErr -2104 Specifed index is out of range
duplicateAtomTypeAndIDErr -2105 An atom with the same type and ID

already exists for the specified parent

C H A P T E R 1

Movie Toolbox

1-132 Movie Toolbox Reference

QTInsertChildren 1

The QTInsertChildren function inserts a container of atoms as children of the
specified parent atom.

pascal OSErr QTInsertChildren (QTAtomContainer container,
QTAtom parentAtom,
QTAtomContainer childrenContainer);

container Specifies the atom container that contains the parent atom. The
atom container must not be locked.

parentAtom Specifies the parent atom within the atom container.

childrenContainer
Specifies the atom container that contains the child atoms to be
inserted.

DISCUSSION

You call this function to insert a container of atoms as children of a parent atom
in another atom container. Each child atom is inserted as the last atom of its
type and is assigned a corresponding index. The ID of a child atom to be
inserted must not duplicate that of an existing child atom of the same type.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block
duplicateAtomTypeAndIDErr -2105 An atom with the same type and ID

already exists for the specified parent

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-133

QTReplaceAtom 1

The QTReplaceAtom function replaces the contents of an atom and its children
with a different atom and its children.

pascal OSErr QTReplaceAtom (QTAtomContainer targetContainer,
QTAtom targetAtom,
QTAtomContainer replacementContainer,
QTAtom replacementAtom);

targetContainer
Specifies the atom container that contains the atom to be
replaced. The atom container must not be locked.

targetAtom Specifies the atom to be replaced.

replacementContainer
Specifies the atom container that contains the replacement atom.

replacementAtom
Specifies the replacement atom.

DISCUSSION

The target atom and the replacement atom must be of the same type. The target
atom maintains its original atom ID. This function does not modify the
replacement container.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block
atomsNotOfSameTypeErr -2103 The specified atoms are not of the same

type

C H A P T E R 1

Movie Toolbox

1-134 Movie Toolbox Reference

QTSwapAtoms 1

The QTSwapAtoms function swaps the contents of two atoms in an atom container.

pascal OSErr QTSwapAtoms (QTAtomContainer container,
QTAtom atom1,
QTAtom atom2);

container Specifies the atom container for this operation.

atom1 Specifies an atom to be swapped with the atom specified by
atom2.

atom2 Specifies an atom to be swapped with the atom specified by
atom1.

DISCUSSION

You call this function to swap the contents of two atoms in an atom container.
After swapping, the ID and index of each atom remains the same. The two
atoms specified must be of the same type. Either atom may be a leaf atom or a
container atom.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTSetAtomID 1

The QTSetAtomID function changes the ID of an atom.

pascal OSErr QTSetAtomID (QTAtomContainer container,
QTAtom atom,
QTAtomID newID);

noErr 0 No error
paramErr -50 Invalid parameter specified
atomNotOfSameTypeErr -2103 The specified atoms are not of the same

type

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-135

container Specifies the atom container for this operation.

atom Specifies the atom to be modified.

newID Specifies the new ID for the atom.

DISCUSSION

You cannot change an atom’s ID to an ID already assigned to a sibling atom of
the same type. Also, you cannot change the ID of the container itself by passing
0 for the atom parameter.

RESULT CODES

QTSetAtomData 1

The QTSetAtomData function changes the data of a leaf atom.

pascal OSErr QTSetAtomData (QTAtomContainer container,
QTAtom atom,
long dataSize,
void *atomData);

container Specifies the atom container that contains the atom to be
modified.

atom Specifies the atom to be modified.

dataSize Specifies the length, in bytes, of the data pointed to by the
atomData parameter.

atomData Contains a pointer to the new data for the atom.

noErr 0 No error
duplicateAtomTypeAndIDErr -2105 An atom with the same type and ID

already exists for the specified parent
invalidAtomErr -2106 Atom specified by container and

offset does not exist, container may
be invalid

C H A P T E R 1

Movie Toolbox

1-136 Movie Toolbox Reference

DISCUSSION

You call this function to replace a leaf atom’s data with new data. Only leaf
atoms contain data; this function returns an error if you pass it to a non-leaf
atom.

The atom container specified by the container parameter should not be locked.
This function may move memory; if the pointer specified by the atomData
parameter is a dereferenced handle, you should lock the handle.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTCopyAtom 1

The QTCopyAtom function copies an atom and its children to a new atom
container.

pascal OSErr QTCopyAtom (QTAtomContainer container,
QTAtom atom,
QTAtomContainer *targetContainer);

container Specifies the atom container that contains the atom to be copied.

atom Specifies the atom to be copied.

targetContainer
Contains a pointer to an uninitialized atom container data
structure. On return, this parameter points to an atom container
that contains a copy of the atom.

DISCUSSION

To duplicate the entire container specified by the container parameter, you
should pass a value of kParentAtomIsContainer for the atom parameter. The

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block
notLeafAtomErr -2102 Atom specifed by container and offset is not a

leaf atom

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-137

caller is responsible for disposing of the new atom container by calling the
QTDisposeAtomContainer function.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTLockContainer 1

The QTLockContainer function locks an atom container in memory.

pascal OSErr QTLockContainer (QTAtomContainer container);

container Specifies the atom container to be locked.

DISCUSSION

You should call this function to lock an atom container before calling
QTGetAtomDataPtr to directly access a leaf atom’s data. When you have finished
accessing a leaf atom’s data, you should call the QTUnlockContainer function.

You may make nested pairs of calls to QTLockContainer and QTUnlockContainer;
you do not need to check the current state of the container first.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1

Movie Toolbox

1-138 Movie Toolbox Reference

RESULT CODES

QTGetAtomDataPtr 1

The QTGetAtomDataPtr function retrieves a pointer to the atom data for the
specified leaf atom.

pascal OSErr QTGetAtomDataPtr (QTAtomContainer container,
QTAtom atom,
long *dataSize,
Ptr *atomData);

container Specifies the atom container that contains the leaf atom.

atom Specifies the leaf atom whose data should be retrieved.

dataSize On return, contains a pointer to the length, in bytes, of the leaf
atom’s data.

atomData On return, contains a pointer to the leaf atom’s data.

DISCUSSION

You call this function in retrieve a pointer to a leaf atom’s data so that you can
access the data directly. To ensure that the pointer returned in the atomData
parameter will remain valid if memory is moved, you should call
QTLockContainer before you call this function. If you do call QTLockContainer,
you should call QTUnlockContainer when you have finished using the atomData
pointer; if you pass a locked atom container to a function that resizes atom
containers, the function will return an error.

noErr 0 No error
invalidAtomContainerErr -2107 Specified atom container is invalid

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-139

RESULT CODES

QTUnlockContainer 1

The QTLockContainer function unlocks an atom container in memory.

pascal OSErr QTUnlockContainer (QTAtomContainer container);

container Specifies the atom container to be unlocked.

DISCUSSION

You should call this function to unlock an atom container when you have
finished accessing a leaf atom’s data.

You may make nested pairs of calls to QTLockContainer and QTUnlockContainer;
you do not need to check the current state of the container first.

RESULT CODES

QTRemoveAtom 1

The QTRemoveAtom function removes an atom and its children from the specified
atom container.

pascal OSErr QTRemoveAtom (QTAtomContainer container,
QTAtom atom);

container Specifies the atom container for this operation. The atom
container must not be locked.

noErr 0 No error
paramErr -50 Invalid parameter specified
notLeafAtomErr -2102 Atom specifed by container and offset is not a

leaf atom

noErr 0 No error
invalidAtomContainerErr -2107 Specified atom container is invalid

C H A P T E R 1

Movie Toolbox

1-140 Movie Toolbox Reference

atom Specifies the atom to be removed from the container.

DISCUSSION

You call this function to remove a particular atom and its children from an
atom container. To remove all the atoms in an atom container, you should use
the QTRemoveChildren function.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTRemoveChildren 1

The QTRemoveChildren function removes all the children of an atom from the
specified atom container.

pascal OSErr QTRemoveChildren (QTAtomContainer container,
QTAtom atom);

container Specifies the atom container for this operation. The atom
container must not be locked.

atom Specifies the atom whose children should be removed.

DISCUSSION

To remove all the atoms in the atom container, pass a value of
kParentAtomIsContainer for the atom parameter.

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-141

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTDisposeAtomContainer 1

The QTDisposeAtomContainer function disposes of an atom container.

pascal OSErr QTDisposeAtomContainer (QTAtomContainer atomData);

atomData Specifies the atom container to be disposed of.

DISCUSSION

You can call this function to dispose of an atom container data structure that
was created by QTNewAtomContainer or QTCopyAtom.

RESULT CODES

Retrieving Atoms and Atom Data 1

QTGetNextChildType 1

The QTGetNextChildType function returns the next atom type in the child list of
the specified parent atom.

pascal QTAtomType QTGetNextChildType (QTAtomContainer container,
QTAtom parentAtom,
QTAtomType currentChildType);

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block

noErr 0 No error
invalidAtomContainerErr -2107 Specified atom container is invalid

C H A P T E R 1

Movie Toolbox

1-142 Movie Toolbox Reference

container Specifies the atom container that contains the parent atom.

parentAtom Specifies the parent atom for this operation.

currentChildType
Specifies the last atom type retrieved by this function.

function result The atom type.

DISCUSSION

You can call this function to iterate through the atom types in a parent atom’s
child list. To retrieve the first atom type, you should set the value of the
currentChildType parameter to 0. To retrieve subsequent atom types, you
should set the value of the currentChildType parameter to the atom type
retrieved by the previous call to this function.

QTCountChildrenOfType 1

The QTCountChildrenOfType function returns the number of atoms of a given
type in the child list of the specified parent atom.

pascal short QTCountChildrenOfType (QTAtomContainer container,
QTAtom parentAtom,
QTAtomType childType);

container Specifies the atom container that contains the parent atom.

parentAtom Specifies the parent atom for this operation.

childType Specifies the atom type for this operation.

function result The number of atoms of the specified type in the parent atom’s
child list.

DISCUSSION

You can call this function to determine the number of atoms of a specified type
in a parent atom’s child list. To retrieve the total number of atoms in the child
list, you should set the value of the childType parameter to 0. If the total

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-143

number of atoms in the parent atom’s child list is 0, the parent atom is a leaf
atom.

QTFindChildByIndex 1

The QTFindChildByIndex function retrieves an atom by index from the child list
of the specified parent atom.

pascal QTAtom QTFindChildByIndex (QTAtomContainer container,
QTAtom parentAtom,
QTAtomType atomType,
short index,
QTAtomID *id);

container Specifies the atom container that contains the parent atom.

parentAtom Specifies the parent atom for this operation.

atomType Specifies the type of the atom to be retrieved.

index Specifies the index of the atom to be retrieved.

id Contains a pointer to an uninitialized QTAtomID data structure.
On return, if the atom specified by index was found, the
QTAtomID data structure contains the atom’s ID.

function result The child atom, if found; otherwise, 0.

DISCUSSION

You call this function to search for and retrieve an atom by its type and index
within that type from a parent atom’s child list. If you do not want this
function to return the atom’s ID, set the value of the id parameter to nil.

C H A P T E R 1

Movie Toolbox

1-144 Movie Toolbox Reference

QTFindChildByID 1

The QTFindChildByID function retrieves an atom by ID from the child list of the
specified parent atom.

pascal QTAtom QTFindChildByID (QTAtomContainer container,
QTAtom parentAtom,
QTAtomType atomType,
QTAtomID id,
short *index);

container Specifies the atom container that contains the parent atom.

parentAtom Specifies the parent atom for this operation.

atomType Specifies the type of the atom to be retrieved.

id Specifies the ID of the atom to be retrieved.

index Contains a pointer to an uninitialized short integer. On return,
if the atom specified by id was found, the integer contains the
atom’s index.

function result The child atom, if found; otherwise, 0.

DISCUSSION

You call this function to search for and retrieve an atom by its type and ID from
a parent atom’s child list. If you do not want this function to return the atom’s
index, set the value of the index parameter to nil.

QTNextChildAnyType 1

The QTNextChildAnyType function returns the next atom in the child list of the
specified parent atom.

pascal OSErr QTNextChildAnyType (QTAtomContainer container,
QTAtom parentAtom,
QTAtom currentChild,
QTAtom *nextChild);

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-145

container Specifies the atom container that contains the parent atom.

parentAtom Specifies the parent atom for this operation.

currentChild Specifies the last atom retrieved by this function.

nextChild Contains a pointer to an uninitialized QTAtom data structure. On
return, the data structure contains the offset of the next atom in
the child list after the atom specified by currentChild, or 0 if the
atom specified by currentChild was the last atom in the list.

DISCUSSION

You can call this function to iterate through all the atoms in a parent atom’s
child list, regardless of their types and IDs. To retrieve the first atom in the
child list, set the value of the currentChild parameter to 0.

RESULT CODES

QTCopyAtomDataToHandle 1

The QTCopyAtomDataToHandle function copies the specified leaf atom’s data to a
handle.

pascal OSErr QTCopyAtomDataToHandle (QTAtomContainer container,
QTAtom atom,
Handle targetHandle);

container Specifies the atom container that contains the leaf atom.

atom Specifies the leaf atom whose data should be copied.

targetHandle Contains a handle. On return, the handle contains the atom’s
data. The handle must not be locked.

noErr 0 No error
paramErr -50 Invalid parameter specified
invalidAtomErr -2106 Atom specified by container and offset does not

exist, container may be invalid

C H A P T E R 1

Movie Toolbox

1-146 Movie Toolbox Reference

DISCUSSION

You call this function, passing an initialized handle, to retrieve a copy of a leaf
atom’s data. This function resizes the handle, if necessary.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTCopyAtomDataToPtr 1

The QTCopyAtomDataToPtr function copies the specified leaf atom’s data to a
buffer.

pascal OSErr QTCopyAtomDataToPtr (QTAtomContainer container,
QTAtom atom,
Boolean sizeOrLessOK,
long size,
void *targetPtr,
long *actualSize);

container Specifies the atom container that contains the leaf atom.

atom Specifies the leaf atom whose data should be copied.

sizeOrLessOK Specifies whether the function may copy fewer bytes than the
number of bytes specified by the size parameter.

size Specifies the length, in bytes, of the buffer pointed to by the
targetPtr parameter.

targetPtr Contains a pointer to a buffer. On return, the buffer contains the
atom data.

actualSize Contains a pointer to a long integer which, on return, contains
the number of bytes copied to the buffer.

noErr 0 No error
paramErr -50 Invalid parameter specified
memLockedErr -117 Trying to move a locked block
notLeafAtomErr -2102 Atom specifed by container and offset is not a

leaf atom

C H A P T E R 1

Movie Toolbox

Movie Toolbox Reference 1-147

DISCUSSION

You call this function, passing a data buffer, to retrieve a copy of a leaf atom’s
data. The buffer must be large enough to contain the atom’s data. The buffer
may be larger than the amount of atom data if you set the value of the
sizeOrLessOK parameter to true. You can determine the size of an atom’s data
by calling QTGetAtomDataPtr.

This function may move memory.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

QTGetAtomTypeAndID 1

The QTGetAtomTypeAndID function retrieves an atom’s type and ID.

pascal OSErr QTGetAtomTypeAndID (QTAtomContainer container,
QTAtom atom,
QTAtomType *atomType,
QTAtomID *id);

container Specifies the atom container that contains the atom.

atom Specifies the atom whose type and ID should be retrieved.

atomType Contains a pointer to an atom type. On return, this parameter
points to the type of the specified atom. You can pass nil for
this parameter if you do not need this information.

id Contains a pointer to an atom ID. On return, this parameter
points to the ID of the specified atom. You can pass nil for this
parameter if you do not need this information.

noErr 0 No error
paramErr -50 Invalid parameter specified
notLeafAtomErr -2102 Atom specifed by container and offset is not a

leaf atom

C H A P T E R 1

Movie Toolbox

1-148 Movie Toolbox Reference

DISCUSSION

You call this function to retrieve the type and ID for a particular atom.

RESULT CODES

noErr 0 No error
invalidAtomErr -2106 Atom specified by container and offset does not

exist, container may be invalid

C H A P T E R 2

Contents 2-1

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Component Manager

New Features of the Component Manager 2-3
PowerPC-Native Component Manager Support 2-3
Component Manager Reference 2-7

Dispatching to Component Routines 2-7
CallComponentFunctionWithStorageProcInfo 2-7

Finding Components 2-8
GetComponentTypeModSeed 2-8

Opening and Closing Components 2-9
OpenAComponent 2-9
OpenADefaultComponent 2-10

Accessing a Component’s Resource File 2-11
OpenAComponentResFile 2-11

C H A P T E R 2

2-2 Contents

C H A P T E R 2

New Features of the Component Manager 2-3

Component Manager 2

This chapter discusses changes to the Component Manager as documented in
Chapter 6 of Inside Macintosh: More Macintosh Toolbox.

New Features of the Component Manager 2

QuickTime 2.5 adds five new functions to the Component Manager:
GetComponentTypeModSeed, OpenAComponent, OpenADefaultComponent,
OpenAComponentResFile, and CallComponentFunctionWithStorageProcInfo.

The GetComponentTypeModSeed function is similar to the
GetComponentListModSeed function. The OpenAComponent, OpenADefaultComponent
and OpenAComponentResFile functions expand upon existing Component
Manager routines by adding an error return value. The
CallComponentFunctionWithStorageProcInfo function is used for
PowerPC-native component dispatching.

The Component Manager has been enhanced in QuickTime 2.5 to better
support PowerPC-native components. For more details, please refer to
Component Manager Reference and Native Component Manager.

PowerPC-Native Component Manager Support 2

The Component Manager has been enhanced in QuickTime 2.5 to better
support PowerPC-native components.

The component manager dispatcher for calling components is now fat,
avoiding the overhead of the mixed mode switches through the old 68K
Component Manager dispatch for native-native component calls.
DelegateComponentCall is also fat, so native-native delegations avoid the mixed
mode switch.

In addition, writing the component dispatch routine for native components has
been made significantly easier with the addition of
CallComponentFunctionWithStorageProcInfo. This call is analagous to
CallComponentFunctionWithStorage, with the addition of a parameter to pass
the proc info for the desired function. This allows the Mixed Mode manager to

C H A P T E R 2

Component Manager

2-4 PowerPC-Native Component Manager Support

correctly dispatch the call without your code having to unravel the parameters
from the ComponentParameters block yourself.

To use the new CallComponentFunctionWithStorageProcInfo call, your
component will need to link with ComponentsInterfacesLib.

An example component that uses this technique follows. The component
supports the required suite of Open, Close, CanDo, and Version calls, as well as
a Beep call (selector 0). The ExampleComponentDispatch and
ExampleFindRoutineProcPtr routines provide the dispatching using the new
CallComponentFunctionWithStorageProcInfo call.

#include <Sound.h>
#include <Components.h>

pascal ComponentResult ExampleComponentDispatch
(ComponentParameters *params, Handle storage);

static ProcPtr ExampleFindRoutineProcPtr
(short selector, ProcInfoType *procInfo);

pascal ComponentResult
ExampleCanDo(Handle storage, short selector);

pascal ComponentResult
ExampleOpen(Handle storage, ComponentInstance self);

pascal ComponentResult
ExampleClose(Handle storage,ComponentInstance self);

pascal ComponentResult
ExampleVersion(Handle storage);

pascal ComponentResult
ExampleBeep(Handle storage);

#ifdef GENERATINGPOWERPC

struct RoutineDescriptor ExampleComponentDispatchRD =
BUILD_ROUTINE_DESCRIPTOR(

(kPascalStackBased | RESULT_SIZE (kFourByteCode) |
STACK_ROUTINE_PARAMETER (1, kFourByteCode) |

C H A P T E R 2

Component Manager

PowerPC-Native Component Manager Support 2-5

STACK_ROUTINE_PARAMETER (2, kFourByteCode)),
ExampleComponentDispatch);

#endif

enum {
kExampleBeepSelect = 0

};

enum {
uppExampleBeepProcInfo = kPascalStackBased

 | RESULT_SIZE(SIZE_CODE(sizeof(ComponentResult)))
 | STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(Handle)))

};

pascal ComponentResult
ExampleComponentDispatch(ComponentParameters *params, Handle storage)
{

ProcPtr theProc;
ProcInfoType theProcInfo;
ComponentResult result = codecUnimpErr;
theProc = ExampleFindRoutineProcPtr(params->what, &theProcInfo);
if (theProc)

result = CallComponentFunctionWithStorageProcInfo(
(Handle)storage, params, theProc, theProcInfo);

return result;
}

static ProcPtr
ExampleFindRoutineProcPtr(short selector, ProcInfoType *procInfo)
{

ProcPtr aProc;
ProcInfoType pi;

#define ComponentCall(a)\
case kComponent##a##Select: \

aProc = (ProcPtr)Example##a; \
pi = uppCallComponent##a##ProcInfo; break;

#define ExampleCall(a)\
case kExample##a##Select: \

aProc = (ProcPtr)Example##a; \

C H A P T E R 2

Component Manager

2-6 PowerPC-Native Component Manager Support

pi = uppExample##a##ProcInfo; break;
switch (selector) {

ComponentCall(Version)
ComponentCall(CanDo)
ComponentCall(Close)
ComponentCall(Open)
ExampleCall(Beep)

default:
aProc = nil;
pi = 0;

}
*procInfo = pi;
return aProc;

}

pascal ComponentResult ExampleCanDo(Handle storage, short selector)
{

ProcInfoType ignoreResult;
return (ExampleFindRoutineProcPtr(selector,&ignoreResult) != 0);

}

pascal ComponentResult ExampleOpen(Handle storage,
ComponentInstance self)

{
return noErr;

}

pascal ComponentResult ExampleClose(Handle storage,
ComponentInstance self)

{
return(noErr);

}

pascal ComponentResult ExampleVersion(Handle storage)
{

return 0x00010001;
}

C H A P T E R 2

Component Manager

Component Manager Reference 2-7

pascal ComponentResult ExampleBeep(Handle storage)
{

SysBeep(2);
return noErr;

}

Component Manager Reference 2

Dispatching to Component Routines 2

CallComponentFunctionWithStorageProcInfo 2

To use the new CallComponentFunctionWithStorageProcInfo call, your
component will need to link with ComponentsInterfacesLib.

pascal long CallComponentFunctionWithStorageProcInfo(
Handle storage,
ComponentParameters *params,
ProcPtr func,
long funcProcInfo);

storage A handle to the memory associated with the current connection.
The Component Manager provides this handle to your
component along with the request.

paams The component parameters record that your component
received from the Component Manager.

func The address of the function that is to handle the request. The
Component Manager calls the routine referred to by the func
parameter as a Pascal function with the parameters that were
originally provided by the application. These parameters are
preceded by a handle to the memory associated with the
current connection. The routine referred to by the func

C H A P T E R 2

Component Manager

2-8 Component Manager Reference

parameter must return a function result of type
ComponentResult (a long integer) indicating the success or the
failure of the operation.

Note that for PowerPC code, the func parameter should still
point to the routine itself—not to a RoutineDescriptor or
Universal Procedure Pointer.

funcProcInfo The procedure information for the routine referred to by the
func parameter. See Inside Macintosh: PowerPC System Software,
pages 2-14 through 2-21 for information on procedure
information data.

Finding Components 2

GetComponentTypeModSeed 2

The GetComponentTypeModSeed function allows you to determine if the specified
type of registered component has changed. This function returns the value of
the component registration seed number for the specified component type. By
comparing this value to values previously returned by this function, you can
determine whether the component registry for the specified type has changed.

pascal long GetComponentTypeModSeed (OSType componentType);

componentType
A four-character code that identifies the type of component. All
components of a particular type support a common set of
interface routines. Your application uses this field to search for
components of a given type.

function result
Returns a long integer containing the component registration
seed number. Each time the Component Manager registers or
unregisters a component, it generates a new, unique seed
number.

C H A P T E R 2

Component Manager

Component Manager Reference 2-9

DISCUSSION

This function is similar to the GetComponentListModSeed function. Unlike
GetComponentListModSeed, the GetComponentTypeModSeed function is specific to a
single component type. This allows you to know if, for example, the
registration of image decompressor (‘imdc’) components has changed
regardless of other component changes.

Opening and Closing Components 2

OpenAComponent 2

The OpenAComponent function is similar to OpenComponent, except that its return
value is an OSErr. The ComponentInstance of the newly opened component is
passed back through the ci argument.

pascal OSErr OpenAComponent (
Component aComponent,
ComponentInstance *ci);

aComponent A component identifier that specifies the component to open.
Your application obtains this identifier from the
FindNextComponent function. If your application registers a
component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.

ci A pointer to a field to receive the ComponentInstance of the
newly-opened component.

C H A P T E R 2

Component Manager

2-10 Component Manager Reference

OpenADefaultComponent 2

The OpenADefaultComponent function is similar to OpenDefaultComponent, except
that its return value is an OSErr. The ComponentInstance of the newly opened
component is passed back through the ci argument.

pascal OSErr OpenADefaultComponent (
OSType componentType,
OSType componentSubType,
ComponentInstance *ci);

componentType
A four-character code that identifies the type of component. All
components of a particular type support a common set of
interface routines. Your application uses this field to search for
components of a given type.

componentSubType
A four-character code that identifies the subtype of the
component. Different subtypes of a component type may
support additional features or provide interfaces that extend
beyond the standard routines for a given component type. For
example, the subtype of an image compressor component
indicates the compression algorithm employed by the
compressor.

Your application can use the componentSubType field to perform
a more specific lookup operation than is possible using only the
componentType field. For example, you may want your
application to use only components of a certain component
type (‘draw’) that also have a specific subtype (‘oval’). Set this
parameter to 0 to select a component with any subtype value.

ci A pointer to a field to receive the ComponentInstance of the
newly-opened component.

C H A P T E R 2

Component Manager

Component Manager Reference 2-11

Accessing a Component’s Resource File 2

OpenAComponentResFile 2

The OpenADefaultComponent function is similar is similar to
OpenComponentResFile, except that its return value is an OSErr. The resource
reference number of the newly opened component file is passed back through
the resRef argument.

pascal OSErr OpenAComponentResFile (
Component aComponent,
short *resRef);

aComponent A component identifier that specifies the component whose
resource file you want to open. Your application can obtain this
identifier from the RegisterComponentResource or
FindNextComponent functions, or it can be a ComponentInstance
(in which case it’s the result of OpenAComponent or
OpenADefaultComponent).

resRef A pointer to a field to receive the resource reference number of
the newly opened component resource file.

C H A P T E R 2

Component Manager

2-12 Component Manager Reference

C H A P T E R 3

Contents 3-1

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Image Compression Manager

New Features of the Image Compression Manager 3-3
ColorSync Support 3-3
Asynchronous Decompression 3-3
Timecode Support 3-3
Data Source Support 3-4
Working with Alpha Channels 3-4
Working With Video Fields 3-6
Packetization Information 3-6

Using the Image Compression Manager 3-7
Using Screen Buffers and Image Buffers 3-7

Image Compression Manager Reference 3-8
Data Types 3-8

Image Compression Manager Function Control Flags 3-8
Constants 3-9
Functions 3-10

Working With Sequences 3-10
DecompressSequenceBeginS 3-10
SetSequenceProgressProc 3-11
GetCSequenceMaxCompressionSize 3-12
DecompressSequenceFrameWhen 3-13
DecompressSequenceFrameS 3-16
CDSequenceFlush 3-19
SetDSequenceTimeCode 3-20
CDSequenceEquivalentImageDescription 3-21
CDSequenceNewMemory 3-22
CDSequenceDisposeMemory 3-24
CDSequenceInvalidate 3-24

C H A P T E R 3

3-2 Contents

Working With Images 3-25
PtInDSequenceData 3-25

Working With Data Sources 3-26
CDSequenceNewDataSource 3-26
CDSequenceDisposeDataSource 3-27
CDSequenceSetSourceData 3-28
CDSequenceChangedSourceData 3-28

Working With Image Description Records 3-29
AddImageDescriptionExtension 3-29
GetNextImageDescriptionExtensionType 3-30
CountImageDescriptionExtensionType 3-30
GetImageDescriptionExtension 3-31
RemoveImageDescriptionExtension 3-32

Changing Sequence Compression Parameters 3-32
SetCSequencePreferredPacketSize 3-32

Controlling Hardware Scaling 3-33
GDHasScale 3-33
GDGetScale 3-34
GDSetScale 3-35

Working With Video Fields 3-35
ImageFieldSequenceBegin 3-36
ImageFieldSequenceExtractCombine 3-37
ImageFieldSequenceEnd 3-39

Image Transcoding Functions 3-40
ImageTranscodeSequenceBegin 3-40
ImageTranscodeFrame 3-41
ImageTranscodeDisposeFrameData 3-42
ImageTranscodeSequenceEnd 3-42

Working With Graphics Importers 3-43
GetGraphicsImporterForFile 3-43
GetGraphicsImporterForDataRef 3-44

C H A P T E R 3

New Features of the Image Compression Manager 3-3

Image Compression Manager 3

This chapter discusses new features and changes to the Image Compression
Manager as documented in Chapter 3 of Inside Macintosh: QuickTime.

New Features of the Image Compression Manager 3

ColorSync Support 3

ColorSync is a system extension that provides a platform for consistent color
reproduction between widely varying output devices. ColorSync color
matching capability was added to the Image Compression Manager picture
drawing functions in QuickTime 1.6.1. You can now accurately reproduce color
images (not movies) with the DrawPicture functions by setting the
useColorMatching flag in the flags parameter to these functions.

enum {
useColorMatching = 4

};

For more information about QuickTime picture drawing functions, see
“Working With Pictures and PICT Files,” beginning on page 3-88 of Inside
Macintosh: QuickTime.

Asynchronous Decompression 3

QuickTime 2.0 introduced the concept of scheduled asynchronous
decompression operations. Decompressor components can allow applications
to queue decompression operations and specify when those operations should
take place. The Image Compression Manager provides a new function,
DecompressSequenceFrameWhen (page 3-13), that allows applications to schedule
an asynchronous decompression operation.

Timecode Support 3

Timecode tracks were introduced in QuickTime 2.0. The Image Compression
Manager and compressor components have been enhanced to support
timecode information. The Image Compression Manager SetDSequenceTimeCode

C H A P T E R 3

Image Compression Manager

3-4 New Features of the Image Compression Manager

function (page 3-20) allows you to set the timecode value for a frame that is to
be decompressed. For more information about timecode tracks and the
timecode media handler, see Chapter 1, “Movie Toolbox.”

Data Source Support 3

QuickTime 2.1 introduced support for an arbitrary number of sources of data
for an image sequence. This functionality forms the basis for dynamically
modifying parameters to a decompressor. It also allows for codecs to act as
special effects components, providing filtering and transition type effects. A
client can attach an arbitrary number of additional inputs to the codec. It is up
to the particular codec to determine whether to use each input and how to
interpret the input. For example, an 8-bit gray image could be interpreted as a
blend mask or as a replacement for one of the RGB data planes.

To create a new data source, use the CDSequenceNewDataSource function
(page 3-25).

Working with Alpha Channels 3

QuickTime has always supported compressing and storing images with an
alpha channel. In QuickTime 2.5, the Image Compression Manager has been
updated to support using the alpha channel when displaying images. Alpha
channels are supported only for 32-bit images. The high byte of each pixel
contains the alpha channel. The alpha channel can be interpreted in one of
three ways:

■ straight alpha

■ pre-multiplied with white

■ pre-multiplied with black

QuickTime uses the alpha channel to define how an image is to be combined
with the image that is already present at the location to which it will be
drawing. This is similar to how QuickDraw’s blend mode works. To combine
an image containing an alpha channel with another image, you specify how the
alpha channel should be interpreted by specifying one of the new alpha
channel graphics modes defined by QuickTime.

Straight alpha means that the color components of each pixel should be combined
with the corresponding background pixel based on the value contained in the
alpha channel. For example, if the alpha value is 0, only the background pixel

C H A P T E R 3

Image Compression Manager

New Features of the Image Compression Manager 3-5

will appear. If the alpha value is 255, only the foreground pixel will appear. If
the alpha value is 127, then (127/255) of the foreground pixel will be blended
with (128/255) of the background pixel to create the resulting pixel, and so on.

Pre-multiplied with white means that the color components of each pixel have
already been blended with a white pixel, based on their alpha channel value.
Effectively, this means that the image has already been combined with a white
background. To combine the image with a different background color,
QuickTime must first remove the white from each pixel and then blend the
image with the actual background pixels. Images are often pre-multipled with
white as this reduces the appearance of jagged edges around objects.

Pre-multipled with black is the same as pre-multipled with white, except the
background color that the image has been blended with is black instead of
white.

Note
Although you pass these new alpha channel graphics
modes to QuickTime in the same way as you would
traditional QuickDraw transfer modes, these modes are
not supported by QuickDraw and will cause unpredictable
results if passed to QuickDraw routines. ◆

The Image Compression Manager defines the following constants for
specifying alpha channel graphics modes:

enum {
graphicsModeStraightAlpha = 256,
graphicsModePreWhiteAlpha = 257,
graphicsModePreBlackAlpha = 258
graphicsModeStraightAlphaBlend = 260

};

The graphicsModeStraightAlpha, graphicsModePreWhiteAlpha, and
graphicsModePreBlackAlpha graphics modes cause QuickTime to draw the
image interpreting the alpha channel as specified. The graphics mode
graphicsModeStraightAlphaBlend causes QuickTime to interpret the alpha
channel as a straight alpha channel, but when it draws, combines the pixels
together and applies the opColor supplied with the graphics mode to the alpha
channel. This provides an easy way to combine images using both an alpha
channel and a blend level. This can be useful when compositing 3D rendered
images over video.

C H A P T E R 3

Image Compression Manager

3-6 New Features of the Image Compression Manager

To draw a compressed image containing an alpha channel, that image must be
compressed using an image compression format that is capable of storing the
alpha channel information. The Animation, Planar RGB and None compressors
store alpha channel data in the “Millions of Colors +” (32-bit) mode.

You use the MediaSetGraphicsMode function to set a movie track to use an alpha
channel graphics mode. You use the SetDSequenceTransferMode function to set
an image sequence to use an alpha channel graphics mode.

Working With Video Fields 3

QuickTime 2.5 introduces support for working directly with fields of interlaced
video, such as those created by some motion JPEG compressors.

Because video processing applications sometimes need to perform operations
on individual fields (for example, reversing them or combining one field of a
frame with a field from another frame), QuickTime now provides a method for
accessing the individual fields without having to decompress them first.
Previously such operations required decompressing each frame, copying the
appropriate fields, and then recompressing. This was a time consuming process
that could result in a loss of image quality due to the decompression and
recompression of the video data.

Three new functions (ImageFieldSequenceBegin,
ImageFieldSequenceExtractCombine, and ImageFieldSequenceEnd) allow an
application to request that field operations be performed directly on the
compressed data. These functions accept one or two compressed images as
input and create a single compressed image on output.

The Apple Component Video and Motion JPEG compressors support image
field functions in QuickTime 2.5. See the description of the
ImageFieldSequenceBegin, ImageFieldSequenceExtractCombine, and
ImageFieldSequenceEnd functions for information on how to process image
fields in your application. See Chapter 4, “Image Compressor Components,”
for information on incorporating support for these functions in other
compressors.

Packetization Information 3

QuickTime video compressors are increasingly being used for
videoconferencing applications. Image data from a compressor is typically split
into network-packet-sized pieces, transmitted through a packet-based protocol

C H A P T E R 3

Image Compression Manager

Using the Image Compression Manager 3-7

(such as UDP or DDP), and reassembled into a frame by the receiver(s).
Typically, a lost packet causes an entire frame to be dropped; without all the
data for a given frame, the decompressor cannot decode the image. When the
loss of one packet forces others to be unusable, the loss rate is effectively
multiplied by a large factor.

Some compression methods, however, such as H.261, can divide a compressed
image into pieces which can be decoded independently. Some
videoconferencing protocols, such as the Internet’s Real Time Protocol (RTP,
RFC#1889), specify that data compressed using H.261 must be packetized into
independently decodable chunks. While RTP demands this packetization
information from the compressor, other protocols, such as QuickTime
Conferencing’s MovieTalk protocol, can optionally use this information to
effectively reduce loss rates.

QuickTime 2.5 provides four new functions to support packetization:
SetCSequencePreferredPacketSize (page 3-32), SGSetPreferredPacketSize
(page 8-5), SGGetPreferredPacketSize (page 8-6), and VDSetPreferredPacketSize
(page 9-7). In addition, the CodecCompressParams structure (page 4-14) includes a
new field, preferredPacketSizeInBytes. See Chapter 4, “Image Compressor
Components,” for information about supporting packetization in image
compressor components.

For application developers, the important function is SGSetPreferredPacketSize,
which is described in Chapter 8, “Sequence Grabber Channel Components.”
The SetCSequencePreferredPacketSize function is described later in this
chapter. For information about the VDSetPreferredPacketSize function, see
Chapter 9, “Video Digitizer Components.”

Using the Image Compression Manager 3

Using Screen Buffers and Image Buffers 3

In QuickTime 2.1, support for screen buffers was removed. All requests for
screen buffers are now converted into requests for image buffers. Applications
should no longer request screen buffers.

C H A P T E R 3

Image Compression Manager

3-8 Image Compression Manager Reference

Image Compression Manager Reference 3

Data Types 3

Image Compression Manager Function Control Flags 3

This section describes the new function control flags provided by the Image
Compression Manager.

enum {
codecFlagDontUseNewImageBuffer = (1L << 10),
codecFlagInterlaceUpdate = (1L << 11),
codecFlagCatchUpDiff = (1L << 12)

};

Flag descriptions

codecFlagDontUseNewImageBuffer
Forces an error to be returned when a new image buffer
would have to be allocated instead of allocating the new
buffer.

codecFlagInterlaceUpdate
Updates the screen interlacing even and odd scan lines to
reduce tearing artifacts (if the decompressor supports this
mode).

codecFlagCatchUpDiff
Notifies the codec that the currently displayed frame is
being displayed late in an attempt to “catch up” to the
current frame, which only happens with compression
formats that support frame differencing, You can pass this
flag to any of the DecompressSequenceFrame calls.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-9

Constants 3

This section describes the new constants provided by the Image Compression
Manager.

/* alpha channel graphics modes */
enum {

graphicsModeStraightAlpha = 256,
graphicsModePreWhiteAlpha = 257,
graphicsModePreBlackAlpha = 258,
graphicsModeStraightAlphaBlend = 260

};

/* fieldFlags for the ImageFieldSequenceExtractCombine function */
enum {

evenField1ToEvenFieldOut = 1<<0,
evenField1ToOddFieldOut = 1<<1,
oddField1ToEvenFieldOut = 1<<2,
oddField1ToOddFieldOut = 1<<3,
evenField2ToEvenFieldOut = 1<<4,
evenField2ToOddFieldOut = 1<<5,
oddField2ToEvenFieldOut = 1<<6,
oddField2ToOddFieldOut = 1<<7

};

C H A P T E R 3

Image Compression Manager

3-10 Image Compression Manager Reference

Functions 3

Working With Sequences 3

DecompressSequenceBeginS 3

Sends a sample image to a decompressor.

pascal OSErr DecompressSequenceBeginS (
ImageSequence *seqID,
ImageDescriptionHandle desc,
Ptr data,
long dataSize,
CGrafPtr port,
GDHandle gdh,
const Rect *srcRect,
MatrixRecordPtr matrix,
short mode,
RgnHandle mask,
CodecFlags flags,
CodecQ accuracy,
DecompressorComponent codec);

seqID Contains a pointer to a field to receive the unique identifier for
this sequence returned by the CompressSequenceBegin function.

desc Contains a handle to the image description structure that
describes the compressed image.

data Points to the compressed image data. This pointer must contain
a 32-bit clean address. If you use a dereferenced, locked handle,
you must call the Memory Manager’s StripAddress function
before you use that pointer with this parameter.

dataSize Specifies the size of the data buffer.

port Points to the graphics port for the destination image.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-11

gdh Contains a handle to the graphics device record for the
destination image.

srcRect Contains a pointer to a rectangle defining the portions of the
image to decompress.

matrix Points to a matrix structure that specifies how to transform the
image during decompression.

mode Specifies the transfer mode for the operation.

mask Contains a handle to the clipping region in the destination
coordinate system.

flags Contains flags providing further control information.

accuracy Specifies the accuracy desired in the decompressed image.

codec Contains the compressor identifier.

DISCUSSION

The DecompressSequenceBeginS function, introduced in QuickTime 1.6.1, allows
you to pass a compressed sample so the codec can perform preflighting before
the first DecompressSequenceFrame call.

SetSequenceProgressProc 3

Installs a progress procedure for a sequence.

pascal OSErr SetSequenceProgressProc (
ImageSequence seqID,
ICMProgressProcRecord *progressProc);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

progressProc Points to a record containing information about the
application’s progress procedure.

C H A P T E R 3

Image Compression Manager

3-12 Image Compression Manager Reference

DISCUSSION

The SetSequenceProgressProc function, introduced in QuickTime 1.6.1, allows
you to set a progress procedure on a compression or decompression sequence,
just as earlier versions of QuickTime allowed you to set a progress procedure
when compressing or decompressing a still image.

GetCSequenceMaxCompressionSize 3

The GetCSequenceMaxCompressionSize function allows your application to
determine the maximum size an image will be after compression for a given
compression sequence. You must have already creating a compression
sequence with CompressSequenceBegin.

pascal OSErr GetCSequenceMaxCompressionSize(
ImageSequence seqID,
PixMapHandle src,
long *size);

seqID Contains the unique sequence identifier that was returned by
the CompressSequenceBegin function.

src Contains a handle to the source pixel map. The compressor uses
only the image’s size and pixel depth to determine the
maximum size of the compressed image.

size Contains a pointer to a field to receive the maximum size, in
bytes, of the compressed image.

DISCUSSION

The GetCSequenceMaxCompressionSize function is similar to the
GetMaxCompressionSize function, but operates on a compression sequence
instead of requiring the application to pass the individual parameters about the
source image.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-13

DecompressSequenceFrameWhen 3

Queues a frame for decompression and specifies the time at which
decompression will begin.

pascal OSErr DecompressSequenceFrameWhen (
ImageSequence seqID,
Ptr data,
long dataSize,
CodecFlags inFlags,
CodecFlags *outFlags,
ICMCompletionProcRecordPtr asyncCompletionProc,
const ICMFrameTimeRecord *frameTime);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

data Points to the compressed image data. This pointer must contain
a 32-bit clean address. If you use a dereferenced, locked handle,
you must call the Memory Manager’s StripAddress function
before you use that pointer with this parameter.

dataSize Specifies the size of the data buffer.

inFlags Contains flags providing further control information. See Inside
Macintosh: QuickTime for information about CodecFlags fields.
The following flags are valid for this function:

codecFlagNoScreenUpdate
Controls whether the decompressor updates the
screen image. If you set this flag to 1, the
decompressor does not write the current frame
to the screen, but does write the frame to its
offscreen image buffer (if one was allocated). If
you set this flag to 0, the decompressor writes
the frame to the screen.

codecFlagDontOffscreen
Controls whether the decompressor uses the
offscreen buffer during sequence
decompression. This flag is only used with
sequences that have been temporally
compressed. If this flag is set to 1, the

C H A P T E R 3

Image Compression Manager

3-14 Image Compression Manager Reference

decompressor does not use the offscreen buffer
during decompression. Instead, the
decompressor returns an error. This allows your
application to refill the offscreen buffer. If this
flag is set to 0, the decompressor uses the
offscreen buffer if appropriate.

codecFlagOnlyScreenUpdate
Controls whether the decompressor
decompresses the current frame. If you set this
flag to 1, the decompressor writes the contents
of its offscreen image buffer to the screen, but
does decompress the current frame. If you set
this flag to 0, the decompressor decompresses
the current frame and writes it to the screen. You
can set this flag to 1 only if you have allocated
an offscreen image buffer for use by the
decompressor.

outFlags Contains status flags. The decompressor updates these flags at
the end of the decompression operation. See Inside Macintosh:
QuickTime for information about CodecFlags constants. The
following flags may be set by this function:

codecFlagUsedNewImageBuffer
Indicates to your application that the
decompressor used the offscreen image buffer
for the first time when it processed this frame. If
this flag is set to 1, the decompressor used the
image buffer for this frame and this is the first
time the decompressor used the image buffer in
this sequence.

codecFlagUsedImageBuffer
Indicates whether the decompressor used the
offscreen image buffer. If the decompressor used
the image buffer during the decompress
operation, it sets this flag to 1. Otherwise, it sets
this flag to 0.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-15

codecFlagDontUseNewImageBuffer
This input flag forces an error to be returned
when a new image buffer would have to be
allocated instead of allocating the new buffer.

codecFlagInterlaceUpdate
This input flag updates the screen interlacing
even and odd scan lines to reduce tearing
artifacts (if the decompressor supports this
mode).

codecFlagCatchUpDiff
This input flag notifies the codec that the
currently displayed frame is being displayed
late in an attempt to “catch up” to the current
frame, which only happens with compression
formats that support frame differencing.

asyncCompletionProc
Points to a completion function structure. The compressor calls
your completion function when an asynchronous
decompression operation is complete. You can cause the
decompression to be performed asynchronously by specifying a
completion function. See Inside Macintosh: QuickTime for more
information about completion functions.

If you specify asynchronous operation, you must not read the
decompressed image until the decompressor indicates that the
operation is complete by calling your completion function. Set
asyncCompletionProc to nil to specify synchronous
decompression. If you set asyncCompletionProc to –1, the
operation is performed asynchronously but the decompressor
does not call your completion function.

frameTime Points to a structure that contains the frame’s time information,
including the time at which the frame should be displayed, its
duration, and the movie’s playback rate. This parameter can be
nil, in which case the decompression operation will happen
immediately.

C H A P T E R 3

Image Compression Manager

3-16 Image Compression Manager Reference

DISCUSSION

This function, introduced with QuickTime 2.0, accepts the same parameters as
the DecompressSequenceFrame function, with the addition of the frameTime and
dataSize parameters. The frameTime parameter points to an ICMFrameTime
structure, which contains the frame’s time information. The ICMFrameTime
structure is described in Chapter 4, “Image Compressor Components.”

SPECIAL CONSIDERATIONS

If the current decompressor component does not support scheduled
asynchronous decompression, the Image Compression Manager returns an
error code of codecCantWhenErr. In this case, the application will need to reissue
the request with the frameTime parameter set to nil. If the decompressor cannot
service your request at a particular time (for example, if its queue is full), the
Image Compression Manager returns an error code of codecCantQueueErr. The
best way to determine whether a decompressor component supports this
function is to call the function and test the result code. A decompressor’s
ability to honor the request may change based on screen depth, clipping
settings, and so on.

RESULT CODES

DecompressSequenceFrameS 3

Queues a frame for decompression and specifies the size of the compressed
data. New applications should use “DecompressSequenceFrameWhen”
(page 3-13).

pascal OSErr DecompressSequenceFrameS(
ImageSequence seqID,
Ptr data,

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Could not find the specified decompressor
codecSpoolErr –8966 Error loading or unloading data
codecCantWhenErr –8974 Decompressor can’t honor this request
codecCantQueueErr –8975 Decompressor can’t queue this frame

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-17

long dataSize,
CodecFlags inFlags,
CodecFlags *outFlags,
ICMCompletionProcRecordPtr asyncCompletionProc);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

data Points to the compressed image data. This pointer must contain
a 32-bit clean address. If you use a dereferenced, locked handle,
you must call the Memory Manager’s StripAddress function
before you use that pointer with this parameter.

dataSize Specifies the size of the data buffer.

inFlags Contains flags providing further control information. See Inside
Macintosh: QuickTime for information about CodecFlags fields.
The following flags are valid for this function:

codecFlagNoScreenUpdate
Controls whether the decompressor updates the
screen image. If you set this flag to 1, the
decompressor does not write the current frame
to the screen, but does write the frame to its
offscreen image buffer (if one was allocated). If
you set this flag to 0, the decompressor writes
the frame to the screen.

codecFlagDontOffscreen
Controls whether the decompressor uses the
offscreen buffer during sequence
decompression. This flag is only used with
sequences that have been temporally
compressed. If this flag is set to 1, the
decompressor does not use the offscreen buffer
during decompression. Instead, the
decompressor returns an error. This allows your
application to refill the offscreen buffer. If this
flag is set to 0, the decompressor uses the
offscreen buffer if appropriate.

codecFlagOnlyScreenUpdate
Controls whether the decompressor
decompresses the current frame. If you set this

C H A P T E R 3

Image Compression Manager

3-18 Image Compression Manager Reference

flag to 1, the decompressor writes the contents
of its offscreen image buffer to the screen, but
does decompress the current frame. If you set
this flag to 0, the decompressor decompresses
the current frame and writes it to the screen. You
can set this flag to 1 only if you have allocated
an offscreen image buffer for use by the
decompressor.

outFlags Contains status flags. The decompressor updates these flags at
the end of the decompression operation. See Inside Macintosh:
QuickTime for information about CodecFlags constants. The
following flags may be set by this function:

codecFlagUsedNewImageBuffer
Indicates to your application that the
decompressor used the offscreen image buffer
for the first time when it processed this frame. If
this flag is set to 1, the decompressor used the
image buffer for this frame and this is the first
time the decompressor used the image buffer in
this sequence.

codecFlagUsedImageBuffer
Indicates whether the decompressor used the
offscreen image buffer. If the decompressor used
the image buffer during the decompress
operation, it sets this flag to 1. Otherwise, it sets
this flag to 0.

codecFlagDontUseNewImageBuffer
This input flag forces an error to be returned
when a new image buffer would have to be
allocated instead of allocating the new buffer.

codecFlagInterlaceUpdate
This input flag updates the screen interlacing
even and odd scan lines to reduce tearing
artifacts (if the decompressor supports this
mode).

codecFlagCatchUpDiff
This input flag notifies the codec that the
currently displayed frame is being displayed

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-19

late in an attempt to “catch up” to the current
frame, which only happens with compression
formats that support frame differencing.

asyncCompletionProc
Points to a completion function structure. The compressor calls
your completion function when an asynchronous
decompression operation is complete. You can cause the
decompression to be performed asynchronously by specifying a
completion function. See Inside Macintosh: QuickTime for more
information about completion functions.

If you specify asynchronous operation, you must not read the
decompressed image until the decompressor indicates that the
operation is complete by calling your completion function. Set
asyncCompletionProc to nil to specify synchronous
decompression. If you set asyncCompletionProc to –1, the
operation is performed asynchronously but the decompressor
does not call your completion function.

DISCUSSION

This function, introduced in QuickTime 1.6.1, accepts the same parameters as
the DecompressSequenceFrame function, with the addition of the dataSize
parameter.

RESULT CODES

CDSequenceFlush 3

Stops a decompression sequence, aborting processing of any queued frames.

pascal OSErr CDSequenceFlush(ImageSequence seqID);

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Could not find the specified decompressor
codecSpoolErr –8966 Error loading or unloading data

C H A P T E R 3

Image Compression Manager

3-20 Image Compression Manager Reference

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

DISCUSSION

This function, introduced with QuickTime 2.0, is used to tell a decompressor
component to stop processing of any queued scheduled asynchronous
decompression. This is useful when several frames have been queued for
decompression in the future and the application needs to suspend playback of
the sequence.

RESULT CODES

SetDSequenceTimeCode 3

Sets the timecode value for the frame that is about to be decompressed.

pascal OSErr SetDSequenceTimeCode (
ImageSequence seqID,
const TimeCodeDef *timeCodeFormat,
const TimeCodeTime *timeCodeTime);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

timeCodeFormat
Contains a pointer to a timecode definition structure. You
provide the appropriate timecode definition information for the
next frame to be decompressed.

timeCodeTime Contains a pointer to a timecode record structure. You provide
the appropriate time value for the next frame in the current
sequence.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-21

DISCUSSION

QuickTime’s video media handler uses this function to set the timecode
information for a movie. When a movie that contains timecode information
starts playing, the media handler calls this function as it processes the movie’s
first frame.

Note that the Image Compression Manager passes the timecode information
straight through to the image decompressor component. That is, the Image
Compression Manager does not make a copy of any of this timecode
information. As a result, you must make sure that the data referred to by the
timeCodeFormat and timeCodeTime parameters is valid until the next
decompression operation completes.

RESULT CODES

CDSequenceEquivalentImageDescription 3

Reports whether two image descriptions are the same.

pascal OSErr CDSequenceEquivalentImageDescription (
ImageSequence seqID,
ImageDescriptionHandle newDesc,
Boolean *equivalent);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

newDesc Contains a handle to the image description structure that
describes the compressed image.

equivalent Contains a pointer to a Boolean value. If the
ImageDescriptionHandle provided in the newDesc parameter is
equivalent to the image description currently in use by the
image sequence, this value is set to true. If the

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
noCodecErr –8961 Could not find the specified decompressor

C H A P T E R 3

Image Compression Manager

3-22 Image Compression Manager Reference

ImageDescriptionHandle is not equivilent, and therefore a new
image sequence must be created to display an image using the
new image description, this value is set to false.

DISCUSSION

The CDSequenceEquivalentImageDescription function allows an application to
ask whether two image descriptions are the same. If they are, the decompressor
does not have to create a new image decompression sequence to display those
images.

SPECIAL CONSIDERATIONS

The Image Compression Manager can only implement part of this function by
itself. There are some fields in the image description that it knows are
irrelevant to the decompressor. If the Image Compression Manager determines
that there are differences in fields that may be significant to the codec, it calls
the ImageCodecIsImageDescriptionEquivalent function (page 4-25) to ask the
codec.

CDSequenceNewMemory 3

Requests codec-allocated memory.

pascal OSErr CDSequenceNewMemory (
ImageSequence seqID,
Ptr *data,
Size dataSize,
long dataUse,
ICMMemoryDisposedUPP memoryGoneProc,
void *refCon);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

data Returns a pointer to the allocated memory.

dataSize Specifies the requested size of the data buffer.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-23

dataUse A code that indicates how the memory is to be used. For
example, the memory may be used to store compressed data
before it’s displayed, mask plane data, or compressed data.

If there is no benefit to storing a particular kind of data in codec
memory, the codec should deny the request for the memory
allocation. The defined values are for data use are:

0x0001 Memory will be used for holding compressed
image data.

0x0002 Memory will be used for an offscreen image
buffer.

memoryGoneProc
A pointer to a function that will be called before disposing of
the memory allocated by a codec. Your callback function must
be in the following form:

pascal void (*ICMMemoryDisposedProcPtr)
(Ptr memoryBlock, void *refcon);

refCon Contains a reference constant value to be passed to your
memoryGoneProc function.

DISCUSSION

Because many newer hardware decompresson boards contain dedicated
on-board memory, significant performance gains can be realized if this memory
is used to store data before it is decompressed.

The decompressor can, at any time, dispose of all memory it has allocated.
When memory is allocated, an ICMMemoryDisposedProc callback function must
be provided. The decompressor calls this routine before disposing of the
memory.

A callback procedure is required because memory on the hardware
decompresson board may be limited. If the decompressor cannot deallocate
memory as required, it is possible that an idle decompressor instance may be
holding a large amount of memory, denying those resources to the currently
active decompressor instance.

The decompressor memory must never be disposed at interrupt time. When
the procedure is called, the memory is still available. This allows any pending
reads into the block to be canceled before the block is disposed. The

C H A P T E R 3

Image Compression Manager

3-24 Image Compression Manager Reference

decompressor disposing the memory must ensure that it is not disposing a
block that it is currently using (that is, the memory that contains the currently
decompressing frame).

To dispose of the memory, use the CDSequenceDisposeMemory function.

CDSequenceDisposeMemory 3

Disposes of memory allocated by the codec.

pascal OSErr CDSequenceDisposeMemory (
ImageSequence seqID,
Ptr data);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

data Points to the previously allocated memory block.

DISCUSSION

You call this function to release memory allocated by the CDSequenceNewMemory
function.

SPECIAL CONSIDERATIONS

Do not call the CDSequenceDisposeMemory function at interrupt time.

CDSequenceInvalidate 3

Notifies the Image Compression Manager that the destination port for the
given image decompression sequence has been invalidated.

pascal OSErr CDSequenceInvalidate(
ImageSequence seqID,
RgnHandle invalRgn);

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-25

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

rgn A handle of the region specifiying the invalid portion of the
image.

DISCUSSION

You call this function to force the Image Compression Manager to redraw the
screen bits on the next decompression operation.

Working With Images 3

PtInDSequenceData 3

Tests to see if an image contains data at a a given point.

pascal OSErr PtInDSequenceData(
ImageSequence seqID,
void *data,
Size dataSize,
Point where,
Boolean *hit);

seqID Contains the unique sequence identifier that was returned by
the DecompressSequenceBegin function.

data Pointer to compressed data in the format specified by the desc
param.

dataSize Size of the compressed data referred to by the data param.

where A QuickDraw Point. 0,0 based at the top-left corner of the
image.

C H A P T E R 3

Image Compression Manager

3-26 Image Compression Manager Reference

hit A pointer to a field to receive the Boolean indicating whether or
not the image contained data at the specified point. The
Boolean will be set to true if the point specified by the where
parameter is contained within the compressed image data
specified by the data param.

DISCUSSION

The PtInDSequenceData function allows the application to perform hit testing on
compressed data. The hit parameter will be set to true if the compressed data
contains data at the point specified by the where parameter. The hit parameter
will be set to false if the specified point falls within a blank portion of the image.

Working With Data Sources 3

CDSequenceNewDataSource 3

Creates a new data source.

pascal OSErr CDSequenceNewDataSource (
ImageSequence seqID,
ImageSequenceDataSource *sourceID,
OSType sourceType,
long sourceInputNumber,
Handle dataDescription,
void *transferProc,
void *refCon);

seqID The unique sequence identifier that was returned by the
DecompressSequenceBegin function.

sourceID Returns the new data source identifier.

sourceType A four-character code describing how the input will be used.
This code is usually derived from the information returned by
the codec. For example, if a mask plane was passed, this field
might contain ‘mask’.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-27

sourceInputNumber
More than one instance of a given source type may exist. The
first occurrence should have a source input number of 1, the
second a source input number of 2, and so on.

dataDescription
A handle to a data structure describing the input data. For
compressed image data, this is just an ImageDescriptionHandle.

transferProc A routine that allows the application to transform the type of
the input data to the kind of data preferred by the codec. The
client of the codec passes the source data in the form most
convenient for it. If the codec needs the data in another form, it
can negotiate with the client or directly with the Image
Compression Manager to obtain the required data format.

refCon Contains a reference constant value to be passed to the transfer
procedure.

DISCUSSION

This function returns a sourceID parameter which must be passed to all other
functions that reference the source. All data sources are automatically disposed
when the sequence they are associated with is disposed.

CDSequenceDisposeDataSource 3

Disposes of a data source.

pascal OSErr CDSequenceDisposeDataSource (
ImageSequenceDataSource sourceID);

sourceID The data source identifier that was returned by the
CDSequenceNewDataSource function.

DISCUSSION

You use this function to dispose of a data source created by the
CDSequenceNewDataSource function. All data sources are automatically disposed
when the sequence they are associated with is disposed.

C H A P T E R 3

Image Compression Manager

3-28 Image Compression Manager Reference

CDSequenceSetSourceData 3

Sets data in a new frame to a specific data source.

pascal OSErr CDSequenceSetSourceData (
ImageSequenceDataSource sourceID,
void *data,
long dataSize);

sourceID Contains the source identifier of the data source.

data Points to the data. This pointer must contain a 32-bit clean
address. If you use a dereferenced, locked handle, you must call
the Memory Manager’s StripAddress function before you use
that pointer with this parameter.

dataSize Specifies the size of the data buffer.

DISCUSSION

The CDSequenceSetSourceData function is called to set data in a new frame to a
specific source. For example, as a new frame of compressed data arrives at a
source, CDSequenceSetSourceData will be called.

CDSequenceChangedSourceData 3

Notifies the compressor that the image source data has changed.

pascal OSErr CDSequenceChangedSourceData (
ImageSequenceDataSource sourceID);

sourceID Contains the source identifier of the data source.

DISCUSSION

Use the new CDSequenceSetChangedSourceData function to indicate that the
image has changed but the data pointer to that image has not changed. For
example, if the data pointer points to the base address of a PixMap. The image
in the PixMap can change, but the data pointer remains constant.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-29

Working With Image Description Records 3

AddImageDescriptionExtension 3

Adds an extension to an ImageDescriptionHandle.

pascal OSErr AddImageDescriptionExtension(
ImageDescriptionHandle desc,
Handle extension,
long idType);

desc The handle of the ImageDescription to add the extension to.

extension The handle containing the extension data.

idType A four-byte signature indentifying the type of data being added
to the ImageDescription.

DISCUSSION

This function allows the application to add custom data to an
ImageDescriptionHandle. This data could be specific to the compressor
component referenced by the image description.

SPECIAL CONSIDERATIONS

The Image Compression Manager makes a copy of the data referred to by the
extension parameter. Thus, your application should dispose its copy of the
data when it is no longer needed.

C H A P T E R 3

Image Compression Manager

3-30 Image Compression Manager Reference

GetNextImageDescriptionExtensionType 3

Adds an extension to an ImageDescriptionHandle.

pascal OSErr GetNextImageDescriptionExtensionType(
ImageDescriptionHandle desc,
long *idType);

desc The ImageDescriptionHandle.

idType A pointer to a field that, on entry, contains the starting point for
the search. On return, will contain the next extension type
found in the ImageDescriptionHandle.

DISCUSSION

This function allows the application to search for all types of extensions in an
ImageDescriptionHandle. The idType field should be set to 0 to start the search.
When no more extension types can be found, this field will be set to 0.

CountImageDescriptionExtensionType 3

Counts the number of extensions of a given type in an ImageDescriptionHandle.

pascal OSErr CountImageDescriptionExtensionType(
ImageDescriptionHandle desc,
long idType,
long *count);

desc The ImageDescriptionHandle.

idType A four-byte signature indentifying the type of extension data.

count A pointer to a field to receive the number of extensions of the
specified type.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-31

DISCUSSION

This function, when used with the “GetNextImageDescriptionExtensionType”
call, allows the application to determine the total set of extensions present in
the ImageDescriptionHandle.

GetImageDescriptionExtension 3

Returns a new handle with the data from a specified image description
extension.

pascal OSErr GetImageDescriptionExtension(
ImageDescriptionHandle desc,
Handle *extension,
long idType,
long index);

desc The ImageDescriptionHandle.

extension A pointer to a field to receive a new handle with the extension
data.

idType The type of extension to receive.

index The index (from 1 to the count as returned by
“CountImageDescriptionExtensionType”) of the extension to
receive.

DISCUSSION

This function allows the application to get a copy of a specified image
description extension.

SPECIAL CONSIDERATIONS

The Image Compression Manager allocates a new handle and passes it back in
the extension parameter. Your application should dispose of the handle when it
is no longer needed.

C H A P T E R 3

Image Compression Manager

3-32 Image Compression Manager Reference

RemoveImageDescriptionExtension 3

Removes a specified extension from an ImageDescriptionHandle.

pascal OSErr RemoveImageDescriptionExtension(
ImageDescriptionHandle desc,
long idType,
long index);

desc The ImageDescriptionHandle.

idType The type of extension to receive.

index The index (from 1 to the count as returned by
“CountImageDescriptionExtensionType”) of the extension to
receive.

DISCUSSION

This function allows the application to remove a specified extension from an
ImageDescriptionHandle. Note that any extensions that are present in the
ImageDescriptionHandle after the deleted extension will have their index
numbers renumbered.

Changing Sequence Compression Parameters 3

SetCSequencePreferredPacketSize 3

Sets the preferred packet size for a sequence.

pascal OSErr SetCSequencePreferredPacketSize (
ImageSequence seqID,
long preferredPacketSizeInBytes);

seqID The sequence identifier.

preferredPacketSizeInBytes
The preferred packet size in bytes.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-33

DISCUSSION

This function was added in QuickTime 2.5 to support video conferencing
applications.

Controlling Hardware Scaling 3

QuickTime 1.6.1 added three functions that allow applications to zoom a
monitor (GDHasScale, GDGetScale, and GDSetScale). These three functions are
considered low-level calls (comparable to SetEntries) that you should use only
when playing back QuickTime movies in a controlled environment with no
user interaction. Also, because this capability is not present on all machines,
applications should not depend on its availability.

These new functions provide a standard way for you to access the resizing
abilities of a user’s monitor for playback. Effectively, this allows you to have
full screen Cinepak playback on low-end Macintosh computers.

Hardware 200 percent resize is currently available only on the Macintosh LC II,
IIvx, IIvi, Performa 400, Performa 600, and Color Classic in 16-bit display mode
on the 12-inch (512 x 384) monitors.

GDHasScale 3

Returns the closet possible scaling that a particular screen device can be set to
in a given pixel depth.

pascal OSErr GDHasScale (
GDHandle gdh,
short depth,
Fixed *scale);

gdh Contains a handle to a screen graphics device.

depth Specifies the pixel depth of the screen device.

scale Points to a fixed point scale value. On input, this field should be
set to the desired scale value. On output, this field will contain
the closest scale available for the given depth. A scale of
0x10000 indicates normal size, 0x20000 indicates double size,
and so on.

C H A P T E R 3

Image Compression Manager

3-34 Image Compression Manager Reference

DISCUSSION

The GDHasScale function returns scaling information for a particular GDevice
for a requested depth. This function allows you to query a GDevice without
actually changing it. For example, if you specify 0x20000 but the GDevice does
not support it, GDHasScale returns with noErr and a scale of 0x10000. Because
this function checks for a supported depth, your requested depth must be
supported by the GDevice. GDHasScale references the video driver through the
graphics device structure.

RESULT CODES

GDGetScale 3

Returns the current scale of the given screen graphics device.

pascal OSErr GDGetScale (
GDHandle gdh,
Fixed *scale,
short *flags);

gdh Contains a handle to a screen graphics device.

scale Points to a fixed point field to hold the scale result.

flags Points to a short integer. It returns the status parameter flags for
the video driver. For now, 0 is always returned in this field.

CDepthErr –157 The requested depth is not supported
cDevErr –155 Not a screen device
controlErr –17 Video driver cannot respond to this call

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-35

RESULT CODES

GDSetScale 3

Sets a screen graphics device to a new scale.

pascal OSErr GDSetScale (
GDHandle gdh,
Fixed scale,
short flags);

gdh Contains a handle to a screen graphics device.

scale A fixed point scale value.

flags Points to a short integer. It returns the status parameter flags for
the video driver. For now, 0 is always returned in this field.

RESULT CODES

Working With Video Fields 3

QuickTime 2.5 introduces three functions for working with compressed fields
of video data. The ImageFieldSequenceBegin function initiates an image field
sequence operation; the ImageFieldSequenceExtractCombine function performs
the desired operations; and the ImageFieldSequenceEnd function terminates the
operation.

cDevErr –155 Not a screen device
controlErr –17 Video driver cannot respond to this call

cDevErr –155 Not a screen device
controlErr –17 Video driver cannot respond to this call

C H A P T E R 3

Image Compression Manager

3-36 Image Compression Manager Reference

ImageFieldSequenceBegin 3

Initiates an image field sequence operation and specifies the input and output
data format.

pascal OSErr ImageFieldSequenceBegin (
ImageFieldSequence *ifs,
ImageDescriptionHandle desc1,
ImageDescriptionHandle desc2,
ImageDescriptionHandle descOut);

ifs On return, contains the unique sequence identifier assigned to
the sequence.

desc1 An image description structure describing the format and
characteristics of the data to be passed to the
ImageFieldSequenceExtractCombine function through the data1
parameter.

desc2 An image description structure describing the format and
characteristics of the data to be passed to the
ImageFieldSequenceExtractCombine function through the data2
parameter. Set to nil if the requested operation uses only one
input frame.

descOut Specifies the desired format of the resulting frames. Typically
this is the same format specified by the desc1 and desc2
parameters.

DISCUSSION

You use the ImageFieldSequenceBegin function to set up an image field
sequence operation and specify the input and output data format.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-37

RESULT CODES

ImageFieldSequenceExtractCombine 3

Performs field operations on video data.

pascal OSErr ImageFieldSequenceExtractCombine (
ImageFieldSequence ifs,
long fieldFlags,
void *data1,
long dataSize1,
void *data2,
long dataSize2,
void *outputData,
long *outDataSize);

ifs The unique sequence identifier that was returned by the
ImageFieldSequenceBegin function.

fieldFlags Flags specifying the operation to be performed. A correctly
formed request will specify two input fields, mapping one to
the odd output field and the other to the even output field. The
following flags are defined:

evenField1ToEvenFieldOut
Maps the even field specified by the data1
parameter to the even output field.

evenField1ToOddFieldOut
Maps the even field specified by the data1
parameter to the odd output field.

oddField1ToEvenFieldOut
Maps the odd field specified by the data1
parameter to the even output field.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 3

Image Compression Manager

3-38 Image Compression Manager Reference

oddField1ToOddFieldOut
Maps the odd field specified by the data1
parameter to the odd output field.

evenField2ToEvenFieldOut
Maps the even field specified by the data2
parameter to the even output field.

evenField2ToOddFieldOut
Maps the even field specified by the data2
parameter to the odd output field.

oddField2ToEvenFieldOut
Maps the odd field specified by the data2
parameter to the even output field.

oddField2ToOddFieldOut
Maps the odd field specified by the data2
parameter to the odd output field.

data1 A pointer to a buffer containing the data of input field one.

dataSize1 Specifies the size of the data1 buffer.

data2 A pointer to a buffer containing the data of input field two. Set
to nil if the requested operation uses only one input frame.

dataSize2 Specifies the size of the data2 buffer. Set to 0 if the requested
operation uses only one input frame.

outputData A pointer to a buffer to receive the resulting frame. Use the
GetMaxCompressionSize function to determine the amount of
memory to allocate for this buffer.

outDataSize On output this parameter returns the actual size of the data.

DISCUSSION

This function was introduced in QuickTime 2.5 and provides a method for
working directly with fields of interlaced video. You can use the
ImageFieldSequenceExtractCombine function to change the field dominance of
an image by reversing the two fields, or to create or remove the effects of the
3:2 pulldown commonly performed when transferring film to NTSC videotape.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-39

Because this function operates directly on the compressed video data, it is
faster than working with decompressed images. It also has the added benefit of
eliminating any image quality degradation that might result from lossy codecs.

The ImageFieldSequenceExtractCombine function accepts one or two
compressed images as input and creates a single compressed image on output.
You specify the operation to be performed using the fieldFlags parameter. The
function returns the codecUnimpErr result code if there is no codec present in the
system that can perform the requested operation.

The Apple Component Video (YUV) and Motion JPEG codecs currently
support this function. See Chapter 4, “Image Compressor Components,” for
information on incorporating support for this function in your codec.

RESULT CODES

ImageFieldSequenceEnd 3

Ends an image field sequence operation.

pascal OSErr ImageFieldSequenceEnd (ImageFieldSequence ifs);

ifs The unique sequence identifier that was returned by the
ImageFieldSequenceBegin function.

DISCUSSION

You must call this function to terminate an image field sequence operation.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
codecUnimpErr –8962 Feature not implemented by this compressor

C H A P T E R 3

Image Compression Manager

3-40 Image Compression Manager Reference

RESULT CODES

Image Transcoding Functions 3

ImageTranscodeSequenceBegin 3

Initiates an image transcoder sequence operation.

pascal OSErr ImageTranscodeSequenceBegin (
ImageTranscodeSequence *its,
ImageDescriptionHandle srcDesc,
OSType destType,
ImageDescriptionHandle *dstDesc
void *data,
long dataSize);

its The image transcoder sequence identifier. If the operation fails,
the value pointed to by its is set to nil.

srcDesc The image description for the source compressed image data.

destType The desired compression format into which to transcode the
source data.

dstDesc Returns an image description for the data which will be
generated by the image transcoding sequence.

data Pointer to first frame of compressed data to transcode. Set to
nil of not available.

dataSize Size of the compressed data, in bytes. Set to zero if no data is
provided.

DISCUSSION

This function begins an image transcoder sequence operation and returns the
sequence identifier in the its parameter. The caller is responsible for disposing

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-41

of the image description that is returned in the dstDesc parameter. If no
transcoder is available to perform the requested transcoding operation, a
handlerNotFound error is returned.

ImageTranscodeFrame 3

Transcodes a frame of image data.

pascal OSErr ImageTranscodeFrame (
ImageTranscodeSequence its,
void *srcData,
long srcDataSize,
void **dstData,
long *dstDataSize);

its Specifies the image transcoder sequence to use to perform the
transcoding operation.

srcData Contains a pointer to the source data to transcode.

srcDataSize Indicates the size of the compressed source image data in bytes.

dstData Returns a pointer to the transcoded image data.

dstDataSize Returns the size of the transcoded image data.

DISCUSSION

After creating the image transcoder sequence using
ImageTranscodeSequenceBegin, you use the ImageTranscodeFrame function to
transcode a frame of image data. The caller is responsible for disposing of the
transcoded data using the ImageTranscodeDisposeFrameData function.

C H A P T E R 3

Image Compression Manager

3-42 Image Compression Manager Reference

ImageTranscodeDisposeFrameData 3

Disposes transcoded image data.

pascal OSErr ImageTranscodeDisposeFrameData(
ImageTranscodeSequence its,
void *dstData)

its Specifies the image transcoder sequence that was used to
generate the transcoded data.

dstData Contains a pointer to the transcoded image data generated by
the ImageTranscodeFrame function.

DISCUSSION

When the transcoded image data returned by ImageTranscodeFrame is no longer
needed, use the ImageTranscodeDisposeFrameData function to dispose of the
data. Only the image transcoder that generated the data can properly dispose
of it.

ImageTranscodeSequenceEnd 3

Ends an image transcoder sequence operation.

The only parameter to ImageTranscodeSequenceEnd is the identifier of the image
transcoder sequence to dispose. It is safe to pass a value of 0 to this routine.

pascal OSErr ImageTranscodeSequenceEnd (ImageTranscodeSequence its)

its The identifier of the image transcoder sequence to dispose. It is
safe to pass a value of 0 in this parameter.

DISCUSSION

You must call this function to terminate an image transcoder sequence
operation and dispose of the sequence.

C H A P T E R 3

Image Compression Manager

Image Compression Manager Reference 3-43

Working With Graphics Importers 3

GetGraphicsImporterForFile 3

Locates and opens a graphics importer component that can be used to draw the
specified file.

pascal OSErr GetGraphicsImporterForFile(
const FSSpec *theFile,
ComponentInstance *gi);

theFile Specifies the file to be drawn using a graphics importer
component.

gi A pointer to a ComponentInstance in which the best graphics
importer for working with the specified file will be returned. If
no graphics importer can be found, the ComponentInstance will
be set to nil.

DISCUSSION

GetGraphicsImporterForFile first tries to locate a graphics importer component
for the specified file based on the Macintosh file type of the file. If it is unable to
locate a graphics importer component based on the Macintosh file type, and
the file type is 'TEXT', GetGraphicsImporterForFile will try to locate a graphics
importer component for the specified file based on the file name extension of
the file.

If it is unable to locate a graphics importer for the file, the returned
ComponentInstance is set to nil. If it is able to locate a graphics importer for the
file, the returned graphics importer ComponentInstance will have already been
set up to draw the specified file in the current port.

The caller of GetGraphicsImporterForFile is responsible for closing the returned
ComponentInstance using CloseComponent.

C H A P T E R 3

Image Compression Manager

3-44 Image Compression Manager Reference

GetGraphicsImporterForDataRef 3

Locates and opens a graphics importer component that can be used to draw the
specified data reference.

pascal OSErr GetGraphicsImporterForDataRef(
Handle dataRef,
OSType dataRefType,
ComponentInstance *gi);

dataRef Specifies the data reference to be drawn using a graphics
importer component.

dataRefType The type of the data reference specified by the dataRef
parameter. For alias-based data references, the dataRef handle
contains an AliasRecord, and dataRefType is equal to rAliasType.

gi A pointer to a ComponentInstance in which the best graphics
importer for working with the specified data reference will be
returned. If no graphics importer can be found, the
ComponentInstance will be set to nil.

DISCUSSION

GetGraphicsImporterForDataRef tries to locate a graphics importer component
for the specified data reference based on the file name extension of the file. The
file name extension is retrieved from the data reference by use of the
DataHGetFileName call to the data handler associated with the data reference.

If it is unable to locate a graphics importer for the file, the returned
ComponentInstance is set to nil. If it is able to locate a graphics importer for the
data reference, the returned graphics importer ComponentInstance will have
already been set up to draw the specified data reference in the current port.

The caller of GetGraphicsImporterForDataRef is responsible for closing the
returned ComponentInstance using CloseComponent.

C H A P T E R 4

Contents 4-1

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Image Compressor Components

New Features of Image Compressor Components 4-3
Asynchronous Decompression 4-3
Hardware Cursors 4-4
Timecode Support 4-4
Working With Video Fields 4-4
Accelerated Video Support 4-5
Packetization Information 4-8

Image Compressor Components Reference 4-10
Data Types 4-10

The Frame Time Structure 4-10
The Decompression Data Source Structure 4-11
The Compressor Capability Structure 4-12
The Compression Parameters Structure 4-14
The Decompression Parameters Structure 4-15

Functions 4-19
ImageCodecExtractAndCombineFields 4-19
ImageCodecPreDecompress 4-22
ImageCodecBandDecompress 4-23
ImageCodecFlush 4-24
ImageCodecSetTimeCode 4-24
ImageCodecIsImageDescriptionEquivalent 4-25
ImageCodecNewMemory 4-26
ImageCodecNewImageBufferMemory 4-28
ImageCodecDisposeMemory 4-29
ImageCodecRequestSettings 4-30
ImageCodecGetSettings 4-31
ImageCodecSetSettings 4-31

C H A P T E R 4

4-2 Contents

ImageCodecHitTestData 4-32
ImageCodecGetMaxCompressionSizeWithSources 4-33
ImageCodecSourceChanged 4-35

Image Compression Manager Utility Functions 4-36
ICMShieldSequenceCursor 4-36
ICMDecompressComplete 4-37

C H A P T E R 4

New Features of Image Compressor Components 4-3

Image Compressor Components 4

This chapter discusses new features and changes to image compressor
components as documented in Chapter 4 of Inside Macintosh: QuickTime
Components.

New Features of Image Compressor Components 4

Asynchronous Decompression 4

In QuickTime 2.0 the Image Compression Manager was enhanced to support
scheduled asynchronous decompression operations. By calling the Image
Compression Manager function DecompressSequenceFrameWhen (page 3-13),
applications can schedule decompression requests in advance. This allows
decompressor components that support this functionality to provide reliable
playback performance under a wider range of conditions.

The Apple Cinepak, Video, Animation, Component Video, and Graphics
decompressors provided in QuickTime versions 2.0 and later support
scheduled asynchronous decompression to 8-, 16-, and 32-bit destinations (the
Cinepak decompressor also supports 4-bit grayscale destinations).
QuickTime 2.5 adds asynchronous decompression support to the JPEG and
None decompressor components on PowerPC systems (with the QuickTime
PowerPlug extension installed).

If you want to support this functionality, you must modify your decompressor
component in the following ways:

■ Report your component’s new capabilities in its compressor capability
structure by setting the codecCanAsyncWhen and codecCanAsync flags.

■ Modify your component’s ImageCodecBandDecompress function (page 4-23) to
accept scheduled asynchronous decompression requests and process them
correctly

■ Implement the new ImageCodecFlush function (page 4-24); this function
allows the Image Compression Manager to instruct you to empty your input
queue

■ Optionally, implement logic to manage the shielding of the cursor during
decompression operations

C H A P T E R 4

Image Compressor Components

4-4 New Features of Image Compressor Components

All of these changes are discussed in detail in the reference section.

Hardware Cursors 4

The Image Compression Manager supports hardware cursors introduced in
PCI-based Macintosh computers, which eliminates cursor flicker. For all
software codecs this support requires no changes.

For codecs that manage the cursor themselves, QuickTime 2.1 provides a new
flag, codecCompletionDontUnshield, for use when calling the
ICMDecompressComplete (page 4-36) function. Use this flag to prevent the Image
Compression Manager from unshielding the cursor when
ICMDecompressComplete is called.

Timecode Support 4

As discussed in Chapter 3, “Image Compression Manager,” timecode support
was added to the Image Compression Manager in QuickTime 2.0.
QuickTime 2.0 and above has continued to be enhanced to provide timecode
information to decompressor components when movies are played. This
feature is provided for hardware systems that may want to use timecode
information.

To support timecode in your image compressor component, your codec must
support the CDCodecSetTimeCode function (page 4-24), which allows the Image
Compression Manager to set the timecode value for the next frame to be
decompressed. For more information about timecode tracks and the timecode
media handler, see Chapter 1, “Movie Toolbox.”

Working With Video Fields 4

The functionality of the ImageFieldSequenceExtractCombine function described
in Chapter 3, “Image Compression Manager,” is performed by individual
image codecs. This is because the way in which fields are stored is different for
every compression format that supports text. A new codec component
function, ImageCodecExtractAndCombineFields (page 4-19), has been defined for
this purpose. Apple encourages developers of codecs to incorporate this
function, if their compressed data format is capable of separately storing both
fields of a video frame.

C H A P T E R 4

Image Compressor Components

New Features of Image Compressor Components 4-5

Accelerated Video Support 4

QuickTime 2.5 contains new support for developers of codecs to accelerate
certain image decompression operations. These features will most likely be
used by developers of video hardware boards that provide special acceleration
features, such as arbitrary scaling or color space conversion.

Prior to QuickTime 2.5, if a codec could not decompress an image directly to
the screen, the ICM would prepare an offscreen buffer for the codec, then use
the None codec to transfer the image from the offscreen buffer to the screen.
With 2.5, if a codec cannot decompress directly to the screen, it has the option
of specifying that it can decompress to one or more types of non-RGB pixel
spaces, specified as an OSType (e.g., ‘yuvs’). The ICM will then attempt to find
a decompressor component of that type (a transfer codec) that can transfer the
image to the screen. Since the ICM does not define non-RGB pixel types, the
transfer codec must support additional calls to set up the offscreen. If a transfer
codec cannot be found that supports the specified non-RGB pixel types, the
ICM will use the None codec with an RGB offscreen buffer.

The real speed benefit comes from the fact that since the transfer codec defines
the offscreen buffer, it can place the buffer in on-board memory, or even point
to an overlay plane so that the offscreen really is on screen. In this case, the
additional step of transferring the bits from offscreen memory on to the screen
is avoided.

For an image decompressor component to indicate that it can decompress to
non-RGB pixel types, it should, in the ImageCodecPreDecompress call, fill in the
wantedDestinationPixelTypes field with a handle to a zero-terminated list of
pixel types that it can decompress to. The ICM immediately makes a copy of
the handle. Cinepak, for example, returns a 12-byte handle containing yuvs,
yuvu, and $00000000. Since ImageCodecPreDecompress can be called often, it is
suggested that codecs allocate this handle when their component is opened
and simply fill in the wantedDestinationPixelTypes field with this handle
during ImageCodecPreDecompress. Components that use this method should be
sure to dispose the handle at close.

Apple’s Cinepak decompressor supports decompressing to ‘yuvs’ and ‘yuvu’
pixel types. ‘yuvs’ is a YUV format with u and v components signed (center
point at $00), while ‘yuvu’ has the u and v component centered at $80. The
YUV format used by QuickTime is documented in <<••••movie file format
docs???•••>>.

As an example, suppose XYZ Co. had a video board that had a YUV overlay
plane capable of doing arbitrary scaling. The overlay plane takes data in the

C H A P T E R 4

Image Compressor Components

4-6 New Features of Image Compressor Components

same format as Cinepak’s yuvs format. In this case, XYZ would make a
component of type ‘imdc’ and subtype ‘yuvs’.

The CDPreDecompress call would set the codecCanScale, codecHasVolatileBuffer,
and codecImageBufferIsOnScreen bits in the capabilities->flags field. The
codecImageBufferIsOnScreen bit is necessary to inform the ICM that the codec is
a direct screen transfer codec. A direct screen transfer codec is one that sets up
an offscreen buffer that is actually onscreen (such as an overlay plane). Not
setting this bit correctly can cause unpredictable results.

The real work of the codec takes place in the CDCodecNewImageBufferMemory call.
This is where the codec is instructed to prepare the non-RGB pixel buffer. The
codec must fill in the baseAddr and rowBytes fields of the dstPixMap structure in
the CodecDecompressParams. The ICM then uses passes these values to the
original codec (e.g., Cinepak) to decompress into.

The codec must also implement CDDisposeMemory to balance
CDCodecNewImageBufferMemory.

Since Cinepak then decompresses into the card’s overlay plane,
CDBandDecompress needs to do nothing aside from calling
ICMDecompressComplete.

pascal ComponentResult
CDPreDecompress(Handle storage,

CodecDecompressParams *p)
{

CodecCapabilities*capabilities = p->capabilities;

// only allow 16 bpp source
if ((**p->imageDescription).depth != 16)

return codecConditionErr;

/* we only support 16 bits per pixel dest */
if (p->dstPixMap.pixelSize != 16)

return codecConditionErr;

capabilities->wantedPixelSize = p->dstPixMap.pixelSize;

capabilities->bandInc = capabilities->bandMin =
(*p->imageDescription)->height;

C H A P T E R 4

Image Compressor Components

New Features of Image Compressor Components 4-7

capabilities->extendWidth = 0;
capabilities->extendHeight = 0;

capabilities->flags =
codecCanScale | codecImageBufferIsOnScreen |
codecHasVolatileBuffer;

return noErr;
}

pascal ComponentResult

CDBandDecompress(Handle storage,
CodecDecompressParams *p)

{
ICMDecompressComplete(p->sequenceID, noErr,

codecCompletionSource | codecCompletionDest,
&p->completionProcRecord);

return noErr;
}

pascal ComponentResult
CDCodecNewImageBufferMemory(Handle storage,

CodecDecompressParams *p, long flags,
ICMMemoryDisposedUPP memoryGoneProc,
void *refCon)

{
OSErr err = noErr;
long offsetH, offsetV;
Ptr baseAddr;
long rowBytes;

// call predecompress to check to make sure we can handle
// this destination
err = CDPreDecompress(storage, p);
if (err) goto bail;

// set video board registers with the scale
XYZVideoSetScale(p->matrix);

C H A P T E R 4

Image Compressor Components

4-8 New Features of Image Compressor Components

// calculate a base address to write to
offsetH = (p->dstRect.left - p->dstPixMap.bounds.left);
offsetV = (p->dstRect.top - p->dstPixMap.bounds.top);
XYZVideoGetBaseAddress(p->dstPixMap, offsetH, offsetV,

&baseAddr, &rowBytes);

p->dstPixMap.baseAddr = baseAddr;
p->dstPixMap.rowBytes = rowBytes;
p->capabilities->flags = codecImageBufferIsOnScreen;

bail:
return err;

}

pascal ComponentResult
CDDisposeMemory(Handle storage, Ptr data)
{

return noErr;
}

Some video hardware boards that use an overlay plane require that the image
area on screen be flooded with a particular RGB value or alpha-channel in
order to have the overlay buffer “show through” at that location. Codecs that
require this support should set the screenFloodMethod and screenFloodValue
fields of the CodecDecompressParams record during ImageCodecPreDecompress.
The ICM will then manage the flooding of the screen buffer. This method is
more reliable than having the codec attempt to flood the screen itself, and will
ensure compatibility with future versions of QuickTime.

Packetization Information 4

QuickTime 2.5 includes new functions to support packetizing compressed data
streams, primarily for video conferencing applications. These functions are
discussed in Chapter 3, “Image Compression Manager,” and other chapters of
this book. In addition, a new field (preferredPacketSizeInBytes) has been
added to the compression parameters structure (page 4-14). Codec developers
need only use this field.

Packet information is appended, word-aligned, to the end of video data. It is a
variable-length array of 4-byte integers, each representing the offset in bits of
the end of a packet, followed by another integer containing the number of

C H A P T E R 4

Image Compressor Components

New Features of Image Compressor Components 4-9

packet hints, and finally a four-byte identifier indicating the type of appended
data:

[boundary #1][boundary #2]...[boundary #N][N]['pkts']

Packets are given in bits, because some types of compressed image data (such
as H.261) are cut up on bit-boundaries rather than byte-boundaries.

// given: image data, length, and a packet number

// returns: a pointer to the start of the packet and a packet size, plus
information about leading and trailing bits

char* GetNextPacket(char* data, int len, int packet, long* packet_size,
char* leading_bits, char* trailing_bits)

{
long *lp, packets;
lp = (long*) data; // 'data' must be word-aligned
lp += len/4 - 1;

if (*lp != 'pkts')
return nil;

packets = *lp[-1]; // negative indexing is good for you
if (packet >= packets)

return nil; // out of bounds

lp -= packets; // now 0-indexing into the packet array will work

if (packet == 0)
{

*packet_size = (lp[0] + 7)/8;// count the bits
*leading_bits = 0;
*trailing_bits = lp[0] % 8;
return data; // in case of 0-length packet

}
else
{

*packet_size = (lp[pktnum] - lp[pktnum-1] + 7) / 8;
*leading_bits = lp[packet-1] % 8 ? 8 - lp[packet-1] % 8 : 0;
*trailing_bits = lp[packet] % 8;

C H A P T E R 4

Image Compressor Components

4-10 Image Compressor Components Reference

return data + lp[packet-1] / 8;
}

}

Note that this can be used for further extensions with the addition of further
append formats. The last two words will always be a number of words and an
extension identifier.

Image Compressor Components Reference 4

Data Types 4

The Frame Time Structure 4

The ICMFrameTime structure is defined as follows:

struct ICMFrameTimeRecord {
Int64Bit value; /* time to display frame */
long scale; /* time scale */
void *base; /* reference to time base */
long duration; /* display duration */
Fixed rate; /* movie's playback rate */

};

Field descriptions

value Specifies the time at which the frame is to be displayed.

scale Indicates the units for the frame’s display time.

base Refers to the time base.

duration Specifies the duration for which the frame is to be displayed.
This must be in the same units as specified by the scale field.

rate Indicates the time base’s effective rate.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-11

The Decompression Data Source Structure 4

The CDSequenceDataSource structure contains a linked list of all data sources for
a decompression sequence. Because each data source contains a link to the next
data source, a codec can access all data sources from this field. The
CDSequenceDataSource structure is defined as follows:

struct CDSequenceDataSource {
long recordSize;
void * next;
ImageSequence seqID;
ImageSequenceDataSource sourceID;
OSType sourceType;
long sourceInputNumber;
void * dataPtr;
Handle dataDescription;
long changeSeed;
ICMConvertDataFormatUPP transferProc;
void * transferRefcon;
long dataSize;

};
typedef struct CDSequenceDataSource CDSequenceDataSource;
typedef CDSequenceDataSource *CDSequenceDataSourcePtr;

Field descriptions

recordSize Specifies the size of the record.

next Contains a pointer to the next source entry. If it is nil, there are
no more entries.

seqID Specifies the image sequence that this source is associated with.

sourceID Specifies the source reference identifying this source.

sourceType A four-character code describing how the input will be used.
This value is passed to this parameter by the
CDSequenceNewDataSource function when the source is created.

sourceInputNumber
This value is passed to this parameter by the
CDSequenceNewDataSource function when the source is created.

dataPtr Contains a pointer to the actual source data.

C H A P T E R 4

Image Compressor Components

4-12 Image Compressor Components Reference

dataDescription
Contains a handle to a data structure describing the data
format. This will often be a Image Description Handle.

changeSeed Contains an integer that is incremented each time the dataPtr
field changes or that data that the dataPtr field points to
changes. By remembering the value of this field and comparing
to the value the next time the decompressor or compressor
component is called, the component can determine if new data
is present.

transferProc Reserved

transferRefcon
Reserved

datasize Specifies the size of the data pointer to the dataPtr field.

The Compressor Capability Structure 4

Three new compressor capability flags have been added to the compressor
capability structure. Your component sets these flags in the flags field of the
CodecCapabilities structure:

enum {
codecCanAsyncWhen = 1L << 16,
codecCanShieldCursor = 1L << 17,
codecCanManagePrevBuffer = 1L << 18,
codecHasVolatileBuffer = 1L << 19
codecImageBufferIsOnScreen = 1L << 21,
codecWantsDestinationPixels = 1L << 22

};

Flag descriptions

codecCanAsyncWhen
Indicates whether your decompressor component supports
scheduled asynchronous decompression. Set this flag to 1 if
your component can support the scheduling functionality of the
CDBandDecompress function. Note that you must also set the
codecCanAsync flag to 1.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-13

codecCanShieldCursor
Indicates whether your decompressor component will manage
the shielding of the cursor during decompression. If your
component can manage the cursor’s display, set this flag to 1.
Your component can use the Image Compression Manager’s
ICMShieldSequenceCursor function to shield the cursor. The
cursor is automatically unsheilded when you call
ICMDecompressComplete. This function is described later in this
chapter in “Image Compression Manager Utility Functions.”

Otherwise, set this flag to 0—the Image Compression Manager
then manages the cursor for you.

It is highly recommended that you support this capability if
your decompressor supports asynchronous operation or the
cursor may remain shielded for unacceptably long periods of
time.

codecCanManagePrevBuffer
Indicates that your compressor component is capable of
allocating and managing the prevPixMap used in temporal
compression. If this flag is set, then your compressor must
determine when to update the prevPixMap during compression
sequences. Codecs setting this flag should also set
codecCanCopyPrev.

codecHasVolatileBuffer
Some hardware decompressors don’t actually draw the
decompressed pixels into the frame buffer as requested by
QuickTime. Instead, they have a second frame buffer which
floats or overlays above the main frame buffer. The image is
decompressed into this secondary frame buffer instead. To the
user, the effect is the same because the video hardware merges
the two frame buffers together. When the window that contains
the image is moved to another location in the same screen
buffer, the Window Manager uses CopyBits to transfer the
window’s pixels from the old location to the new location.
Unfortunately, because the Window Manager is unaware of the
presence of the secondary frame buffer, it cannot move the
image it is displaying.

C H A P T E R 4

Image Compressor Components

4-14 Image Compressor Components Reference

By setting the codecHasVolatileBuffer flag to 1, the
decompressor component informs QuickTime that it uses a
secondary frame buffer. When the Window Manager moves a
window, QuickTime forces a redraw of the contents of the
window so that the secondary frame buffer can be repositioned
and/or updated as necessary.

codecImageBufferIsOnScreen
By setting the codecImageBufferIsOnScreen flag to 1, the
decompressor component informs QuickTime that it is a direct
screen transfer codec. Codecs that use the
CDCodecNewImageBufferMemory call to create an offscreen buffer
that is really onscreen would set this flag. See the section
“Accelerated Video Support” (page 4-5) for more information
on this flag.

The Compression Parameters Structure 4

QuickTime 2.1 added three new fields to the compression parameters structure
originally documented in Inside Macintosh: QuickTime Components to support
data sources. QuickTime 2.5 added one additional field.

struct CodecCompressParams
{
...

/* The following fields only exist for QuickTime 2.1 and greater */
UInt16 majorSourceChangeSeed;
UInt16 minorSourceChangeSeed;
CDSequenceDataSourcePtr sourceData;

/* The following fields only exit for QuickTime 2.5 and greater */
long preferredPacketSizeInBytes;

};

Field description

majorSourceChangeSeed
Contains an integer value that is incremented each time a
data source is added or removed. This provides a fast way
for a codec to know when it needs to redetermine which
data source inputs are available.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-15

minorSourceChangeSeed
Contains an integer value that is incremented each time a
data source is added or removed, or the data contained in
any of the data sources changes. This provides a way for a
codec to know if the data available to it has changed.

sourceData Contains a pointer to a CDSequenceDataSource structure
(page 4-11). This structure contains a linked list of all data
sources. Because each data source contains a link to the
next data source, a codec can access all data sources from
this field.

preferredPacketSizeInBytes
Specifies the preferred packet size for data.

The Decompression Parameters Structure 4

Several fields have been added to the decompression parameters structure
(CodecDecompressParams) originally documented in Inside Macintosh:
QuickTime Components. In addition, several new flags exist that could be set
in the codecConditions field. The first two fields listed below (frameTime,
reserved) replace the last field (reserved) documented in IM: QT Components.

struct CodecDecompressParams
{
...
/* The following fields only exist for QuickTime 2.0 and greater */

ICMFrameTimePtr frameTime; /* banddecompress */
long reserved[1];

SInt8 matrixFlags;
SInt8 matrixType;
Rect dstRect; /* only valid for

simple transforms */

/* The following fields only exist for QuickTime 2.1 and greater */
UInt16 majorSourceChangeSeed;
UInt16 minorSourceChangeSeed;
CDSequenceDataSourcePtr sourceData;

RgnHandle maskRegion;

C H A P T E R 4

Image Compressor Components

4-16 Image Compressor Components Reference

/* The following fields only exist for QuickTime 2.5 and greater */
OSType **wantedDestinationPixelTypes;/* Handle to

0-terminated list of OSTypes */

long screenFloodMethod;
long screenFloodValue;
short preferredOffscreenPixelSize;

};

Field descriptions

frameTime Contains a pointer to an ICMFrameTime structure
(page 4-10). This structure contains a frame’s time
information for scheduled asynchronous decompression
operations.

matrixFlags Flags specifying information about the transformation
matrix. Currently, can be 0 or one of the following:
enum {
 matrixFlagScale2x = 1L<<7,
 matrixFlagScale1x = 1L<<6,
 matrixFlagScaleHalf = 1L<<5
};

matrixType Contains the type of the transformation matrix, as returned
by GetMatrixType(). (For additional information refer to
Inside Macintosh: QuickTime, p. 2-342).

dstRect The destination rectangle. The result of the source
rectangle (srcRect) transformed by the transformation
matrix (matrix).

majorSourceChangeSeed
Contains an integer value that is incremented each time a
data source is added or removed. This provides a fast way
for a codec to know when it needs to redetermine which
data source inputs are available.

minorSourceChangeSeed
Contains an integer value that is incremented each time a
data source is added or removed, or the data contained in
any of the data sources changes. This provides a way for a
codec to know if the data available to it has changed.

sourceData Contains a pointer to a CDSequenceDataSource structure
(page 4-11). This structure contains a linked list of all data

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-17

sources. Because each data source contains a link to the
next data source, a codec can access all data sources from
this field.

maskRegion If the maskRegion field is not nil, it contains a QuickDraw
region which is equivalent to the bit map contained in the
maskBits field. For some codecs, using the QuickDraw
region may be more convenient than the mask bit map.

wantedDestinationPixelTypes
Filled in by the codec during ImageCodecPreDecompress.
Contains a handle to a zero-terminated list of non-RGB
pixels that the codec can decompress to. Leave set to nil if
the codec does not support non-RGB pixel spaces. The
ICM copies this data structure, so it is up to the codec to
dispose of it later. Since the predecompress call can be
called often, it is suggested that codecs allocate this handle
during the Open routine and dispose of it during the Close
routine.

screenFloodMethod For codecs that require key-color flooding. One of:
enum {
 kScreenFloodMethodNone = 0,
 kScreenFloodMethodKeyColor = 1,
 kScreenFloodMethodAlpha = 2
};

screenFloodValue If screenFloodMethod is kScreenFloodMethodKeyColor,
contains the index of the color that should be used to flood
the image area on screen when an refresh occurs. This is
valid for both indexed and direct screen devices (e.g., for
16 bpp devices, it should contain the 5-5-5 RGB value). If
screenFloodMethod is kScreenFloodMethodAlpha, contains
the value that the alpha-channel should be flooded with.

preferredOffscreenPixelSize
Should be filled in ImageCodecPreDecompress with the
preferred depth of an offscreen buffer should the ICM
have to create one. It is not guaranteed that an offscreen
will actually be of this depth. A codec should still be sure
to specify what depths it can decompress to by using the
capabilities field. A codec might use this field if if was
capable of decompressing to several depths, but was faster
decompressing to a particular depth.

C H A P T E R 4

Image Compressor Components

4-18 Image Compressor Components Reference

codecConditions flags

Several new flags exist that can be set in the codecConditions parameter. They
are:

enum {
codecConditionFirstScreen = 1L << 12,
codecConditionDoCursor = 1L << 13,
codecConditionCatchUpDiff = 1L << 14,
codecConditionMaskMayBeChanged = 1L << 15,
codecConditionToBuffer = 1L << 16

};

codecConditionFirstScreen
Indicates when the codec is decompressing an image to the
first of multiple screens. That is, if the decompressed
image crosses multiple screens, then the codec can look at
this flag to determine if this is the first time an image is
being decompressed for each of the screens to which it is
being decompressed.
A codec that depends on the maskBits field of
decompressParams being a valid regionHandle on
CDPreDecompress needs to know that in this case it is not
able to clip images since the region handle is only passed
for the first of the screens; clipping would be incorrect for
the subsequent screen for that image.

codecConditionDoCursor
Set to 1 if the decompressor component should shield and
unshield the cursor for the current decompression
operation. This flag will only be set if the codec has
indicated its ability to handle cursor shielding by setting
the codecCanShieldCursor flag in the capabilities field
during CDPreDecompress.

codecConditionCatchUpDiff
Indicates if the current frame is a “catch up” frame. Set this
flag to 1 if the current frame is a catch-up frame. Note that
you must also set the codecFlagCatchUpDiff flag to 1. This
may be useful to decompressors which can drop frames
when playback is falling behind.

codecConditionMaskMayBeChanged
The Image Compression Manager has always included

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-19

support for decompressors that could provide a bit mask
of pixels that were actually drawn when a particular frame
was decompressed. If a decompressor can provide a bit
mask of pixels that changed, the Image Compression
Manager transfers to the screen only the pixels that
actually changed.
QuickTime 2.1 extends this capability by adding a new
condition flag (codecConditionMaskMayBeChanged) to the
conditionFlags field of the decompression parameters
structure. The decompressor should only write back the
mask only when this flag is set. The flag is used only by
the ImageCodecBandDecompress function (page 4-23).

codecConditionToBuffer
Set to 1 if the current decompression operation is
decompressing into an offscreen buffer.

Functions 4

ImageCodecExtractAndCombineFields 4

Performs field operations on video data. It allows fields from two separate
images, compressed in the same format, to be combined in to a new
compressed frame. Typically the operation results in an image of identical
quality to the source images. Fields of a single image may also be duplicated or
reversed by this function.

pascal ComponentResult ImageCodecExtractAndCombineFields (
ComponentInstance ci,
long fieldFlags,
void *data1,
long dataSize1,
ImageDescriptionHandle desc1,
void *data2,
long dataSize2,
ImageDescriptionHandle desc2,

C H A P T E R 4

Image Compressor Components

4-20 Image Compressor Components Reference

void *outputData,
long *outDataSize,
ImageDescriptionHandle descOut);

ci Specifies the image compressor component for the request.

fieldFlags Flags specifying the operation to be performed. A correctly
formed request will specify two input fields, mapping one to
the odd output field and the other to the even output field. The
following flags are defined:

evenField1ToEvenFieldOut
Maps the even field specified by the data1
parameter to the even output field.

evenField1ToOddFieldOut
Maps the even field specified by the data1
parameter to the odd output field.

oddField1ToEvenFieldOut
Maps the odd field specified by the data1
parameter to the even output field.

oddField1ToOddFieldOut
Maps the odd field specified by the data1
parameter to the odd output field.

evenField2ToEvenFieldOut
Maps the even field specified by the data2
parameter to the even output field.

evenField2ToOddFieldOut
Maps the even field specified by the data2
parameter to the odd output field.

oddField2ToEvenFieldOut
Maps the odd field specified by the data2
parameter to the even output field.

oddField2ToOddFieldOut
Maps the odd field specified by the data2
parameter to the odd output field.

data1 A pointer to a buffer containing the compressed image data for
the first input field.

dataSize1 Specifies the size of the data1 buffer.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-21

desc1 An image description structure describing the format and
characteristics of the data in the data1 buffer.

data2 A pointer to a buffer containing the compressed image data for
the second input field. Set to nil if the requested operation uses
only one input frame.

dataSize2 Specifies the size of the data2 buffer. Set to 0 if the requested
operation uses only one input frame.

desc2 An image description structure describing the format and
characteristics of the data in the data2 buffer. Set to nil if the
requested operation uses only one input frame.

outputData A pointer to a buffer to receive the resulting frame.

outDataSize On output this parameter returns the actual size of the new
compressed image data.

descOut Specifies the desired format of the resulting frames. Typically
this is the same format specified by the desc1 and desc2
parameters.

DISCUSSION

This codec routine implements the the functionality of the
ImageFieldSequenceExtractCombine function described in Chapter 3, “Image
Compression Manager.” If your codec is capable of separately compressing
both fields of a video frame, you should incorporate support for this function.

Your codec must ensure that it understands the image formats specified by
desc1 and desc2 parameters, as these may not be the same as the codec’s native
image format. The image format specified by the descOut parameter will be the
same as the codec’s native image format.

The component selector for this function is:

kImageCodecExtractAndCombineFieldsSelect = 0x0015

C H A P T E R 4

Image Compressor Components

4-22 Image Compressor Components Reference

ImageCodecPreDecompress 4

Your component receives an ImageCodecPreDecompress call before
decompressing an image or sequence of frames.

pascal ComponentResult ImageCodecPreDecompress(
ComponentInstance ci,
CodecDecompressParams *params);

ci Specifies the image decompressor component for the request.

params Contains a pointer to a decompression parameters structure.
See “The Decompression Parameters Structure” (Inside
Macintosh: QuickTime Components, page 4-46), and “The
Decompression Parameters Structure” (page 4-15) of this
volume for a complete description.

DISCUSSION

If your decompressor component supports scheduled asynchronous
decompression operations, be sure to set the codecCanAsyncWhen flag to 1 in the
flags field of your component’s compressor capabilities structure. If you set
codecCanAsyncWhen you must also set codecCanAsync. Codecs that support
scheduled asynchronous decompression are strongly advised to also set the
codecCanShieldCursor flag.

If your decompressor component uses a secondary hardware buffer for its
images, be sure to set the codecHasVolatileBuffer flag to 1 in the flags field of
your component’s compressor capabilities structure.

If your decompressor component is used solely as a transfer codec and uses the
CDCodecNewImageBufferMemory call to create an offscreen buffer that is really
onscreen, your codec will need to set the codecImageBufferIsOnScreen flag to 1.

See the section “The Compressor Capability Structure” (page 4-12) for more
information about these flags.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-23

ImageCodecBandDecompress 4

Your component receives an ImageCodecBandDecompress call to decompress a
frame.

pascal ComponentResult ImageCodecBandDecompress(
ComponentInstance ci,
CodecDecompressParams *params);

ci Specifies the image decompressor component for the request.

params Contains a pointer to a decompression parameters structure.
See “The Decompression Parameters Structure” (Inside
Macintosh: QuickTime Components, page 4-46), and “The
Decompression Parameters Structure” (page 4-15) of this
volume for a complete description.

DISCUSSION

For scheduled asynchronous decompression operations, the Image
Compression Manager supplies a reference to an ICMFrameTime structure in this
function’s decompression parameters structure parameter. The ICMFrameTime
structure (page 4-10) contains time information governing the scheduled
decompression operation, including the time at which the frame must be
displayed. For synchronous or immediate asynchronous decompress
operations, the frame time is set to nil.

When your component has finished the decompression operation, it must call
the completion function. In the past, for asynchronous operations, your
component called that function directly. For scheduled asynchronous
decompression operations, your component should call the Image
Compression Manager’s ICMDecompressComplete function(page 4-36).

If your component set the codecCanAsyncWhen flag in pre-decompress but cannot
support scheduled asynchronous decompression for a given frame, it must
return an error code of codecCantWhenErr. If your component’s queue is full, it
should return an error code of codecCantQueueErr.

C H A P T E R 4

Image Compressor Components

4-24 Image Compressor Components Reference

ImageCodecFlush 4

Empties a image decompressor component’s input queue of pending
shceduled frames.

pascal ComponentResult ImageCodecFlush(
ComponentInstance ci);

ci Specifies the image decompressor component for the request.

DISCUSSION

Your component receives the ImageCodecFlush function whenever the Image
Compression Manager needs to cancel the display of all scheduled frames.

Your decompressor should empty its queue of scheduled asynchronous
decompression requests. For each request, your component must call the
ICMDecompressComplete function. Be sure to set the err parameter to –1,
indicating that the request was canceled. Also, you must set both the
codecCompletionSource and codecCompletionDest flags to 1. Only decompressor
components that support scheduled asynchronous decompression will recieve
this call.

SPECIAL CONSIDERATIONS

Your component’s ImageCodecFlush function may be called at interrupt time.

ImageCodecSetTimeCode 4

Sets the timecodefor the next frame that is to be decompressed.

pascal OSErr ImageCodecSetTimeCode (
ComponentInstance ci,
const TimeCodeDef *timeCodeFormat,
const TimeCodeTime *timeCodeTime);

ci Specifies the image decompressor component for the request.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-25

timeCodeFormat
Contains a pointer to a timecode definition structure. This
structure contains the timecode definition information for the
next frame to be decompressed.

timeCodeTime Contains a pointer to a timecode record structure. This structure
contains the time value for the next frame in the current
sequence.

DISCUSSION

Your component receives CDCodecSetTimeCode function whenever an
application calls the Image Compression Manager’s SetDSequenceTimeCode
function. That function allows an application to set the timecode for a frame
that is to be decompressed.

The timecode information you receive applies to the next frame to be
decompressed and is provided to the decompressor in the CDBandDecompress
function.

ImageCodecIsImageDescriptionEquivalent 4

Compares image descriptions.

pascal ComponentResult ImageCodecIsImageDescriptionEquivalent (
ComponentInstance ci,
ImageDescriptionHandle newDesc,
Boolean *equivalent);

ci Specifies the image compressor component for the request.

newDesc Contains a handle to the image description structure that
describes the compressed image.

equivalent Contains a pointer to a Boolean value. If the
ImageDescriptionHandle provided in the newDesc parameter is
equivalent to the image description currently in use by the
image sequence, this value is set to true. If the

C H A P T E R 4

Image Compressor Components

4-26 Image Compressor Components Reference

ImageDescriptionHandle is not equivilent, and therefore a new
image sequence must be created to display an image using the
new image description, this value is set to false.

DISCUSSION

Your component receives the ImageCodecIsImageDescriptionEquivalent request
whenever an application calls the Image Compression Manager’s
CDSequenceEquivalentImageDescription function (page 3-21). Implementing this
function can significantly improve playback of edited video sequences using
your codec. For example, if two sequences are compressed at different quality
levels and are edited together they will have different image descriptions
because their quality values will be different. This will force QuickTime to use
two separate decompressor instances to display the images. By implementing
this function your decompressor can tell QuickTime that differences in quality
levels don’t require separate decompressors. This saves memory and time thus
improves performance.

SPECIAL CONSIDERATIONS

The current image description is not passed in this function because the Image
Compression Manager assumes the codec has already made copies of all
relevant data fields from the current image description during the
ImageCodecPreDecompress call.

ImageCodecNewMemory 4

Requests codec-allocated memory. Some hardware codecs may have on-board
memory which can be used to store compressed and/or decompressed data.
ImageCodecNewMemory makes this memory available for use by clients of the
codec. Some software codecs may be able to optimize thier performance by
having more control over memory allocation. ImageCodecNewMemory makes this
control available.

pascal ComponentResult ImageCodecNewMemory (
ComponentInstance ci,
Ptr *data,

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-27

Size dataSize,
long dataUse,
ICMMemoryDisposedUPP memoryGoneProc,
void *refCon);

ci Specifies the image decompressor component for the request.

data Returns a pointer to the allocated memory.

dataSize Specifies the desired size of the data buffer.

dataUse A code that indicates how the memory is to be used. For
example, the memory may be used to store compressed data
before it’s displayed, mask plane data, or decompressed data.

If there is no benefit to storing a particular kind of data in codec
memory, the codec should refuse the request for the memory
allocation. The defined values are for data use are:

0x00000001 Memory will be used for holding compressed
image data.

0x00000002 Memory will be used for an offscreen image
buffer.

memoryGoneProc
A pointer to a function that will be called before disposing of
the memory allocated by a codec. Your callback function must
be in the following form:

pascal void (*ICMMemoryDisposedProcPtr)
(Ptr memoryBlock, void *refcon);

This function must be called if the memory block is to be
disposed of by the codec instead of by ImageCodeDisposeMemory.
For example, this would occur if the codec is closed and still has
memory allocation outstanding or if the memory is required to
complete another operation. The memoryGoneProc must not be
called at interrupt time.

refCon Contains a reference constant value that your codec must pass
to the memoryGoneProc function.

C H A P T E R 4

Image Compressor Components

4-28 Image Compressor Components Reference

DISCUSSION

Your component receives the ImageCodecNewMemory request whenever an
application calls the Image Compression Manager’s CDSequenceNewMemory
function (page 3-22).

SPECIAL CONSIDERATIONS

The Image Compression Manager does not currently track memory allocations.
When a compressor or decompressor component instance is closed, it must
ensure that all blocks allocated by that instance are disposed (and call the
ICMMemoryDisposeUPP). If your codec does not currently have free memory for
compression frame data, but will soon , you can return
codecMemoryFullPleaseWait to indicate this fact.

ImageCodecNewImageBufferMemory 4

Requests the codec to allocate memory for an offscreen buffer of non-RGB
pixels. This call is used to support a codec decompressing into a non-RGB
buffer. The transfer codec is responsible for defining the offscreen and
transferring the image from the offscreen to the destination.

pascal ComponentResult ImageCodecNewImageBufferMemory(
ComponentInstance ci,
CodecDecompressParams *params,
long flags,
ICMMemoryDisposedUPP memoryGoneProc,
void *refCon)

ci Specifies the image decompressor component for the request.

params Contains a pointer to a decompression parameters structure.
See “The Decompression Parameters Structure” (Inside
Macintosh: QuickTime Components, page 4-46), and “The
Decompression Parameters Structure” (page 4-15) of this
volume for a complete description. Your codec must fill in the
dstPixMap.baseAddr and the dstPixMap.rowBytes fields in this
structure.

flags Currently, this parameter is always set to 0.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-29

memoryGoneProc
A pointer to a function that will be called before disposing of
the memory allocated by a codec. Your callback function must
be in the following form:

pascal void (*ICMMemoryDisposedProcPtr)
(Ptr memoryBlock, void *refcon);

This function must be called if the memory block is to be
disposed of by the codec instead of by ImageCodeDisposeMemory.
For example, this would occur if the codec is closed and still has
memory allocation outstanding or if the memory is required to
complete another operation. The memoryGoneProc must not be
called at interrupt time.

refCon Contains a reference constant value that your codec must pass
to the memoryGoneProc function.

DISCUSSION

Your component receives the ImageCodecNewImageBufferMemory request
whenever another codec has requested a non-RGB offscreen buffer of the with
a type of your component’s subtype. See “Accelerated Video Support”
(page 4-5) for more information.

SPECIAL CONSIDERATIONS

The Image Compression Manager does not currently track memory allocations.
When a compressor or decompressor component instance is closed, it must
ensure that all blocks allocated by that instance are disposed (and call the
ICMMemoryDisposeUPP).

ImageCodecDisposeMemory 4

Disposes codec-allocated memory.

pascal ComponentResult ImageCodecDisposeMemory (
ComponentInstance ci,
Ptr data);

C H A P T E R 4

Image Compressor Components

4-30 Image Compressor Components Reference

ci Specifies the image compressor component for the request

data Points to the previously allocated memory block.

DISCUSSION

Your component receives the ImageCodecDisposeMemory request whenever an
application calls the Image Compression Manager’s CDSequenceDisposeMemory
function (page 3-24).

SPECIAL CONSIDERATIONS

When a codec instance is closed, it must ensure that all blocks allocated by that
instance are disposed (and call the ICMMemoryDisposeUPP).

ImageCodecRequestSettings 4

Displays a dialog containing codec-specific compression settings.

pascal ComponentResult ImageCodecRequestSettings (
ComponentInstance ci,
Handle settings,
Rect *rp,
ModalFilterUPP filterProc);

ci Specifies the image compressor component for the request.

settings A handle of data specific to the codec. If the handle is empty,
the codec should use its default settings.

rp A pointer to a rectangle giving the coordinates of the Standard
Compression dialog in global screen coordinates. The codec can
use this to position its dialog box in the same area of the screen.

filterProc A pointer to a modal dialog filter procedure that the codec must
either pass to the ModalDialog function or call at the beginning
of the codec dialog filter. This procedure gives the calling
application and Standard Compression dialog a chance to
process update events.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-31

DISCUSSION

The ImageCodecRequestSettings function allows the display of a dialog box of
additional compression settings specific to the codec. These settings are stored
in a settings handle. The codec can store any data in any format it wants in the
settings handle and resize it accordingly. It should store some type of tag or
version information that it can use to verify that the data belongs to the codec.
The codec should not dispose of the handle.

ImageCodecGetSettings 4

Returns the settings chosen by the user.

pascal ComponentResult ImageCodecGetSettings (
ComponentInstance ci,
Handle settings);

ci Specifies the image compressor component for the request.

settings A handle that the codec should resize and fill in with the
current internal settings. If there are no current internal settings,
resize it to 0. Don’t dispose of this handle.

DISCUSSION

The ImageCodecGetSettings function allows a codec to return it’s current
private settings. From this function, the codec should return its current internal
settings. If there are no current settings or the settings are the same as the
defaults, the codec can set the handle to nil.

ImageCodecSetSettings 4

Sets the settings of the optional dialog box.

pascal ComponentResult ImageCodecSetSettings (
ComponentInstance ci,
Handle settings);

C H A P T E R 4

Image Compressor Components

4-32 Image Compressor Components Reference

ci Specifies the image compressor component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

settings A handle to internal settings originally returned by either
ImageCodecRequestSettings or ImageCodecGetSettings. The
codec should set its internal settings to match those of the
settings handle. Because the codec does not own the handle, it
should not dispose of it and should copy only its contents, not
the handle itself. If the settings handle passed is empty, the
codec should sets its internal settings to a default state.

DISCUSSION

The ImageCodecSetSettings function allows a codec to return it’s private
settings. Set the codec’s internal settings to the state specified in the settings
handle. The codec should always check the validity of the contents of the
handle so that invalid settings are not used.

ImageCodecHitTestData 4

This routine is called when the application calls PtInDSequenceData. It returns a
Boolean indicating whether or not the specified point is contained within the
specified image data.

pascal ComponentResult ImageCodecHitTestData(
ComponentInstance ci,
ImageDescriptionHandle desc,
void *data,
Size dataSize,
Point where,
Boolean *hit)

ci Specifies the image decompressor component for the request.

desc Contains an ImageDescriptionHandle for the image data
pointed to by the data param.

data Pointer to compressed data in the format specified by the desc
param.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-33

dataSize Size of the compressed data referred to by the data param.

where A QuickDraw Point (0,0) based at the top-left corner of the
image.

hit A pointer to a Boolean. The Boolean should be set to true if the
point specified by the where parameter is contained within the
compressed image data specified by the data param.

DISCUSSION

The ImageCodecHitTestData function allows the calling application to perform
hit testing on compressed data. The codec should set the hit parameter to true
if the compressed data contains data at the point specified by the where
parameter. The hit parameter should be set to false if the specified point falls
within a blank portion of the image.

ImageCodecGetMaxCompressionSizeWithSources 4

Your codec receives the request when an application calls the Image
Compression Manager’s GetCSequenceMaxCompressionSize function. The caller
uses this function to determine the maximum size the data will be compressed
to for a given image and set of data sources.

pascal ComponentResult ImageCodecGetMaxCompressionSizeWithSources(
ComponentInstance ci,
PixMapHandle src,
const Rect *srcRect,
short depth,
CodecQ quality,
CDSequenceDataSourcePtr sourceData,
long *size)

ci Specifies the image decompressor component for the request.

src Contains a handle to the source image. The source image is
stored in a pixel map structure. Applications use the size
information you return to allocate buffers for more than one
image. Consequently, your compressor should not consider the

C H A P T E R 4

Image Compressor Components

4-34 Image Compressor Components Reference

contents of the image when determining the maximum
compressed size. Rather, you should consider only the quality
level, pixel depth, and image size.

This parameter may be set to nil. In this case the application hs
not supplied a source image – your component should use the
other parameters to determine the characteristics of the image
to be compressed.

srcRect Contains a pointer to a rectangle defining the portion of the
source image to compress.

depth Specifies the depth at which the image is to be compressed.
Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits per
pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit,
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images.

quality Specifies the desired compression image quality. See the chapter
“Image Compression Manager” in Inside Macintosh: QuickTime
for valid values.

sourceData Contains a pointer to a CDSequenceDataSource structure
(page 4-11). This structure contains a linked list of all data
sources. Because each data source contains a link to the next
data source, a codec can access all data sources from this field

size Contains a pointer to a field to receive the maximum size, in
bytes, of the compressed image.

DISCUSSION

The ImageCodecGetMaxCompressionSizeWithSources function is similar in
purpose to the ImageCodecGetMaxCompressionSize function documented in Inside
Macintosh: QuickTimeComponents (page 4-55). This function, however, also
considers data sources that the codec may compress with the image.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-35

ImageCodecSourceChanged 4

Your codec receives this notification that one of the data sources has changed
when an application calls the Image Compression Manager’s
CDSequenceSetSourceData or CDSequenceChangedSourceData functions.

pascal ComponentResult ImageCodecSourceChanged(
ComponentInstance ci,
UInt32 majorSourceChangeSeed,
UInt32 minorSourceChangeSeed,
CDSequenceDataSourcePtr sourceData)

ci Specifies the image decompressor component for the request.

majorSourceChangeSeed
Contains an integer value that is incremented each time a data
source is added or removed. This provides an easy way for a
codec to know when it needs to redetermine which data source
inputs are available.

minorSourceChangeSeed
Contains an integer value that is incremented each time a data
source is added or removed, or the data contained in any of the
data sources changes. This provides a way for a codec to know
if the data available to it has changed.

sourceData Contains a pointer to a CDSequenceDataSource structure
(page 4-11). This structure contains a linked list of all data
sources. Because each data source contains a link to the next
data source, a codec can access all data sources from this field.

DISCUSSION

This routine is provided to notify the codec component that one of the data
sources has changed.

C H A P T E R 4

Image Compressor Components

4-36 Image Compressor Components Reference

Image Compression Manager Utility Functions 4

ICMShieldSequenceCursor 4

Hides the cursor during decompression operations.

pascal OSErr ICMShieldSequenceCursor (ImageSequence seqID);

seqID Identifies the sequence for which to shield the cursor.

DISCUSSION

Your component may call the ICMShieldSequenceCursor function to manage the
display of the cursor during decompression operations.

For correct image display behavior, the cursor must be shielded (hidden)
during decompression. By default, the Image Compression Manager handles
the cursor for you, hiding it at the beginning of a decompression operation and
revealing it at the end.

With the advent of scheduled asynchronous decompression, however, the
Image Compression Manager cannot do as precise a job of managing the
cursor, because it does not know exactly when scheduled operations actually
begin and end. While the Image Compression Manager can still manage the
cursor, it must hide the cursor when each request is queued, rather than when
the request is serviced. This may result in the cursor remaining hidden for long
periods of time.

In order to achieve better cursor behavior, you can choose to manage the cursor
in your decompressor component. If you so choose, you can use the
ICMShieldSequenceCursor function to hide the cursor—the Image Compression
Manager displays the cursor when you call the ICMDecompressComplete
function. In this manner, the cursor is hidden only when your component is
decompressing and displaying the frame.

SPECIAL CONSIDERATIONS

This function may be called at interrupt time.

C H A P T E R 4

Image Compressor Components

Image Compressor Components Reference 4-37

ICMDecompressComplete 4

Signals the completion of a decompression operation.

pascal void ICMDecompressComplete (
ImageSequence seqID,
OSErr err,
short flag,
ICMCompletionProcRecordPtr completionRtn);

seqID Identifies the frame’s sequence.

err Indicates whether the operation succeeded or failed. Set this
parameter to 0 for successful operations. For failed operations,
set the error code appropriate for the failure. For canceled
operations (for example, when the Image Compression
Manager calls your component’s ImageCodecFlush function), set
this parameter to –1.

flag Completion flags. Note that you may set more than one of these
flags to 1. The following flags are defined:

codecCompletionSource
Your component is done with the source buffer.
Set this flag to 1 when you are done with the
processing associated with the source buffer.

codecCompletionDest
Your component is done with the destination
buffer. Set this flag to 1 when you are done with
the processing associated with the destination
buffer.

codecCompletionDontUnshield
Set this flag to 1 when you do not want the
Image Compression Manager to unshield the
cursor as it normally would. Only codecs that
are completely managing the cursor themselves
should set this flag. See the section “Hardware
Cursors” (page 4-4) for more information.

C H A P T E R 4

Image Compressor Components

4-38 Image Compressor Components Reference

completionRtn
Contains a pointer to a completion function structure. That
structure identifies the application’s completion function, and
contains a reference constant associated with the frame.

Your component obtains the completion function structure as
part of the decompression parameters structure provided by the
Image Compression Manager at the start of the decompression
operation.

DISCUSSION

Your component must call this function at the end of decompression operations.

SPECIAL CONSIDERATIONS

Prior to QuickTime 2.0, decompressor components called the application’s
completion function directly. For compatibility, that method is still supported
except for scheduled asynchronous decompression operations, which must use
the ICMDecompressComplete call. Newer decompressors should always use
ICMDecompressComplete rather than calling the completion function directly
regardless of the type of decompression operation.

C H A P T E R 5

Contents 5-1

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Image Transcoder Components

About Image Transcoding 5-3
Image Transcoding Support 5-3

Using Image Transcoder Components 5-4
Creating an Image Transcoder Component 5-5

Example Image Transcoder Component 5-6
Image Transcoder Components Reference 5-8

Functions 5-8
ImageTranscoderBeginSequence 5-9
ImageTranscoderConvert 5-9
ImageTranscoderDisposeData 5-11
ImageTranscoderEndSequence 5-11

C H A P T E R 5

5-2 Contents

C H A P T E R 5

About Image Transcoding 5-3

Image Transcoder Components 5

This chapter is for those writing image transcoders. To use the transcoders refer
to the chapter “Image Compression Manager”. Before QuickTime 2.5, if you
needed to convert compressed image data into another compressed image
format, it was necessary to decompress the compressed image data to RGB
pixels, and then compress the RGB pixels into the new format. For some types
of compressed image data, it is possible to convert directly from one
compressed format to another. This direct conversion process is called image
transcoding.

This chapter is divided into the following sections:

■ “About Image Transcoding” provides a general introduction to image
transcoding and components of this type

■ “Using Image Transcoder Components” describes how QuickTime uses
these components

■ “Creating an Image Transcoder Component” describes how to create one of
these components

■ “Reference to Image Transcoder Components” presents detailed information
about the functions that are supported by these components

About Image Transcoding 5

Transcoding has two advantages over the decompress then recompress
approach to converting the format of compressed data. First, the operation is
usually substantially faster since much of the data can be copied directly from
the source image data format to the destination image data format. Secondly,
the operation is usually more accurate because decompressing and
recompressing provides two steps for introducing rounding and quantization
errors. By directly transcoding, opportunities for small errors are substantially
reduced.

Image Transcoding Support 5

QuickTime’s image transcoding support is contained within the Image
Compression Manager. Image transcoding can be invoked either explicitly,
using new API’s in the Image Compression Manager, or implicitly, by using
existing routines for decompressing images.

C H A P T E R 5

Image Transcoder Components

5-4 Using Image Transcoder Components

QuickTime’s support for decompressing images has been enhanced so that if a
request is issued to decompress an image, but no image decompressor
component is installed for that image format, QuickTime will attempt to locate
an image transcoder to convert the image data into a supported format. This
transcoding is performed transparently to the calling application. This
automatic image transcoding is supported for both QuickTime movies and
compressed image data stored in QuickDraw pictures.

QuickTime also provides an API for applications to transcode images. These
API’s make it possible for any application to take compressed image data and
transcode it into another format. This capability is useful for applications that
create QuickTime movies by combining segments of other QuickTime movies.
These applications often convert the format of the compressed image data by
decompressing the image and then recompressing it to the new format. If no
other processing is to be performed on the compressed data, you can use an
image transcoder to increase the speed and fidelity of the operation.

As with most other services in QuickTime, the details of image transcoding are
handled by components. The Image Compression Manager uses image
transcoder components to perform both implicit and explicit image
transcoding. Application developers that perform image transcoding interact
with the Image Compression Manager, not directly with the image transcoder
components themselves. The Image Compression Manager takes care of the
details of working with image transcoder components. If you want to add new
image transcoding operations to QuickTime, you can write an image
transcoder component.

Using Image Transcoder Components 5

The Image Compression Manager uses an image sequence when compressing
or decompressing data. An image sequence allows QuickTime to make certain
optimizations because it knows that a similar operation will be repeated
multiple times (that is, images will be repeatedly compressed to the same
image data format). Similarly, the Image Compression Manager’s support for
image transcoding is based on an image transcoding sequence. The image
transcode sequence identifier is an opaque value as shown below.

typedef long ImageTranscodeSequence;

C H A P T E R 5

Image Transcoder Components

Creating an Image Transcoder Component 5-5

All transcoding functions are described in Chapter 3, “Image Compression
Manager.” Image transcoder component functions are described later in this
chapter.

To create an image transcoding sequence, use the ImageTranscodeSequenceBegin
function. To transcode a frame of image data, use the ImageTranscodeFrame
function. The caller of this routine is responsible for disposing of the
transcoded data returned by ImageTranscodeFrame using the
ImageTranscodeDisposeFrameData routine.

When the transcoded image data returned by ImageTranscodeFrame is no longer
needed, call ImageTranscodeDisposeFrameData to dispose of the data. When an
image transcoding sequence is complete, use ImageTranscodeSequenceEnd to
dispose of the image transcoding sequence.

Creating an Image Transcoder Component 5

It is only necessary to understand image transcoder components if you are
writing an image transcoder. To perform image transcoding, you should use
the services provided by the Image Compression Manager.

Image transcoder components are standard Component Manager components.
See Inside Macintosh: More Macintosh Toolbox for details on creating components.

Image transcoder components have a type of ‘imtc’ as defined below.

enum {
ImageTranscodererComponentType = 'imtc'

};

The sub-type field of the component defines the compressed image data format
that the transcoder accepts as an input. The manufacturer field of the
component defines the compressed image data format that the transcoder
generates as output. For example, a trancoder from Motion JPEG Format A to
Motion JPEG Format B would have a subtype of 'mjpg' and a manufacturer
code of 'mjpb'. No component-specific flags are currently defined for
transcoders; they should be set to 0. Each transcoder component function is
described later in this chapter.

C H A P T E R 5

Image Transcoder Components

5-6 Creating an Image Transcoder Component

Example Image Transcoder Component 5

The following example code shows an image transcoder component. It
converts an imaginary compressed data format ‘bgr’ to uncompressed RGB
pixels. The transcoding process simply copies the source data to the destination
and inverts each byte in the process. This example shows the format of how an
image transcoder might work without getting into the details of a particular
image transcoding operation.

#include <ImageCompression.h>
pascal ComponentResult main(ComponentParameters *params, Handle storage
);
pascal ComponentResult TestTranscoderBeginSequence (Handle storage,
ImageDescriptionHandle srcDesc, ImageDescriptionHandle *dstDesc, void
*data, long dataSize);

pascal ComponentResult TestTranscoderConvert (Handle storage, void
*srcData, long srcDataSize, void **dstData, long *dstDataSize);

pascal ComponentResult TestTranscoderDisposeData (Handle storage, void
*dstData);

pascal ComponentResult TestTranscoderEndSequence (Handle storage);

pascal ComponentResult main(ComponentParameters *params, Handle storage)
{

ComponentFunctionUPP proc = nil;
ComponentResult err = noErr;

switch (params->what) {
case kComponentOpenSelect:
case kComponentCloseSelect:

break;
case kImageTranscoderBeginSequenceSelect:

proc = (ComponentFunctionUPP) TestTranscoderBeginSequence;
break;

case kImageTranscoderConvertSelect:
proc = (ComponentFunctionUPP)TestTranscoderConvert;
break;

case kImageTranscoderDisposeDataSelect:
proc = (ComponentFunctionUPP) TestTranscoderDisposeData;
break;

C H A P T E R 5

Image Transcoder Components

Creating an Image Transcoder Component 5-7

case kImageTranscoderEndSequenceSelect:
proc = (ComponentFunctionUPP) TestTranscoderEndSequence;
break;

default:
err = badComponentSelect;
break;

}

if (proc)
err = CallComponentFunctionWithStorage(storage,

params, proc);

return err;
}

pascal ComponentResult TestTranscoderBeginSequence (Handle storage,
ImageDescriptionHandle srcDesc, ImageDescriptionHandle *dstDesc, void
*data, long dataSize)
{

*dstDesc = srcDesc;
HandToHand((Handle *)dstDesc);
(***dstDesc).cType = 'raw ';

return noErr;
}

pascal ComponentResult TestTranscoderConvert (Handle storage, void
*srcData, long srcDataSize, void **dstData, long *dstDataSize)
{

Ptr p;
OSErr err;

if (!srcDataSize)
return paramErr;

p = NewPtr(srcDataSize);
err = MemError();
if (err) return err;
{
Ptr p1 = srcData, p2 = p;
long counter = srcDataSize;

C H A P T E R 5

Image Transcoder Components

5-8 Image Transcoder Components Reference

while (counter--)
*p2++ = ~*p1++;

}

*dstData = p;
*dstDataSize = srcDataSize;

return noErr;
}

pascal ComponentResult TestTranscoderDisposeData (Handle storage, void
*dstData)
{

DisposePtr((Ptr)dstData);

return noErr;
}

pascal ComponentResult TestTranscoderEndSequence (Handle storage)
{

return noErr;
}

Image Transcoder Components Reference 5

Functions 5

QuickTime 2.5 provides four image transcoder component functions.

C H A P T E R 5

Image Transcoder Components

Image Transcoder Components Reference 5-9

ImageTranscoderBeginSequence 5

Initiates an image transcoding sequence and specifies the input data format.

pascal ComponentResult ImageTranscoderBeginSequence (
ImageTranscoderComponent itc,
ImageDescriptionHandle srcDesc,
ImageDescriptionHandle *dstDesc,
void *data,
long dataSize);

itc The image transcoder component.

srcDesc The image description for the source compressed image data.

dstDesc Returns a new image description.

data First frame of data to be transcoded (may be nil).

dataSize Size of compressed image data pointed to by the data.

DISCUSSION

The ImageTranscoderBeginSequence function specifies the format of source
compressed image data in the srcDesc parameter. The image transcoder should
allocate a new image description and return it in the dstDesc parameter. The
new image description should be a completely filled out image description
which is sufficient for correctly decompressing the data generated by
subsequent calls to ImageTranscoderConvert.

ImageTranscoderConvert 5

Performs image transcoding operations.

pascal ComponentResult ImageTranscoderConvert (
ImageTranscoderComponent itc,
void *srcData,
long srcDataSize,
void **dstData,
long *dstDataSize);

C H A P T E R 5

Image Transcoder Components

5-10 Image Transcoder Components Reference

itc The image transcoder component.

srcData Contains a pointer to the source compressed image data to
transcode.

srcDataSize Indicates the size of the source image data, in bytes.

dstData Returns a pointer to the transcoded data.

dstDataSize Returns the size of the transcoded data, in bytes.

DISCUSSION

The image transcoder component is responsible for allocating storage for the
transcoded data, transcoding the data, and returning a pointer to the
transcoded data in the dstData parameter. The size of the transcoded data in
bytes should be returned in the dstDataSize parameter. The caller is responsible
for disposing of the transcoded data using the ImageTranscoderDisposeData
function.

The memory allocated to store the transcoded image data must not be in an
unlocked handle. Even if the image transcoding operation can be performed in
place, the transcoded data must be placed in a separate block of memory from
the source data. The image transcoder component must not write back into the
source image data.

The responsibility for allocating the buffer for the transcoded data has been
placed in the transcoder with the intent that some hardware manufacturers
may find it useful to place the transcoded data directly into on-board memory
on their video board. If the transcoding operation is being performed on a
QuickTime movie, the transcoded data pointer will be almost immediately
passed on to a decompressor. If the decompressor is implemented in hardware,
some performance may be increased because the transcoded data is already
loaded onto the decompression hardware.

C H A P T E R 5

Image Transcoder Components

Image Transcoder Components Reference 5-11

ImageTranscoderDisposeData 5

Disposes of transcoded data.

pascal ComponentResult ImageTranscoderDisposeData (
ImageTranscoderComponent itc,
void *dstData);

itc The image transcoder component.

dstData Contains a pointer to the transcoded data.

DISCUSSION

When the client of the image transcoder component is done with a piece of
transcoded data, ImageTranscoderDisposeData must be called with a pointer to
the transcoded data. The image transcoder component should not make any
assumptions about the maximum number of outstanding pieces of transcoded
data or the order in which the transcoding data will be disposed.

ImageTranscoderEndSequence 5

Ends an image transcoding sequence.

pascal ComponentResult ImageTranscoderEndSequence
(ImageTranscoderComponent itc);

itc The image transcoder component whose transcoder sequence is
ending.

DISCUSSION

ImageTranscoderEndSequence is called when there are no more frames of data to
be transcoded using the parameters specified in the previous call to
ImageTranscoderBeginSequence. After calling this function the component will
either be closed or receive another call to ImageTranscoderBeginSequence with a
different image description. (For example, the dimensions of the source image
may be different.)

C H A P T E R 5

Image Transcoder Components

5-12 Image Transcoder Components Reference

C H A P T E R 6

Contents 6-1

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Movie Controller Components

New Features of Movie Controller Components 6-3
Using Movie Controller Components 6-3

Changing the Shape of the Cursor 6-3
Movie Controller Components Reference 6-4

Movie Controller Actions 6-4
Movie Controller Functions 6-6

Handling Movie Events 6-6
MCGetControllerInfo 6-6
MCPtInController 6-7

C H A P T E R 6

6-2 Contents

C H A P T E R 6

New Features of Movie Controller Components 6-3

Movie Controller Components 6

This chapter discusses new features and changes to movie controller
components as documented in Chapter 2 of Inside Macintosh: QuickTime
Components.

New Features of Movie Controller Components 6

The new features of Movie Controller Components include five new actions
and one new function. Additionally, one new flag has been defined to be
returned by MCGetControllerInfo function.

Using Movie Controller Components 6

Changing the Shape of the Cursor 6

Many applications change the shape of the cursor depending on what it’s
currently over. The standard movie controller never changes the cursor, but
other movie controllers may need to. An example of this is the QuickTime VR
movie controller. Unfortunately, many applications need to control the cursor
themselves—when a movie controller changes the cursor, these applications
change it back immediately.

A simple solution is for applications to change the cursor only when it’s first
placed over a movie. (To determine whether a pointer is over the movie, use
mcPointInMovieController.) After that, let the movie controller control the
cursor until it exits the area over the movie. To give the movie controller the
opportunity to change the cursor’s shape, you must call either MCIsPlayerEvent
or MCIdle while the cursor is over the movie, even if the movie is stopped. You
can use the mcActionSetCursorSettingEnabled action to disable changes by
movie controllers.

C H A P T E R 6

Movie Controller Components

6-4 Movie Controller Components Reference

Movie Controller Components Reference 6

This section describes the new constants and functions associated with movie
controller components.

The movie controller has always supported actions for setting the selection.
With QuickTime 2.5, there are two new actions for getting the selection. In
addition, QuickTime 2.1 added one new action that prerolls the movie before
playing it, and two more actions that enable your application to control
whether the movie controller can change the cursor.

Movie Controller Actions 6

This section discusses five new actions, which are integer constants (defined by
the mcAction data type) used by movie controller components. Applications
that use movie controller components can invoke these actions by calling the
MCDoAction function.

This section does not describe all the existing constants documented in Inside
Macintosh: QuickTime Components. Only the new constants are shown.

enum {
mcActionGetSelectionBegin = 53, /* param is TimeRecord*/
mcActionGetSelectionDuration = 54, /* param is TimeRecord*/
mcActionPrerollAndPlay = 55, /* param is Fixed, play rate*/
mcActionGetCursorSettingEnabled = 56, /* param is pointer to Boolean*/
mcActionSetCursorSettingEnabled = 57, /* param is Boolean*/
mcActionSetColorTable = 58, /* param is CTabHandle*/

};
typedef short mcAction;

Actions for Use by Applications
mcActionGetSelectionBegin

The parameter must contain a pointer to a time structure.
The time returned is in the time scale of the movie. The
returned time indicates the start time of the current user
time selection.

C H A P T E R 6

Movie Controller Components

Movie Controller Components Reference 6-5

mcActionGetSelectionDuration
The parameter must contain a pointer to a time structure.
The time value returned is in the time scale of the movie.
The returned time indicates the duration of the current
user time selection. If there is no selection, this value will
be zero.

mcActionPrerollAndPlay
Your application can use this action to preroll a movie and
then immediately play it. You should use this action
whenever a movie controller is used and the movie needs
to be played programmatically.
The parameter data must contain a fixed value that
indicates the rate of play. Values greater than 0 correspond
to forward rates; values less than 0 play the movie
backward. A value of 0 stops the movie.

mcActionGetCursorSettingEnabled
Your application can use this action to determine whether
cursor switching is enabled for a movie controller.
The parameter data must contain a pointer to a Boolean
value—a value of true indicates that cursor switching is
enabled. By default, this value is set to true.

mcActionSetCursorSettingEnabled
Your application can use this action to control whether the
movie controller can change the cursor.
The parameter data must contain a Boolean value. Set this
value to true to enable the movie controller to change the
cursor. Set it to false to disable cursor switching.
Some movie controllers (QuickTime VR, for example)
change the cursor while the pointer is over the movie to
indicate that the pointer is over a hot spot. If you do not
want the movie controller to change the cursor, you should
use this action to prevent the movie controller from
changing the cursor.

mcActionSetColorTable
Your application can use this action to determine when the
movie controller is going to set a new color table. Setting a
color table causes the window’s palette to be updated to
the new color table. Applications can use this action to

C H A P T E R 6

Movie Controller Components

6-6 Movie Controller Components Reference

monitor or control the movie controller’s current color
environment.

Movie Controller Functions 6

This section describes one new function that is supported by movie controller
components that handle movie events. A new flag for an existing function has
also been added.

Handling Movie Events 6

QuickTime 2.1 provides two changes to handling movie events as documented
in Chapter 2 of Inside Macintosh: QuickTime Components.. First, a new flag can
now be returned by the MCGetControllerInfo function. This flag indicates when
a movie is interactive, and therefore does not make sense to play. Second, while
it has it has always been possible to determine if a point is contained in a movie
(using PtInMovie), the new MCPtInController function provides a way to
determine if a point is in the controls of a movie.

MCGetControllerInfo 6

The MCGetControllerInfo function returns a new flag to indicate that the movie
is interactive and, therefore, cannot be played from start to end. For example,
because users interact with a QuickTime VR movie, it cannot be played.

The someflags parameter to the MCGetControllerInfo function may return the
following additional flag:

enum {
mcInfoMovieIsInteractive = 1 << 10,

};

Flag description

mcInfoMovieIsInteractive
If this flag is set to 1, the movie is interactive.

C H A P T E R 6

Movie Controller Components

Movie Controller Components Reference 6-7

MCPtInController 6

Reports whether a point is in the control area of a movie.

pascal ComponentResult MCPtInController (
MovieController mc,
Point thePt,
Boolean *inController);

mc Specifies the movie controller for the operation. You obtain this
identifier from the Component Manager’s OpenComponent or
OpenDefaultComponent function, or from the NewMovieController
function.

thePt Specifies the point to be checked. This point must be passed in
local coordinates to the controller’s window. This point is
checked only against the Movie Controller’s controls, not the
movie itself.

inController Returns true if the point is in the controller; false if it is not.

DISCUSSION

While you could always determine if a point is contained in a movie (using
PtInMovie), the MCPtInController function allows you to determine if a point is
in the control area of a movie.

C H A P T E R 6

Movie Controller Components

6-8 Movie Controller Components Reference

C H A P T E R 7

Contents 7-1

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Sequence Grabber Components

New Features of Sequence Grabber Components 7-3
Improved Support for Digitizing Video in Windows 7-3

Sequence Grabber Components Reference 7-4
Constants 7-4

Flags 7-4
Sequence Grabber Component Functions 7-5

Configuring Sequence Grabber Components 7-5
SGSetDataRef 7-5
SGGetDataRef 7-8
SGSettingsDialog 7-11

Controlling Sequence Grabber Components 7-11
SGGrabPict 7-11
SGGetMode 7-12

Working with Sequence Grabber Outputs 7-13
SGNewOutput 7-13
SGDisposeOutput 7-16
SGSetChannelOutput 7-17
SGSetOutputFlags 7-18
SGGetDataOutputStorageSpaceRemaining 7-21

C H A P T E R 7

7-2 Contents

C H A P T E R 7

New Features of Sequence Grabber Components 7-3

Sequence Grabber Components 7

This chapter discusses new features and changes to sequence grabber
components as documented in Chapter 5 of Inside Macintosh: QuickTime
Components.

New Features of Sequence Grabber Components 7

Sequence grabber components now allow you to assign a specific file to each
channel. This allows you to collect data into more than one file at a time, which
can result in improved performance by defining the files for different channels
on different devices. These destination containers are referred to as sequence
grabber outputs. See “Working with Sequence Grabber Outputs” (page 7-13) for
a complete discussion.

Sequence grabber components now use data handler components when
writing movie data. This provides greater flexibility, especially when working
with special storage devices (such as networks).

As discussed in Chapter 1, “Movie Toolbox,” QuickTime 2.0 introduced
timecode tracks to QuickTime movies. The sequence grabber automatically
creates a timecode track if the video digitizer component contains timecode
information. In order to support timecode tracks, the sequence grabber also
provides two functions that let you identify the source information associated
with video data that contains timecode information. For more information
about timecodes and the timecode media handler, see Chapter 1, “Movie
Toolbox.”

Improved Support for Digitizing Video in Windows 7

Prior to QuickTime 2.1, when displaying the output of a sequence grabber
video channel in a window, an application would have to pause the sequence
grabber before moving or resizing a window, before a menu was pulled down,
or whenever the application was put into the background. If an application
failed to take these precautions, it was possible for the digitized video to draw
outside of the window with which it was associated.

QuickTime 2.1 solves these problems so that an application using a sequence
grabber video channel in a window no longer has to take any special
precautions to ensure that the video remains within the window. As long as the

C H A P T E R 7

Sequence Grabber Components

7-4 Sequence Grabber Components Reference

application calls SGIdle regularly, the sequence grabber will automatically take
care of pausing and unpausing the video as necessary.

Sequence Grabber Components Reference 7

This section describes the new constants and functions associated with
sequence grabber components.

Constants 7

This section describes the new constants for sequence grabber components.

Flags 7

QuickTime 1.6.1 added a new flag to the grabPictCurrentImage parameter to
the SGGrabPict function.

enum {
grabPictCurrentImage = 4

};

Constant description

grabPictCurrentImage
Set this flag to 1 to provide the fastest possible image
capture. Although this flag may fail under certain
circumstances, this failure is recoverable; it just will not
return a picture. You can then call SGGrabPict again
without the flag set. This routine does not pause the
current preview or grab the next frame. It just causes the
currently displayed image to be captured. It’s a good idea
to call SGPause before calling SGGrabPict with this flag.

The flags parameter to the SGSettingsDialog function is a reserved flag and
can only be set to 0. QuickTime 2.1 provides a new flag value you can use to
indicate that you want to display only panels that make sense for previewing.

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-5

enum {
seqGrabSettingsPreviewOnly = 1

};

Constant description

seqGrabSettingsPreviewOnly
Set this flag to indicate that the user will be using the
dialog provided by SGSettingsDialog to configure the
Sequence Grabber for previewing only, not for recording.
The SGSettingsDialog will automatically exclude any
panels which aren’t necessary for configuring for
previewing, such as video or audio compression settings.
Otherwise, set the flags parameter to 0.

Sequence Grabber Component Functions 7

This section describes the new and changed functions provided by sequence
grabber components.

Configuring Sequence Grabber Components 7

SGSetDataRef 7

Specifies the destination data reference for a record operation.

pascal ComponentResult SGSetDataRef (
SeqGrabComponent s,
Handle dataRef,
OSType dataRefType,
long whereFlags);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

C H A P T E R 7

Sequence Grabber Components

7-6 Sequence Grabber Components Reference

dataRef Contains a handle to the information that identifies the
destination container.

dataRefType Specifies the type of data reference. If the data reference is an
alias, you must set the parameter to rAliasType ('alis'),
indicating that the reference is an alias.

whereFlags Contains flags that control the record operation. You must set
either the seqGrabToDisk flag or the seqGrabToMemory flag to 1
(set unused flags to 0):

seqGrabToDisk
Instructs the sequence grabber component to
write the recorded data to a QuickTime movie in
the container specified by the dataRef parameter.
If you set this flag to 1, the sequence grabber
writes the data to the container as the data is
recorded. Set this flag to 0 if you set the
seqGrabToMemory flag to 1 (only one of these two
flags may be set to 1).

seqGrabToMemory
Instructs the sequence grabber component to
store the recorded data in memory until the
recording process is complete. The sequence
grabber then writes the recorded data to the
container specified by the dataRef parameter.
This technique provides better performance than
recording directly to the container, but limits the
amount of data you can record. Set this flag to 1
to record to memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only one of these
two flags may be set to 1).

seqGrabDontUseTempMemory
Prevents the sequence grabber component from
using temporary memory during the record
operation. By default, the sequence grabber
component and its channel components use as
much temporary memory as necessary to
perform the record operation. Set this flag to 1 to

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-7

prevent the sequence grabber component and its
channel components from using temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber component to add
the recorded data to the data fork of the
container specified by the dataRef parameter. By
default, the sequence grabber component deletes
the container and creates a new file containing
one movie and the corresponding movie
resource. Set this flag to 1 to cause the sequence
grabber component to append the recorded data
to the data fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from
adding the new movie resource to the container
specified by the dataRef parameter. By default,
the sequence grabber component creates a new
movie resource and adds that resource to the
container. Set this flag to 1 to prevent the
sequence grabber component from adding the
movie resource to the container. You are then
responsible for adding the resource to a file, if
you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from
creating a movie. By default, the sequence
grabber component creates a new movie
resource and adds the captured data to that
movie. If you set this flag to 1, the sequence
grabber still calls your data function, but does
not write any data to the movie file.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at interrupt
time. This allows the sequence grabber
component to present the captured data as soon
as possible. Note that not all sequence grabber

C H A P T E R 7

Sequence Grabber Components

7-8 Sequence Grabber Components Reference

channel components may use this feature. It is
currently supported only by sequence grabber
sound channels.

DISCUSSION

The SGSetDataRef function allows you to specify the destination for a record
operation using a data reference, and to specify other options that govern the
operation. This function is similar to the SGSetDataOutput function, and
provides you an alternative way to specify the destination.

If you are performing a preview operation, you do not need to use the
SGSetDataRef function.

RESULT CODES

File Manager errors
Memory Manager errors

SGGetDataRef 7

The SGGetDataRef function allows you to determine the data reference that is
currently assigned to a sequence grabber component and the control flags that
would govern a record operation.

pascal ComponentResult SGGetDataRef (
SeqGrabComponent s,
Handle *dataRef,
OSType *dataRefType,
long *whereFlags);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

notEnoughMemoryToGrab –9403 Insufficient memory for operation
notEnoughDiskSpaceToGrab –9404 Insufficient disk space for operation

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-9

dataRef Contains a pointer to a handle that is to receive the information
that identifies the destination container.

dataRefType Specifies a pointer to a field that is to receive the type of data
reference.

whereFlags Contains a pointer to a long integer that is to receive flags that
control the record operation. The following flags are defined
(unused flags are set to 0):

seqGrabToDisk
Instructs the sequence grabber component to
write the recorded data to a QuickTime movie in
the container specified by the dataRef parameter.
If this flag is set to 1, the sequence grabber
writes the data to the container as the data is
recorded.

seqGrabToMemory
Instructs the sequence grabber component to
store the recorded data in memory until the
recording process is complete. The sequence
grabber then writes the recorded data to the
container specified by the dataRef parameter.
This technique provides better performance than
recording directly to the movie file, but limits
the amount of data you can record. If this flag is
set to 1, the sequence grabber component is
recording to memory.

seqGrabDontUseTempMemory
Prevents the sequence grabber component from
using temporary memory during the record
operation. By default, the sequence grabber
component and its channel components use as
much temporary memory as necessary to
perform the record operation. If this flag is set to
1, the sequence grabber component and its
channel components do not use temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber component to add
the recorded data to the data fork of the

C H A P T E R 7

Sequence Grabber Components

7-10 Sequence Grabber Components Reference

container specified by the dataRef parameter. By
default, the sequence grabber component deletes
the container and creates a new file containing
one movie and its movie resource. If this flag is
set to 1, the sequence grabber component
appends the recorded data to the data fork of the
container and creates a new movie resource in
that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from
adding the new movie resource to the container
specified by the dataRef parameter. By default,
the sequence grabber component creates a new
movie resource and adds that resource to the
container. If this flag is set to 1, the sequence
grabber component does not add the movie
resource to the container. You are then
responsible for adding the resource to a file, if
you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from
creating a movie. By default, the sequence
grabber component creates a new movie
resource and adds the captured data to that
movie. If this flag is set to 1, the sequence
grabber still calls your data function, but does
not write any data to the container.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at interrupt
time. This allows the sequence grabber
component to present the captured data as soon
as possible. Note that not all sequence grabber
channel components may use this feature.

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-11

DISCUSSION

The SGGetDataRef function allows you to determine the data reference that is
currently assigned to a sequence grabber component and the control flags that
would govern a record operation.

You set these characteristics by calling the SGSetDataRef function, which is
described in the previous section. If you have not set these characteristics
before calling the SGGetDataRef function, the returned data is meaningless.

RESULT CODES

Memory Manager errors

SGSettingsDialog 7

The SGSettingsDialog function has a new flag value that you can pass in the
flags parameter. Previously, you could only set this parameter to 0. Pass the
new flag, seqGrabSettingsPreviewOnly, to indicate that you want to display only
panels that make sense for previewing. In particular, the video compression
will not be displayed. Use this flag for applications that allow a live video
signal to be viewed but not captured.

flags Either set this to 0 or to seqGrabSettingsPreviewOnly. The
function supports the following flag value:

seqGrabSettingsPreviewOnly
Use this value if you want to view but not
capture a live video signal. Otherwise, set the
flags parameter to 0.

Controlling Sequence Grabber Components 7

SGGrabPict 7

QuickTime 1.6.1 added a new flag to the grabPictCurrentImage parameter to
the SGGrabPict function.

C H A P T E R 7

Sequence Grabber Components

7-12 Sequence Grabber Components Reference

enum {
grabPictCurrentImage = 4

};

Constant descriptions

grabPictCurrentImage
Set this flag to 1 to provide the fastest possible image
capture. Although this flag may fail under certain
circumstances, this failure is recoverable; it just will not
return a picture. You can then call SGGrabPict again
without the flag set. This routine does not pause the
current preview or grab the next frame. It just causes the
currently displayed image to be captured. It’s a good idea
to call SGPause before calling SGGrabPict with this flag.

SGGetMode 7

Returns the mode for a sequence grabber component.

pascal ComponentResult SGGetMode (
SeqGrabComponent s,
Boolean *previewMode,
Boolean *recordMode);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

previewMode Contains a pointer to a Boolean. The sequence grabber
component sets this field to true if the component is in preview
mode.

recordMode Contains a pointer to a Boolean. The sequence grabber
component sets this field to true if the component is in record
mode.

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-13

DISCUSSION

The SGGetMode function provides a convenient mechanism for determining
whether a sequence grabber component is in preview mode or record mode.

Working with Sequence Grabber Outputs 7

In order to allow sequence grabber components to capture to more than one
data reference at a time, QuickTime 2.0 introduced the concept of a sequence
grabber output. A sequence grabber output ties a sequence grabber channel to a
specified data reference for output of captured data

If you are capturing to a single movie file, you can continue to use the
SGSetDataOutput function (or the new SGSetDataRef function) to specify the
sequence grabber’s destination. However, if you want to capture movie data
into several different files or data references, you must use sequence grabber
outputs to do so. Even if you are using outputs, you must still use the
SGSetDataOutput function or the SGSetDataRef function to identify where the
sequence grabber should create the movie resource.

You are responsible for creating outputs, assigning them to sequence grabber
channels, and disposing of them when you are done. Sequence grabber
components provide a number of functions for managing outputs: the
SGNewOutput function creates a new output; the SGDisposeOutput function
disposes of an output; the SGSetOutputFlags function configures the output; the
SGSetChannelOutput function assigns an output to a channel; and the
SGGetDataOutputStorageSpaceRemaining function determines how much space is
left in the output.

SGNewOutput 7

Creates a new sequence grabber output.

pascal ComponentResult SGNewOutput (
SeqGrabComponent s,
Handle dataRef,
OSType dataRefType,
long whereFlags,
SGOutput *output);

C H A P T E R 7

Sequence Grabber Components

7-14 Sequence Grabber Components Reference

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

dataRef Contains a handle to the information that identifies the
destination container.

dataRefType Specifies the type of data reference. If the data reference is an
alias, you must set the parameter to rAliasType ('alis'),
indicating that the reference is an alias.

whereFlags Contains flags that control the record operation. You must set
either the seqGrabToDisk flag or the seqGrabToMemory flag to 1
(set unused flags to 0):

seqGrabToDisk
Instructs the sequence grabber component to
write the recorded data to a QuickTime movie in
the container specified by the dataRef parameter.
If you set this flag to 1, the sequence grabber
writes the data to the container as the data is
recorded. Set this flag to 0 if you set the
seqGrabToMemory flag to 1 (only one of these two
flags may be set to 1).

seqGrabToMemory
Instructs the sequence grabber component to
store the recorded data in memory until the
recording process is complete. The sequence
grabber then writes the recorded data to the
container specified by the dataRef parameter.
This technique provides better performance than
recording directly to the container, but limits the
amount of data you can record. Set this flag to 1
to record to memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only one of these
two flags may be set to 1).

seqGrabDontUseTempMemory
Prevents the sequence grabber component from
using temporary memory during the record
operation. By default, the sequence grabber
component and its channel components use as

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-15

much temporary memory as necessary to
perform the record operation. Set this flag to 1 to
prevent the sequence grabber component and its
channel components from using temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber component to add
the recorded data to the data fork of the
container specified by the dataRef parameter. By
default, the sequence grabber component deletes
the container and creates a new file containing
one movie and the corresponding movie
resource. Set this flag to 1 to cause the sequence
grabber component to append the recorded data
to the data fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from
adding the new movie resource to the container
specified by the dataRef parameter. By default,
the sequence grabber component creates a new
movie resource and adds that resource to the
container. Set this flag to 1 to prevent the
sequence grabber component from adding the
movie resource to the container. You are then
responsible for adding the resource to a file, if
you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from
creating a movie. By default, the sequence
grabber component creates a new movie
resource and adds the captured data to that
movie. If you set this flag to 1, the sequence
grabber still calls your data function, but does
not write any data to the movie file.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at interrupt
time. This allows the sequence grabber

C H A P T E R 7

Sequence Grabber Components

7-16 Sequence Grabber Components Reference

component to present the captured data as soon
as possible. Note that not all sequence grabber
channel components may use this feature.

output Contains a pointer to a sequence grabber output. The sequence
grabber component returns an output identifier. You can then
use this identifier with other sequence grabber component
functions.

DISCUSSION

The SGNewOutput function creates a new sequence grabber output. You specify
the output’s destination container using a data reference. Once you have
created the sequence grabber output, you can use the SGSetChannelOutput
function to assign the output to a sequence grabber channel.

RESULT CODES

File Manager errors
Memory Manager errors

SGDisposeOutput 7

Disposes of an existing output.

pascal ComponentResult SGDisposeOutput (
SeqGrabComponent s,
SGOutput output);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this operation. You
obtain this identifier by calling the SGNewOutput function.

paramErr –50 Invalid parameter specified

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-17

DISCUSSION

You use the SGDisposeOutput function to dispose of an existing output. If any
sequence grabber channels are using this output, the sequence grabber
component assigns them to an undefined output.

Note that you cannot dispose of an output when the sequence grabber
component is in record mode.

RESULT CODES

SGSetChannelOutput 7

Assigns an output to a channel.

pascal ComponentResult SGSetChannelOutput (
SeqGrabComponent s,
SGChannel c,
SGOutput output);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

c Identifies the channel for this operation. Provide your
connection identifier. You connect to a channel component by
calling the SGNewChannel or SGNewChannelFromComponent
functions.

output Identifies the sequence grabber output for this operation. You
obtain this identifier by calling the SGNewOutput function.

DISCUSSION

You use the SGSetChannelOutput function to assign an output to a channel. Note
that when you call the SGSetDataRef or SGSetDataOutput functions the sequence
grabber component sets every channel to the specified file or container. If you

cantDoThatInCurrentMode –9402 Request invalid in current mode

C H A P T E R 7

Sequence Grabber Components

7-18 Sequence Grabber Components Reference

want to use different outputs, you must use this function to assign the channels
appropriately. One output may be assigned to one or more channels.

RESULT CODES

SGSetOutputFlags 7

Configures an existing sequence grabber output.

pascal ComponentResult SGSetOutputFlags (
SeqGrabComponent s,
SGOutput output,
long whereFlags);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this operation. You
obtain this identifier by calling the SGNewOutput function.

whereFlags Contains flags that control the record operation. You must set
either the seqGrabToDisk flag or the seqGrabToMemory flag to 1
(set unused flags to 0):

seqGrabToDisk
Instructs the sequence grabber component to
write the recorded data to a QuickTime movie in
the container specified by the dataRef parameter.
If you set this flag to 1, the sequence grabber
writes the data to the container as the data is
recorded. Set this flag to 0 if you set the
seqGrabToMemory flag to 1 (only one of these two
flags may be set to 1).

badSGChannel –9406 Invalid channel specified

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-19

seqGrabToMemory
Instructs the sequence grabber component to
store the recorded data in memory until the
recording process is complete. The sequence
grabber then writes the recorded data to the
container specified by the dataRef parameter.
This technique provides better performance than
recording directly to the container, but limits the
amount of data you can record. Set this flag to 1
to record to memory. Set this flag to 0 if you set
the seqGrabToDisk flag to 1 (only one of these
two flags may be set to 1).

seqGrabDontUseTempMemory
Prevents the sequence grabber component from
using temporary memory during the record
operation. By default, the sequence grabber
component and its channel components use as
much temporary memory as necessary to
perform the record operation. Set this flag to 1 to
prevent the sequence grabber component and its
channel components from using temporary
memory.

seqGrabAppendToFile
Directs the sequence grabber component to add
the recorded data to the data fork of the
container specified by the dataRef parameter. By
default, the sequence grabber component deletes
the container and creates a new file containing
one movie and the corresponding movie
resource. Set this flag to 1 to cause the sequence
grabber component to append the recorded data
to the data fork of the container and create a
new movie resource in that file.

seqGrabDontAddMovieResource
Prevents the sequence grabber component from
adding the new movie resource to the container
specified by the dataRef parameter. By default,
the sequence grabber component creates a new
movie resource and adds that resource to the

C H A P T E R 7

Sequence Grabber Components

7-20 Sequence Grabber Components Reference

container. Set this flag to 1 to prevent the
sequence grabber component from adding the
movie resource to the container. You are then
responsible for adding the resource to a file, if
you so desire.

seqGrabDontMakeMovie
Prevents the sequence grabber component from
creating a movie. By default, the sequence
grabber component creates a new movie
resource and adds the captured data to that
movie. If you set this flag to 1, the sequence
grabber still calls your data function, but does
not write any data to the movie file.

seqGrabDataProcIsInterruptSafe
Specifies that your data function is
interrupt-safe, and may be called at interrupt
time. This allows the sequence grabber
component to present the captured data as soon
as possible. Note that not all sequence grabber
channel components may use this feature.

DISCUSSION

The SGSetOutputFlags function allows you to configure an existing sequence
grabber output.

C H A P T E R 7

Sequence Grabber Components

Sequence Grabber Components Reference 7-21

RESULT CODES

SGGetDataOutputStorageSpaceRemaining 7

Returns the amount of space remaining in the data reference associated with an
output.

pascal ComponentResult SGGetDataOutputStorageSpaceRemaining (
SeqGrabComponent s,
SGOutput output,
unsigned long *space);

s Specifies the component instance that identifies your
connection to the sequence grabber component. You obtain this
value from the Component Manager’s OpenDefaultComponent or
OpenComponent function.

output Identifies the sequence grabber output for this operation. You
obtain this identifier by calling the SGNewOutput function.

space Contains a pointer to an unsigned long. The sequence grabber
component returns a value that indicates the number of bytes of
space remaining in the data reference associated with the
output.

DISCUSSION

The SGGetDataOutputStorageSpaceRemaining function allows you to determine
the amount of space remaining in the data reference associated with an output.
Use this function in place of the SGGetStorageSpaceRemaining function in cases
where you are working with more than one output.

RESULT CODES

paramErr –50 Invalid parameter specified
cantDoThatInCurrentMode –9402 Request invalid in current mode

paramErr –50 Invalid parameter specified

C H A P T E R 7

Sequence Grabber Components

7-22 Sequence Grabber Components Reference

C H A P T E R 8

Contents 8-1

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 Sequence Grabber Channel
Components

New Features of Sequence Grabber Channel Components 8-3
Support for Sound Data Compression 8-3
Support for Sound Capture at Any Sample Rate 8-3
*Working With Channel Characteristics 8-3

Sequence Grabber Channel Components Reference 8-4
Functions 8-4

Configuration Functions for All Channel Components 8-4
SGChannelSetRequestedDataRate 8-4
SGChannelGetRequestedDataRate 8-5
SGSetPreferredPacketSize 8-5
SGGetPreferredPacketSize 8-6
SGChannelSetDataSourceName 8-6
SGChannelGetDataSourceName 8-7
SGSetAdditonalSoundRates 8-8
SGGetAdditonalSoundRates 8-8
SGSetUserVideoCompressorList 8-9
SGGetUserVideoCompressorList 8-10

C H A P T E R 8

8-2 Contents

C H A P T E R 8

New Features of Sequence Grabber Channel Components 8-3

Sequence Grabber Channel Components 8

This chapter discusses new features and changes to sequence grabber channel
components as documented in Chapter 6 of Inside Macintosh: QuickTime
Components.

New Features of Sequence Grabber Channel Components 8

Support for Sound Data Compression 8

The sound sequence grabber channel now supports compression of sound data
in software when the requested format is not supported directly by the sound
input driver. This feature is available only when Sound Manager 3.1 or later is
installed. You can now directly capture sound in IMA and µLaw formats.
Because new audio compressors and decompressor can be installed by system
extensions (such as QuickTime Conferencing), other audio compression
formats may also be available.

Support for Sound Capture at Any Sample Rate 8

QuickTime 2.5 enhanced the sequence grabber sound channel to allow sound
to be captured at any sample rate. The sample rate is specified, as in the past,
by using SGSetSoundInputRate. If the requested rate is not one of the hardware
rates, the sound will be captured using the closest available hardware sample
rate and will be rate converted in software to the requested rate.

*Working With Channel Characteristics 8

The sequence grabber supports two new functions,
SGChannelSetDataSourceName and SGChannelGetDataSourceName, that allow you
to specify the source identification information associated with a sequence
grabber channel. For more information about timecodes and the timecode
media handler, see Chapter 1, “Movie Toolbox.”

C H A P T E R 8

Sequence Grabber Channel Components

8-4 Sequence Grabber Channel Components Reference

Sequence Grabber Channel Components Reference 8

Functions 8

This section describes the new functions specific to the Apple-supplied
sequence grabber channel component.

Configuration Functions for All Channel Components 8

SGChannelSetRequestedDataRate 8

Specifies the maximum requested data rate for a channel.

pascal ComponentResult SGChannelSetRequestedDataRate (
SGChannel c,
long bytesPerSecond);

c Identifies the channel connection for this operation.

bytesPerSecond
Specifies the maximum data rate requested by the sequence
grabber component. The sequence grabber component sets this
parameter to 0 to remove any data-rate restrictions.

DISCUSSION

The SGChannelSetRequestedDataRate function allows the sequence grabber
component to specify the maximum rate at which it would like to receive data
from your channel component.

The data rate supplied by the sequence grabber component represents a
requested data rate. Your component may not be able to observe that rate
under all conditions.

C H A P T E R 8

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 8-5

RESULT CODES

SGChannelGetRequestedDataRate 8

Returns the current maximum data rate requested for a channel.

pascal ComponentResult SGChannelGetRequestedDataRate (
SGChannel c,
long *bytesPerSecond);

c Identifies the channel connection for this operation.

bytesPerSecond
Points to a field that is to receive the maximum data rate
requested by the sequence grabber component.This field is set
to 0 if the sequence grabber has not set any restrictions.

DESCRIPTION

The SGChannelGetRequestedDataRate function allows the sequence grabber
component to retrieve the current maximum data rate value from your channel
component.

RESULT CODES

SGSetPreferredPacketSize 8

Sets the preferred packet size for the sequence grabber channel component.

pascal ComponentResult SGSetPreferredPacketSize (
SGChannel c,
long preferredPacketSizeInBytes);

badComponentSelector 0x80008002 Function not supported

badComponentSelector 0x80008002 Function not supported

C H A P T E R 8

Sequence Grabber Channel Components

8-6 Sequence Grabber Channel Components Reference

c Identifies the channel connection for this operation.

preferredPacketSizeInBytes
The preferred packet size in bytes.

DESCRIPTION

This function was added in QuickTime 2.5 to support video conferencing
applications.

SGGetPreferredPacketSize 8

Returns the preferred packet size for the sequence grabber component.

pascal ComponentResult SGGetPreferredPacketSize (
SGChannel c,
long *preferredPacketSizeInBytes);

c Identifies the channel connection for this operation.

preferredPacketSizeInBytes
The preferred packet size in bytes.

DESCRIPTION

This function was added in QuickTime 2.5 to support video conferencing
applications.

SGChannelSetDataSourceName 8

Sets the data source name for a track.

pascal ComponentResult SGChannelSetDataSourceName (
SGChannel c,
const Str255 name,
ScriptCode scriptTag);

C H A P T E R 8

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 8-7

c Identifies the channel connection for this operation.

name Identifies a string that contains the source identification
information.

scriptTag Specifies the language of the source identification information.

DISCUSSION

The SGChannelSetDataSourceName function allows you to set the source
informationfor a sequence grabber channel. You must set this information
before you start digitizing.

This source information identifies the source of the video data (say, a videotape
name). The sequence grabber channel stores this information in a timecode
track in the movie created after the capture is complete. If the video digitizer
does not provide timecode information, the sequence grabber does not save
this information.

This function is currently supported only by video channels.

SGChannelGetDataSourceName 8

Returns the data source name for a track.

pascal ComponentResult SGChannelGetDataSourceName (
SGChannel c,
Str255 name,
ScriptCode *scriptTag);

c Identifies the channel connection for this operation.

name Identifies a string that is to receive the source identification
information. Set this parameter to nil if you do not want to
retrieve the name.

scriptTag Specifies a field that is to receive the source information’s
language code. Set this parameter to nil if you do not want this
information.

C H A P T E R 8

Sequence Grabber Channel Components

8-8 Sequence Grabber Channel Components Reference

DESCRIPTION

The SGChannelGetDataSourceName function allows you to get the source
information specified with SGChannelSetDataSourceName.

SGSetAdditonalSoundRates 8

Allows an application to specify a list of sound sample rates to be included in
the Sequence Grabber’s Sound settings dialog. If any of requested rates are not
supported directly by the available sound capture hardware, sound will be
captured at one of the available hardware rates and then rate converted in
software to the requested rate.

 pascal ComponentResult SGSetAdditionalSoundRates(SGChannel c,
Handle rates)

c Identifies the channel connection for this operation.

rates A handle containing a list of unsigned 32 bit fixed point values.
The sequence grabber channel determines the number of
sample rates contained in the handle based on the size of the
handle.

DISCUSSION

The sequence grabber channel makes a copy of the additional rates handle.
Therefore, your application can immediately dispose of the additional rates
handle after making this call.

SGGetAdditonalSoundRates 8

Returns the additional sound sample rates added to the specified sequence
grabber sound channel.

pascal ComponentResult SGGetAdditionalSoundRates(SGChannel c,
Handle *rates)

C H A P T E R 8

Sequence Grabber Channel Components

Sequence Grabber Channel Components Reference 8-9

c Identifies the channel connection for this operation.

rates A pointer to handle where the list of additional sample rates
should be returned.

DISCUSSION

SGGetAdditionalSoundRates returns a copy of the list of additional samples rates
passed to the SSGetAdditionalSoundRates previously. If no additional sample
rates have been set, SGGetAdditionalSoundRates sets the rates handle to nil. The
caller of this routine is responsible for disposing of the returned rates handle.

SGSetUserVideoCompressorList 8

Allows an application to specify the list of video compression formats to be
included in the Sequence Grabber's Video settings dialog. This allows an
application to limit the number of video compression formats that will be
displayed to the user. For applications using the sequence grabber for a very
specific purpose, this allows inappropriate compression choices to be filtered
out.

pascal ComponentResult SGSetUserVideoCompressorList(SGChannel c,
Handle compressorTypes)

c Identifies the channel connection for this operation.

compressorTypes
A handle containing a list of OSTypes indicating which video
compression formats should be displayed. The sequence
grabber channel determines the number of video compression
formats contained in the handle based on the size of the handle.

DISCUSSION

The sequence grabber channel makes a copy of the video compression formats
handle. Therefore, your application can immediately dispose of the video
compression formats handle after making this call.

C H A P T E R 8

Sequence Grabber Channel Components

8-10 Sequence Grabber Channel Components Reference

SGGetUserVideoCompressorList 8

Returns the video compression formats to be displayed by the specified
sequence grabber video channel.

pascal ComponentResult SGGetUserVideoCompressorList(SGChannel c,
Handle *compressorTypes)

c Identifies the channel connection for this operation.

compressorTypes
A pointer to handle where the list of video compression formats
should be returned.

DISCUSSION

SGGetUserVideoCompressorList returns a copy of the list of video compression
formats passed to the SGSetUserVideoCompressorList previously. If no video
compression formats have been set, SGGetUserVideoCompressorList sets the
compressorTypes handle to nil. The caller of this routine is responsible for
disposing of the returned video compression formats handle.

C H A P T E R 9

Contents 9-1

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Video Digitizer Components

New Features of Video Digitizer Components 9-3
Video Digitizer Components Reference 9-3

Constants 9-3
Input Formats 9-3

Video Digitizer Component Functions 9-4
Controlling Compressed Source Devices 9-4

VDGetCompressionTime 9-4
Controlling Digitization 9-6

VDSetDataRate 9-6
Controlling Packet Size 9-7

VDSetPreferredPacketSize 9-7
Utility Functions 9-7

VDGetTimeCode 9-8
VDGetSoundInputSource 9-9

C H A P T E R 9

9-2 Contents

C H A P T E R 9

New Features of Video Digitizer Components 9-3

Video Digitizer Components 9

This chapter discusses changes to video digitizer components as documented
in Chapter 8 of Inside Macintosh: QuickTime Components. This chapter describes
the new and changed constants, data types, and functions provided by these
components.

New Features of Video Digitizer Components 9

As discussed in Chapter 1, “Movie Toolbox,” QuickTime 2.0 introduced
timecode tracks to QuickTime movies. Video digitizers may return timecode
information for an incoming video signal by responding to the new
VDGetTimeCode function described in this chapter. For more information about
timecodes and the timecode media handler, see Chapter 1, “Movie Toolbox.”

Video Digitizer Components Reference 9

Constants 9

Input Formats 9

You use the VDGetInputFormat function to find out the video format employed
by a specified input. QuickTime defines one new constant that you can use for
video digitizers that support a tuner input.

enum {
tvTunerIn = 6

};

Constant description

tvTunerIn
The input video signal is from the television tuner
connection.

C H A P T E R 9

Video Digitizer Components

9-4 Video Digitizer Components Reference

Video Digitizer Component Functions 9

Controlling Compressed Source Devices 9

In QuickTime 1.5, video digitizers could provide compressed data directly to
clients. However, there was no way to preflight the settings for compression. In
QuickTime 2.1, a new function, VDGetCompressionTime, has been added to allow
the video digitizer to quantize requested quality values to the actual quality
levels that will be used.

VDGetCompressionTime 9

Your component receives the VDGetCompressionTime request whenever a client
of the digitizer wants to confirm or quantize its compression settings.

pascal VideoDigitizerError VDGetCompressionTime (
VideoDigitizerComponent ci,
OSType compressionType,
short depth,
Rect *srcRect,
CodecQ *spatialQuality,
CodecQ *temporalQuality,
unsigned long *compressTime);

ci Specifies the video digitizer component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

compressionType
Specifies a compressor type. This value corresponds to the
component subtype of the compressor component. See the
chapter “Image Compression Manager” in Inside Macintosh:
QuickTime for more information about compressor types and for
valid values for this parameter.

C H A P T E R 9

Video Digitizer Components

Video Digitizer Components Reference 9-5

depth Specifies the depth at which the image is to be compressed.
Values of 1, 2, 4, 8, 16, 24, and 32 indicate the number of bits per
pixel for color images. Values of 33, 34, 36, and 40 indicate 1-bit,
2-bit, 4-bit, and 8-bit grayscale, respectively, for grayscale
images.

srcRect Contains a pointer to a rectangle defining the portion of the
source image to compress.

spatialQuality
Contains a pointer to a field containing the desired compressed
image quality. The compressor sets this field to the closest
actual quality that it can achieve. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid
values. A value of nil indicates that the client does not want
this information.

temporalQuality
Contains a pointer to a field containing the desired sequence
temporal quality. The compressor sets this field to the closest
actual quality that it can achieve. See the chapter “Image
Compression Manager” in Inside Macintosh: QuickTime for valid
values. A value of nil indicates that the client does not want
this information.

compressTime Contains a pointer to a field to receive the compression time, in
milliseconds. If your component cannot determine the amount
of time required to compress the image, set this field to 0. A
value of nil indicates that the client does not want this
information.

DISCUSSION

The Sequence Grabber’s video compression settings dialog uses this function
to snap the quality slider to the correct value when working with a
compression type that is provided by the video digitizer.

Your component returns a long integer indicating the maximum number of
milliseconds it would require to compress the specified image.

C H A P T E R 9

Video Digitizer Components

9-6 Video Digitizer Components Reference

RESULT CODES

Controlling Digitization 9

This section describes one new video digitizer component function,
VDSetDataRate, that instructs your video digitizer component to observe a
specified rate of data delivery.

VDSetDataRate 9

The VDSetDataRate function instructs your video digitizer component to limit
the rate at which it delivers compressed, digitized video data.

pascal VideoDigitizerError VDSetDataRate (
VideoDigitizerComponent ci,
long bytesPerSecond);

ci Specifies the video digitizer component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

bytesPerSecond
Specifies the maximum data rate requested by the application.
This parameter is set to 0 to remove any data-rate restrictions.

DISCUSSION

This function is valid only for video digitizer components that can deliver
compressed video (that is, components that support the
VDCompressOneFrameAsync function). Components that support data-rate
limiting set the codecInfoDoesRateConstrain flag to 1 in the compressFlags field
of the VDCompressionList structure returned by the component in response to
the VDGetCompressionTypes function.

Your video digitizer component should return this data-rate limit in the
bytesPerSecond parameter of the existing VDGetDataRate function.

noErr 0 No error
paramErr –50 Invalid parameter specified

C H A P T E R 9

Video Digitizer Components

Video Digitizer Components Reference 9-7

Controlling Packet Size 9

VDSetPreferredPacketSize 9

Sets the preferred packet size for digitizing.

pascal VideoDigitizerError VDSetPreferredPacketSize(
VideoDigitizerComponent ci,
long preferredPacketSizeInBytes);

ci Specifies the video digitizer component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

preferredPacketSizeInBytes
The preferred packet size in bytes.

DESCRIPTION

This function was added in QuickTime 2.5 to support video conferencing
applications.

Utility Functions 9

This section describes two new utility functions that may be supported by
some video digitizer components.

The VDGetTimeCode function allows an application to retrieve timecode
information.

The VDGetSoundInputSource function allows an application to retrieve
information about a digitizer’s sound input source.

C H A P T E R 9

Video Digitizer Components

9-8 Video Digitizer Components Reference

VDGetTimeCode 9

The VDGetTimeCode function instructs your video digitizer component to return
timecode information for the incoming video signal.

pascal VideoDigitizerError VDGetTimeCode (
VideoDigitizerComponent ci,
TimeRecord *atTime,
TimeCodeDef *timeCodeFormat,
TimecodeTime *timeCodeTime);

ci Specifies the video digitizer component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

atTime Specifies a location to receive the QuickTime movie time value
corresponding to the timecode information.

timeCodeFormat
Contains a pointer to a timecode definition structure. Your
video digitizer component returns the movie’s timecode
definition information.

timeCodeTime Contains a pointer to a timecode record structure. Your video
digitizer component returns the time value corresponding to
the movie time contained in the atTime parameter.

DISCUSSION

Typically, this function is called once, at the beginning of a capture session. The
use of VDGetTimeCode assumes that the time code for the entire capture session
will be continuous.

For more information about the timecode data structures, see Chapter 1,
“Movie Toolbox.”

C H A P T E R 9

Video Digitizer Components

Video Digitizer Components Reference 9-9

VDGetSoundInputSource 9

The VDGetSoundInputSource function instructs your video digitizer component
to return the sound input source associated with a particular video input.

pascal VideoDigitizerError VDGetSoundInputSource (
VideoDigitizerComponent ci,
long videoInput,
long *soundInput);

ci Specifies the video digitizer component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

videoInput Specifies the input video source for this request. Video digitizer
components number video sources sequentially, starting at 0.
So, to request information about the first video source, an
application sets this parameter to 0. Applications can get the
number of video sources supported by a video digitizer
component by calling the VDGetNumberOfInputs function.

soundInput The sound input index to use with the sound input driver
returned by VDGetSoundInputDriver.

DISCUSSION

Some video digitizers may associate different sound inputs with each video
input. The VDGetSoundInputDriver function returns the name of the sound input
driver that the sound input is associated with.

C H A P T E R 9

Video Digitizer Components

9-10 Video Digitizer Components Reference

C H A P T E R 1 0

Contents 10-1

Contents

Figure 10-0
Listing 10-0
Table 10-0

10 Text Channel Component

About the Text Channel Component 10-3
Text Channel Component Reference 10-6

Text Channel Component Functions 10-6
SGSetFontName 10-6
SGSetFontSize 10-7
SGSetTextForeColor 10-7
SGSetTextBackColor 10-8
SGSetJustification 10-8
SGGetTextRetToSpaceValue 10-9
SGSetTextRetToSpaceValue 10-10

C H A P T E R 1 0

10-2 Contents

C H A P T E R 1 0

About the Text Channel Component 10-3

Text Channel Component 10

This chapter discusses the text sequence grabber channel component and the
associated text digitizer components introduced in QuickTime 2.5. Just as video
digitizer components obtain digitized video from an analog video source, text
digitizer components obtain text from an external source. A text channel
component is a sequence grabber channel component. A text digitizer is a new
kind of component. The text channel component uses the services of text
digitizer components.

For more information about sequence grabber components, see the chapter
“Sequence Grabber Components” in Inside Macintosh: QuickTime Components.
For more information about sequence grabber channel components, see the
chapter “Sequence Grabber Channel Components” in Inside Macintosh:
QuickTime Components.

This chapter is divided into the following major sections:

■ “About the Text Channel Component” discusses the characteristics of the
QuickTime text channel component and text digitizer components

■ “Text Channel Component Reference” describes the functions provided by
the QuickTime text channel component

About the Text Channel Component 10

The QuickTime text channel component allows an application to obtain text
from an external source. Once obtained, this text can be previewed or recorded
into a QuickTime movie. The source of the text is unknown to the text channel
component; a text digitizer component ('tdig') is responsible for acquiring the
text from the external source. The text channel component is provided by
QuickTime.

Text digitizers are separate components; they are the mechanism for presenting
new sources of text data to QuickTime. Several text digitizer components are
available, including one that captures closed-captioned data using an Apple TV
Tuner card. For more information on creating a component, see the chapter
“Component Manager” in Inside Macintosh: More Macintosh Toolbox.

To retrieve text for previewing or for recording in a QuickTime movie, the
application uses the text channel the same way in which it would use a video
channel. The application calls a sequence grabber component, which, in turn,
calls the text channel component. The text channel component calls the

C H A P T E R 1 0

Text Channel Component

10-4 About the Text Channel Component

appropriate text digitizer component to retrieve the text. For more information
on how to use sequence grabber components, see the chapter “Sequence
Grabber Components” in Inside Macintosh: QuickTime Components.

Once text has been retrieved, the application can request that the sequence
grabber component store the text in a text track of a QuickTime movie. For
more information on the text media handler, see chapter “Movie Toolbox” in
Inside Macintosh: QuickTime.

The QuickTime text channel component supports some, but not all, functions
defined for sequence grabber channel components and sequence grabber panel
components. The supported functions are described in Table 10-1.

In addition, the text channel component provides new functions implemented
specifically for text; you use these functions to format captured text to be
viewed or added to a text track of a movie. The new functions are described in
“Text Channel Component Functions” (page 10-6).

Table 10-1 Functions supported by the text channel component

Usage Supported

General sequence grabber component
functions

SGSetGWorld

SGNewChannel

SGStartPreview

SGStartRecord

SGIdle

SGStop

SGPause

SGPrepare

SGRelease

SGGetChannelDeviceList

SGUpdate

C H A P T E R 1 0

Text Channel Component

About the Text Channel Component 10-5

Functions for getting and setting channel
characteristics

SGSetChannelUsage

SGGetChannelUsage

SGSetChannelBounds

SGGetChannelBounds

SGGetChannelInfo

SGSetChannelClip

SGGetChannelClip

SGGetChannelSampleDescription

SGSetChannelDevice

SGSetChannelMatrix

SGGetChannelMatrix

SGGetChannelTimeScale

Text channel component functions called
by sequence grabber components

SGInitChannel

SGWriteSamples

SGGetDataRate

Sequence grabber panel component
functions

SGPanelGetDitl

SGPanelInstall

SGPanelEvent

SGPanelRemove

SGPanelGetSettings

SGPanelSetSettings

SGPanelItem

Table 10-1 Functions supported by the text channel component (continued)

Usage Supported

C H A P T E R 1 0

Text Channel Component

10-6 Text Channel Component Reference

Text Channel Component Reference 10

Text Channel Component Functions 10

This section describes the functions provided by the text channel component
for formatting text to be previewed or added to a text track of a movie.

SGSetFontName 10

The SGSetFontName function sets the name of the font to be used to display text.

pascal ComponentResult SGSetFontName (
SGChannel c,
StringPtr pstr);

c Specifies the channel for this operation.

pstr A pointer to a Pascal string containing the name of the font.

DISCUSSION

You call this function to specify a font for the text channel component. If the
specified font is available on the system, the text channel uses the font to
display text. If the specified font is not available, the text channel uses the
default system font. For more information about fonts, see Inside Macintosh:
Text.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

C H A P T E R 1 0

Text Channel Component

Text Channel Component Reference 10-7

SGSetFontSize 10

The SGSetFontSize function sets the font size to be used to display text.

pascal ComponentResult SGSetFontSize (
SGChannel c,
short fontSize);

c Specifies the channel for this operation.

fontSize Specifies the point size of the font.

DISCUSSION

You call this function to specify a text point size for the text channel
component. The specified point size must be a positive integer value. For more
information about fonts and point size, see Inside Macintosh: Text.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

SGSetTextForeColor 10

The SGSetTextForeColor function sets the color to be used to display text.

pascal ComponentResult SGSetTextForeColor (
SGChannel c,
RGBColor *theColor);

c Specifies the channel for this operation.

theColor Contains a pointer to an RGBColor structure that contains the
new text color.

DISCUSSION

You call this function to set the text color for a text track.

C H A P T E R 1 0

Text Channel Component

10-8 Text Channel Component Reference

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

SGSetTextBackColor 10

The SGSetTextBackColor function sets the background color to be used for the
text box.

pascal ComponentResult SGSetTextBackColor (
SGChannel c,
RGBColor *theColor);

c Specifies the channel for this operation.

theColor Contains a pointer to an RGBColor structure that contains the
new background color.

DISCUSSION

You call this function to set the background color of a text track. The text
channel component uses the specified color as the background of the text box.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

SGSetJustification 10

The SGSetJustification function sets the alignment to be used to display text.

pascal ComponentResult SGSetJustification (
SGChannel c,
short just);

C H A P T E R 1 0

Text Channel Component

Text Channel Component Reference 10-9

c Specifies the channel for this operation.

just Specifies a constant that represents the text alignment. Possible
values are teFlushDefault, teCenter, teFlushRight, and
teFlushLeft.

DISCUSSION

You call this function, passing a text justification constant, to specify the
alignment to be used for text in a text track. The text channel component
justifies text relative to the boundaries of its text box. For more information on
text alignment and the text justification constants, see the “TextEdit” chapter of
Inside Macintosh: Text.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

SGGetTextRetToSpaceValue 10

The SGGetTextRetToSpaceValue function indicates whether the text channel
component should replace return characters with spaces.

pascal ComponentResult SGGetTextRetToSpaceValue (
SGChannel c,
short *rettospace);

c Specifies the channel for this operation.

rettospace Contains a pointer to a 16-bit integer. On return, this parameter
is true if the text channel is replacing return characters with
spaces, or false if the text channel is not replacing return
characters with spaces.

DISCUSSION

When you capture text from a closed-caption television source, the text is
composed of four lines of text of up to 32 characters each, each line separated

C H A P T E R 1 0

Text Channel Component

10-10 Text Channel Component Reference

by a return character. Sometimes it is useful to replace the return characters
with spaces. You can call this function to determine whether the text channel
component is replacing return characters with spaces.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

SGSetTextRetToSpaceValue 10

The SGSetTextRetToSpaceValue function sets whether the text channel
component should replace return characters with spaces.

pascal ComponentResult SGSetTextRetToSpaceValue (
SGChannel c,
short rettospace);

c Specifies the channel for this operation.

rettospace Specifies whether return characters should be replaced by
spaces. Set this parameter to true if the text channel should
replace return characters with spaces, or false if the text
channel should not replace return characters with spaces.

DISCUSSION

When you capture text from a closed-caption television source, the text is
composed of four lines of text of up to 32 characters each, each line separated
by a return character. You call this function to request that the text channel
component replace the return characters with spaces.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

C H A P T E R 1 1

Contents 11-1

Contents

Figure 11-0
Listing 11-0
Table 11-0

11 Movie Data Exchange
Components

New Features of Movie Data Exchange Components 11-3
Exporting Text 11-3
Text Descriptors 11-5
Time Stamps 11-13
Importing Text 11-14
Importing In Place 11-14
Audio CD Import Component 11-15

Movie Data Exchange Components Reference 11-15
Constants 11-15

Flags for Movie Import and Export Components 11-15
Text Export Options 11-16

Data Types 11-17
Text Display Data Structure 11-17

Movie Data Exchange Components Functions 11-19
Exporting Text 11-19

TextExportGetDisplayData 11-19
TextExportGetTimeFraction 11-20
TextExportSetTimeFraction 11-21
TextExportGetSettings 11-22
TextExportSetSettings 11-23

Importing Movie Data 11-23
MovieImportGetFileType 11-24
MovieImportGetAuxiliaryDataType 11-24
MovieImportValidate 11-25

Exporting Movie Data 11-26
Configuring Movie Data Export Components 11-26

MovieExportGetAuxillaryData 11-26

C H A P T E R 1 1

11-2 Contents

MovieExportSetSampleDescription 11-27

C H A P T E R 1 1

New Features of Movie Data Exchange Components 11-3

Movie Data Exchange Components 11

This chapter discusses new features in movie data exchange components as
documented in Chapter 9 of Inside Macintosh: QuickTime Components.

New Features of Movie Data Exchange Components 11

Exporting Text 11

The text export and import components provide new features that make it
easier to work with the data in a text track in a QuickTime movie. Text
descriptors are formatting commands that you can embed within a text file.
Time stamps describe a text sample’s starting time and duration.

The text export and import components now make it easier to edit and format
text using an external tool, such as a text editor or word processor. When you
export text from a text track, you can optionally export text descriptors and
time stamps for the text. You can open the text file in a word processor and
make changes to the text, style, color, and time stamps. You can then import the
edited text to a text track where all the timing , style, color and time stamp
information will be present.

When you export text, you control whether text descriptors and time stamps
are to be exported by selecting the appropriate options in the Text Export
Settings dialog box, shown in Figure 11-1. To display this dialog box
programmatically, you call the MovieExportDoUserDialog function, described in
Inside Macintosh: QuickTime Components.

Based on the options you specify in the Text Export Settings dialog box, the
text export component is assigned one of three text export option constants:
kMovieExportTextOnly, kMovieExportAbsoluteTime, or kMovieExportRelativeTime.

C H A P T E R 1 1

Movie Data Exchange Components

11-4 New Features of Movie Data Exchange Components

Figure 11-1 Text Export Settings dialog box

If you choose “Show Text Only”, the text component is assigned the export
option constant kMovieExportTextOnly. In this case, the text component exports
only text samples, without text descriptors or time stamps. This option is useful
when you want to export only the text from a movie and you do not intend to
import the text back into a movie.

If you select “Show Text, Descriptors, and Time”, the text component is
assigned one of two export option constants, depending on the format you
specify for time stamps:

■ If you specify time stamps to be relative to the start of the movie, the text
component is assigned the export option constant kMovieExportAbsoluteTime.
In this case, the text export component exports text, along with both text
descriptors and time stamps. Time stamps are calculated relative to the start
of the movie. For example, in exported text with absolute time stamps, the
time stamp [00:00:04.000] indicates that a text sample begins 4 seconds
after the start of the movie.

■ If you specify time stamps to be relative to the sample, the text component is
assigned the export option constant kMovieExportRelativeTime. In this case,
the text export component exports text, along with both text descriptors and
time stamps. The time stamp for each sample is calculated relative to the end
of the previous sample. For example, in exported text with relative time
stamps, the time stamp [00:00:04.000] indicates that a text sample begins 4

C H A P T E R 1 1

Movie Data Exchange Components

New Features of Movie Data Exchange Components 11-5

seconds after the beginning of the previous sample. In other words, the
previous sample lasts 4 seconds.

For more information about time stamps, see “Time Stamps” (page 11-13).

The text export component provides two functions you can use to access the
component’s text export option programmatically. To retrieve the current value
of the text export option, you call the TextExportGetSettings function
(page 11-22). To set the value of the text export option, you call the
TextExportSetSettings function (page 11-23).

The Text Export Settings dialog box also allows you to specify the time scale
the text component uses to specify the fractional part of a time stamp. The
value should be between 1 and 10000, inclusive. The text export component
provides two functions you can use to access the component’s time scale
programmatically. To retrieve the time scale, you call the
TextExportGetTimeFraction function (page 11-20). To set the time scale, you call
the TextExportSetTimeFraction function (page 11-21).

Text Descriptors 11

A text descriptor is a formatting command that describes the text that follows
it. Exporting text with text descriptors allows you to edit text from a text track,
including its formatting, in an external program, such as a text editor or word
processor. When you import the edited text, the formatting you specified with
the text descriptors is preserved. This provides an easy way to localize movies
for different languages, correct spelling, change styles, or modify text behavior.

A text descriptor has the following format:

{descriptor}

For example, the text descriptor {bold} sets the text in the current text sample
and all subsequent text samples. Some text descriptors, such as {bold}, have no
parameters. Other text descriptors have one or more parameters. For text
descriptors with parameters, the descriptor is followed by a colon and its
parameters, separated by commas. You can specify text descriptors using either
uppercase or lowercase characters, with or without spaces separating the
parameters:

{descriptor: parameter1, ..., parameterN}

C H A P T E R 1 1

Movie Data Exchange Components

11-6 New Features of Movie Data Exchange Components

For example, the text descriptor {font:New York} sets the text in the current text
sample and all subsequent text samples to the New York font. The New York
font is applied to all text until a second {font:} text descriptor is issued.

A text stream that contains text descriptors and time stamps should always
begin with the text descriptor {QTtext}, followed by any number of text
descriptors in any order. If the text import component detects a typographical
error inside a descriptor while importing a text file, it may generate partial
results or an error message stating that the text file cannot be converted.

When text with text descriptors is imported into a track, the information
represented by the descriptors is stored in a text display data structure (type
TextDisplayData). Text descriptors whose possible values are on and off are
used to set flags in the displayFlags field of the text display data structure.
Each sample in the text track has a corresponding text display data structure
that contains the text attributes of the sample. For more information, see “Text
Display Data Structure” (page 11-17).

Listing 11-1 shows a simple example of text that has been exported with text
descriptors and time stamps. The text sample displays the text “I ♥ Apple” (the
“© “character is a “♥ ” in the Symbol font). The background color is black and
the text color is white, except for the “♥ ” character, which is drawn in red.

Listing 11-1 Formatting text using text descriptors

{QTtext} {font:New York} {plain} {size:36} {textColor: 65535, 65535,
65535} {backColor: 0, 0, 0} {justify:center} {timeScale:600} {width:320}
{height:0} {timeStamps:absolute}
[00:00:00.000]
I {font:Symbol}{size:46}{textColor:65535, 0, 0}© {textColor: 65535,
65535, 65535}{font:New York} {plain} {size:36} Apple
[00:00:05.300]

The {karaoke:} text descriptor allows you to highlight groups of characters in a
text sample at specified times. For example, you might want to highlight the
words in a song while playing the song’s sound track. The parameters for the
{karaoke:} text descriptor are specified as a set of tuples, separated by
semicolons. The set of tuples is preceded by the total number of tuples:

{karaoke: count; a1, a2, a3; b1, b2, b4; ... n1, n2, n3}text sample

C H A P T E R 1 1

Movie Data Exchange Components

New Features of Movie Data Exchange Components 11-7

Each tuple is composed of a time value (that is greater then the one specified
and less then the next time value), a starting offset into the text, and an ending
offset into the text; at the specified time value, the text from the starting offset
to the ending offset is highlighted.

The following example shows a {karaoke:} text descriptor followed by some
text. The time scale of the movie was set to 600. The {karaoke:} text descriptor
has 14 tuples. The second tuple indicates that, between 125/600 seconds and
250/600 seconds, the text from offset 0 to offset 4 (“Thun”) should be
highlighted. The third tuple indicates that, after 250/600 seconds and before
350/600 seconds, the text from offset 4 to offset 7 (“der”) should be highlighted.

{karaoke: 14; 0, 0, 0; 125, 0, 4; 250, 4, 7; 375, 7, 11; 500, 12, 15;
750, 16, 21; 1000, 21, 25; 1125, 25, 28; 1250, 28, 30; 1375, 31, 33;
1500, 33, 35; 1750, 36, 42; 2000, 42, 47; 2250, 48, 50;}Thunderbolt and
lightning very very fright'ning me

The text export and import components support the following text descriptors:

General

{QTtext} Required at the beginning of any text file that contains
descriptors or time stamps. If the text import component
does not detect this descriptor at the beginning of the file,
it assumes the file is a standard text file and will not look
for descriptors or time stamps.

{language:} Specifies the language of the text track. This text descriptor
takes one parameter, the ordinal value of the language. For
example, {language:11} specifies that the language of the
track is Japanese. For more information on language
ordinal values, see the chapter “Movie Resource Formats”
in Inside Macintosh: QuickTime.

Text styles

{font:} Specifies the name of the font to be used. For example, the
text descriptor {font:Apple Chancery} changes the font to
Apple Chancery.

{size:} Specifies the point size of the text. For example, the text
descriptor {size:18} sets the text point size to 18 points.

C H A P T E R 1 1

Movie Data Exchange Components

11-8 New Features of Movie Data Exchange Components

{plain} Resets the text style. This text descriptor resets the
following text descriptors: {bold}, {italic}, {underline},
{shadow}, {outline}, {extend}, and {condense}.

{bold} Specifies bold text.
{italic} Specifies italic text.
{underline} Specifies underlined text.
{outline} Specifies outlined text.
{shadow} Specifies shadow text.
{condense} Specifies condensed text.
{extend} Specifies extended text.

Text dimensions

{height:} Specifies the height of the text track in pixels. For example,
the text descriptor {height:50} sets the text track height to
50 pixels. The text descriptor {height:0} sets the height to
the best height for the text.

{width:} Specifies the width of the text track in pixels. For example,
the text descriptor {width:50} sets the text track width to
50 pixels. The text descriptor {width:0} sets the width to an
appropriate default or, if importing a movie, to the width
of the movie.

{textBox:} Specifies the coordinates of the text box. This text
descriptor takes four parameters: top, left, bottom, and
right. For example, if you specify {textBox:0, 0, 80, 320}, the
text box originates at (0,0) and is 320 pixels wide and 80
pixels high.

{doNotAutoScale:} Specifies whether to automatically scale the text if the track
bounds increase. This text descriptor takes one parameter.
Possible values are on and off; the default value is off. For
example, the text descriptor {doNotAutoScale:off} enables
auto-scaling. This corresponds to the dfDontAutoScale
display flag.

{clipToTextBox:} Specifies whether to clip to the text box. This is useful if
the text overlays the video. This text descriptor takes one
parameter. Possible values are on and off; the default
value is off. This corresponds to the dfClipToTextBox
display flag.

C H A P T E R 1 1

Movie Data Exchange Components

New Features of Movie Data Exchange Components 11-9

{shrinkTextBox:} Specifies whether to recalculate the size of the text box
specified by the {textBox:} text descriptor to fit the
dimensions of the text. If so, the new rectangle is stored
with the text data. This text descriptor takes one
parameter. Possible values are on and off. The value of this
text descriptor is used to set a flag in the displayFlags field
of the text display data structure. This corresponds to the
dfShrinkTextBoxToFit display flag.

Drawing text

{doNotDisplay:} Specifies whether to display the sample. This text
descriptor takes one parameter. Possible values are on and
off; the default value is off. For example, the text
descriptor {doNotDisplay:on} causes the sample to not be
displayed. This corresponds to the dfDontDisplay display
flag.

{justify:} Specifies the alignment of the text in the text box. This text
descriptor takes one parameter. Possible values are left,
right, center, and default. For example, the text descriptor
{justify:left} aligns text on the left. For more
information on text alignment, see the chapter “TextEdit”
in Inside Macintosh: Text.

{anti-alias:} Specifies whether text should be displayed using
anti-aliasing. Anti-aliasing smooths the edges of the text by
blending the edge colors of the text and background. This
text descriptor takes one parameter. Possible values are on
and off; the default value is off. This corresponds to the
dfAntiAlias display flag.

{textColor:} Specifies the color of the text. This text descriptor takes
three parameters: red, green, and blue color values. Each
parameter should be between 0 and 65535. For example,
the text descriptor {textColor:45000,0,0} sets the text
color to a shade of red.

{backColor:} Specifies the background color of the region specified by
the {textBox:} text descriptor or the region specified by
the {height:} and {width:} descriptors. This text
descriptor takes three parameters: red, green, and blue
color values. Each parameter should be between 0 and
65535. For example, the text descriptor

C H A P T E R 1 1

Movie Data Exchange Components

11-10 New Features of Movie Data Exchange Components

{backColor:0,45000,0} sets the background color to a
shade of green.

{hiliteColor:} This display flag specifies the color to be used to highlight
text. This text descriptor takes three parameters: red,
green, and blue color values. Each parameter should be
between 0 and 65535. For example, the text descriptor
{hiliteColor:45000,0,0} sets the highlight color to a shade
of red.

{inverseHilite:} This display flag specifies whether to highlight text using
reverse video instead of the highlight color. This text
descriptor takes one parameter. Possible values are on and
off; the default value is off. This corresponds to the
dfInverseHilite display flag.

{keyedText:} This display flag specifies whether text should be rendered
over the background without drawing the background
color. This technique is also known as masked text. This
text descriptor takes one parameter. Possible values are on
and off; the default value is off. This corresponds to the
dfKeyedText display flag.

{hilite:} Specifies characters to be highlighted in a text sample. This
text descriptor takes two parameters, the first and last
characters to highlight in the sample. For example, the text
descriptor {hilite: 11, 14} highlights the word “text” in
the text sample “This is a text track”.

{textColorHilite:} This display flag specifies whether text should be
highlighted by changing the color of the text. This text
descriptor takes one parameter. Possible values are on and
off; the default value is off.

{karaoke:} Highlights groups of characters in the subsequent text
sample at specified times. For example, you use this text
descriptor to highlight the words in a song while playing
the song’s sound track. The parameters for this text
descriptor are specified as a set of tuples of the form (time
value, starting offset, ending offset), separated by semicolons.
The set of tuples is preceded by the total number of tuples.
For each tuple, at the specified time value, the text from
the starting offset to the ending offset is highlighted.

{continuousKaraoke:}
This display flag specifies whether karaoke should ignore

C H A P T E R 1 1

Movie Data Exchange Components

New Features of Movie Data Exchange Components 11-11

the starting offset and highlight all text from the beginning
of the sample to the ending offset. Possible values are on
and off; the default value is off. If continuous karaoke is
not enabled, karaoke highlights one offset range at a time.
In order for this text descriptor to take effect, the karaoke
text descriptor must be in effect. This corresponds to the
dfContinuousKaraoke display flag.

{dropShadow:} This display flag specifies whether the text sample
supports drop shadows. This text descriptor takes one
parameter. Possible values are on and off; the default value
is off. This corresponds to the dfDropShadow display flag.

{dropShadowOffset:}Specifies an offset for the drop shadow. This text
descriptor takes two parameters, an offset to the right and
an offset down. For example, the text descriptor
{dropShadowOffset: 3, 4} offsets the drop shadow 3 pixels
to the right and 4 pixels down. The default is
{dropShadowOffset: 6, 6}. In order for this text descriptor
to take effect, drop shadowing must be enabled.

{dropShadowTransparency:}
Specifies the intensity of the drop shadow. This text
descriptor takes one parameter, a value between 0 and 255.
The default value is 127. In order for this text descriptor to
take effect, drop shadowing must be enabled.

Time stamps

{timeStamps:} Specifies whether time stamps are absolute or relative.
This text descriptor takes one parameter. Possible values
are absolute and relative. For example,
{timestamps:absolute} specifies absolute time stamps. If
time stamps are absolute, for each sample, the time stamp
is specified relative to the start of the track. If time stamps
are relative, for each sample, the time stamp is specified
relative to the previous time stamp.

{timeScale:} Specifies the time scale for the text track. This time scale is
used to calculate the mantissa for a time stamp. For
example, if the text descriptor {timeScale:600} is specified,
the time stamp [00:00:07.300] would be interpreted as 7.5
seconds. The maximum value for this parameter is 10000.

C H A P T E R 1 1

Movie Data Exchange Components

11-12 New Features of Movie Data Exchange Components

Scrolling

{scrollIn:} This display flag specifies whether text should be scrolled
in until the last of the text is in view. This text descriptor
takes one parameter. Possible values are on and off; the
default value is off. If both {scrollIn:} and {scrollOut:}
are set, the text is scrolled in and then scrolled out. If the
{scrollDelay:} text descriptor is set, text is scrolled using
the specified delay. This corresponds to the dfScrollIn
display flag.

{scrollOut:} This display flag specifies whether text should be scrolled
out until the last of the text is in view. This text descriptor
takes one parameter. Possible values are on and off; the
default value is off. If both {scrollIn:} and {scrollOut:}
are set, the text is scrolled in and then scrolled out. If the
{scrollDelay:} text descriptor is set, text is scrolled using
the specified delay. This corresponds to the dfScrollOut
display flag.

{horizontalScroll:}
This display flag specifies whether to scroll a single line of
text horizontally. This text descriptor takes one parameter.
Possible values are on and off; the default value is off. If
you do not specify this descriptor, the scrolling is vertical.
The scrolling direction is determined by the
{reverseScroll:} text descriptor. This corresponds to the
dfHorizScroll display flag.

{reverseScroll:} This display flag specifies whether to reverse the direction
of scrolling. This text descriptor takes one parameter.
Possible values are on and off; the default value is off. For
vertical scrolling, the default direction is up. For horizontal
scrolling, the default direction is left. For example, if you
specify {reverseScroll:on} and {horizontalScroll:off},
the text is scrolled vertically down. This corresponds to
the dfReverseScroll display flag.

{continuousScroll:}
This display flag specifies whether new samples should
cause previous samples to scroll out. This text descriptor
takes one parameter. Possible values are on and off; the
default value is off. In order for this text descriptor to take
effect, either {scrollIn:} or {scrollOut:} must be enabled.
This corresponds to the dfContinuousScroll display flag.

C H A P T E R 1 1

Movie Data Exchange Components

New Features of Movie Data Exchange Components 11-13

{flowHorizontal:} This display flag specifies whether text flows within the
text box when it is scrolled horizontally. This text
descriptor takes one parameter. Possible values are on and
off; the default value is off. For example, if you specify
{flowHorizontal:off}, the text flows as if the text box had
no right edge. In order for this text descriptor to take
effect, horizontal scrolling must be enabled. This
corresponds to the dfFlowHoriz display flag.

{scrollDelay:} This display flag specifies a scroll delay for the sample.
This text descriptor takes one parameter, the number of
units of the delay in the text track’s time scale. For
example, if the time scale is 600, the text descriptor
{scrollDelay: 600} causes subsequent text to be delayed
one second. In order for this text descriptor to take effect,
scrolling must be enabled.

Time Stamps 11

When you export text and text descriptors from a text track, the text
component also exports a time stamp for each sample. The time stamp
indicates the starting and ending time of the sample, either relative to the start
of the movie (kMovieExportAbsoluteTime) or to the end of the previous sample
(kMovieExportRelativeTime). On import, the time stamps maintain the timing
positions of the text samples relative to other media in the movie.

The format of a time stamp is

[HH:MM:SS.xxx]

where HH represents the number of hours, MM represents the number of minutes,
SS represents the number of seconds, and xxx represents the mantissa (the
fractional part of a second). The mantissa is expressed in the time scale of the
text track. For example, if the time scale of the text track is 600, the time stamp
[00:00:07.300] is interpreted as 7.5 seconds. If the time scale of the text track is
10, the time stamp [00:00:07.5] is also interpreted as 7.5 seconds. The
maximum time scale for a text track is 10000.

When a text export component exports a text sample, it first exports the time
stamp, followed by a Return character. Then, it exports the sample’s text and
text descriptors. If a text sample does not contain any text, the text component
exports the time stamp and Return character, but no text.

C H A P T E R 1 1

Movie Data Exchange Components

11-14 New Features of Movie Data Exchange Components

Importing Text 11

When you import text, you can override the text descriptors in the text file by
specifying options in the Text Import Settings dialog box, shown in “Text
Import Settings dialog box”. On import, the settings specified in the dialog box
are applied to all imported samples. To display this dialog box
programmatically, you call the MovieImportDoUserDialog function, described in
Inside Macintosh: QuickTime Components.

Figure 11-2 Text Import Settings dialog box

Importing In Place 11

Some movie data import components can create a movie from a file without
having to write to a separate disk file. Examples include MPEG and AIFF
import components—data in files of these types can be played directly by the
appropriate media handler components, without any data conversion. In such
cases it is inappropriate for the user to have to specify a destination file, given
that there is no need for such a file.

If your import component can operate in this manner, set the
canMovieImportInPlace flag to 1 in your component flags when you register

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-15

your component. The standard file dialog uses this flag to determine how to
import files. The OpenMovieFile and NewMovieFromFile functions use this flag to
open some kinds of files as movies.

Audio CD Import Component 11

QuickTime 1.6.1 introduced the audio CD import component. This movie
import component allowed users to open audio CD tracks from the QuickTime
Standard File Preview dialog, then convert and save the audio as a movie.

In QuickTime 2.1, the audio CD import component was revised to create AIFF
files, rather than movie files. These files also contain movie resources, so you
can open them as movies.

When you open an audio track on an Apple CD-ROM drive (or equivalent), the
Open button changes to a Convert button. When you click Convert, the Audio
CD Import Options dialog appears. Use this dialog box to configure the sound
settings. You can specify the sample rate, sample size, and channel settings.
You can also select the portion of the track that you want to convert.

Movie Data Exchange Components Reference 11

This section describes new constants, data types, and functions of movie data
exchange components.

Constants 11

Flags for Movie Import and Export Components 11

QuickTime 1.6.1 added four new componentFlags values. The
canMovieImportInPlace and movieImportSubTypeIsFileExtension values were
added in QuickTime 2.0:

enum {
canMovieExportAuxDataHandle = 1 << 7,
canMovieImportValidateHandles = 1 << 8,

C H A P T E R 1 1

Movie Data Exchange Components

11-16 Movie Data Exchange Components Reference

canMovieImportValidateFile = 1 << 9,
dontRegisterWithEasyOpen = 1 << 10,
canMovieImportInPlace = 1 << 11,
movieImportSubTypeIsFileExtension = 1 << 12

};

Constant descriptions

canMovieExportAuxDataHandle
Set this bit to export a movie to an auxillary data handle. A
movie export component that supports the
MovieExportGetAuxillaryData function should also set this
flag in its componentFlags.

canMovieImportValidateHandles
Set this bit if your movie import component can and wants
to validate handles.

canMovieImportValidateFile
Set this bit if your movie import component can and wants
to validate files.

dontRegisterWithEasyOpen
Set this bit if Macintosh Easy Open is installed and you do
not want to register your component and you want to
handle interactions with Macintosh Easy Open yourself.

canMovieImportInPlace
Set this bit if your movie import component can create a
movie from a file without having to write to a separate
disk file. Examples include MPEG and AIFF import
components.

movieImportSubTypeIsFileExtension
Set this bit if your component’s subtype is a file extension
instead of a Macintosh file type. For example, if your
import component opens files with an extension of .doc,
you would set this flag and set your component subtype to
'DOC '.

Text Export Options 11

The following constants represent options for exporting text using a text export
component. You use these constants to specify the format of the exported text.
From the QuickTime user interface, you specify a text export option in the Text

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-17

Export Settings dialog box. You can also specify the text export option
programmatically by calling the TextExportSetSettings function (page 11-23).

enum {
kMovieExportTextOnly = 0,
kMovieExportAbsoluteTime= 1,
kMovieExportRelativeTime= 2

};

Constant descriptions

kMovieExportTextOnly
Export text only, without text descriptors or time stamps.

kMovieExportAbsoluteTime
Export text with text descriptors and time stamps. For each
sample, calculate the time stamp relative to the start of the
movie.

kMovieExportRelativeTime
Export text with text descriptors and time stamps. For each
sample, calculate the time stamp relative to the previous
time stamp.

Data Types 11

Text Display Data Structure 11

The TextDisplayData structure contains formatting information for a text
sample. When the text export component exports a text sample, it uses the
information in this structure to generate the appropriate text descriptors for the
sample. Likewise, when the text import component imports a text sample, it
sets the appropriate fields in the text display data structure based on the
sample’s text descriptors.

struct TextDisplayData {
long displayFlags;
long textJustification;
RGBColor bgColor;
Rect textBox;
short beginHilite;

C H A P T E R 1 1

Movie Data Exchange Components

11-18 Movie Data Exchange Components Reference

short endHilite;
RGBColor hiliteColor;
Boolean doHiliteColor;
SInt8 filler;
TimeValue scrollDelayDur;
Point dropShadowOffset;
short dropShadowTransparency;

};
typedef struct TextDisplayData TextDisplayData;

Field descriptions
displayFlags Contains flags that represent the values of the following

text descriptors: doNotDisplay, doNotAutoScale,
clipToTextBox, useMovieBackColor, shrinkTextBox,
scrollIn, scrollOut, horizontalScroll, reverseScroll,
continuousScroll, flowHorizontal, dropShadow, anti-alias,
keyedText, inverseHilite, continuousKaraoke, and
textColorHilite. For more information on the text sample
display flags, see Chapter 1, “Movie Toolbox,” in this book
and the description of the AddTextSample function in Inside
Macintosh: QuickTime.

textJustification Specifies the alignment of the text in the text box. Possible
values are teFlushDefault, teCenter, teFlushRight, and
teFlushLeft. For more information on text alignment and
the text justification constants, see the “TextEdit” chapter
of Inside Macintosh: Text.

bgColor Specifies the background color of the rectangle specified
by the textBox field. The background color is specified as
an RGB color value.

textBox Specifies the rectangle of the text box.
beginHilite Specifies the one-based index of the first character in the

sample to highlight.
endHilite Specifies the one-based index of the last character in the

sample to highlight.
doHiliteColor Specifies whether to use the color specified by the

hiliteColor field for highlighting. If the value of this field
is true, the highlight color is used for highlighting. If the
value of this field is false, reverse video is used for
highlighting.

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-19

filler Reserved.
scrollDelayDur Specifies a scroll delay. The scroll delay is specified as the

number of units of delay in the text track’s time scale. For
example, if the time scale is 600, a scroll delay of 600
causes the sample text to be delayed one second. In order
for this field to take effect, scrolling must be enabled.

dropShadowOffset Specifies an offset for the drop shadow. For example, if the
point specified is (3,4), the drop shadow is offset 3 pixels to
the right and 4 pixels down. In order for this field to take
effect, drop shadowing must be enabled.

dropShadowTransparency
Specifies the intensity of the drop shadow as a value
between 0 and 255. In order for this field to take effect,
drop shadowing must be enabled.

Movie Data Exchange Components Functions 11

Exporting Text 11

This section describes new functions provided by text export components.

TextExportGetDisplayData 11

The TextExportGetDisplayData function retrieves text display information for
the current sample in the specified text export component.

pascal ComponentResult TextExportGetDisplayData (
TextExportComponent ci,
TextDisplayData *textDisplay);

ci Specifies the text export component for this operation.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

C H A P T E R 1 1

Movie Data Exchange Components

11-20 Movie Data Exchange Components Reference

textDisplay Contains a pointer to a text display data structure. On return,
this structure contains the display settings of the current text
sample. For more information, see “Text Display Data
Structure” (page 11-17).

DISCUSSION

You call this function to retrieve the text display data structure for a text
sample. The text display data structure contains the formatting information for
the text sample. When the text export component exports a text sample, it uses
the information in this structure to generate the appropriate text descriptors for
the sample. Likewise, when the text import component imports a text sample,
it sets the appropriate fields in the text display data structure based on the
sample’s text descriptors.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

TextExportGetTimeFraction 11

The TextExportGetTimeFraction function retrieves the time scale the specified
text export component uses to calculate time stamps.

pascal ComponentResult TextExportGetTimeFraction (
TextExportComponent ci,
long *movieTimeFraction);

ci Specifies the text export component for this operation.

movieTimeFraction
Contains a pointer to a 32-bit integer. On return, this integer
contains the time scale used in the fractional part of time
stamps.

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-21

DISCUSSION

You call this function to retrieve the time scale used by the text export
component to calculate the fractional part of time stamps. You set a text
component’s time scale by specifying it in the Text Export Settings dialog or by
calling the TextExportSetTimeFraction function.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

TextExportSetTimeFraction 11

The TextExportSetTimeFraction function set the time scale the specified text
export component uses to calculate time stamps.

pascal ComponentResult TextExportSetTimeFraction (
TextExportComponent ci,
long movieTimeFraction);

ci Specifies the text export component for this operation.

movieTimeFraction
Specifies the time scale used in the fractional part of time
stamps. The value should be between 1 and 10000, inclusive.

DISCUSSION

You call this function to set the time scale used by the text export component to
calculate the fractional part of time stamps. You can also set a text component’s
time scale by specifying it in the Text Export Settings dialog. You can retrieve a
text component’s time scale by calling the TextExportGetTimeFraction function.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

C H A P T E R 1 1

Movie Data Exchange Components

11-22 Movie Data Exchange Components Reference

TextExportGetSettings 11

The TextExportGetSettings function retrieves the value of the text export
option for the specified text export component.

pascal ComponentResult TextExportGetSettings (
TextExportComponent ci,
long *setting);

ci Specifies the text export component for this operation.

setting Contains a pointer to a 32-bit integer. On return, this integer
contains a constant that represents the current value of the text
export option. Possible values are kMovieExportTextOnly,
kMovieExportAbsoluteTime, and kMovieExportRelativeTime. For
more information, see “Text Export Options” (page 11-16).

DISCUSSION

You call this function when exporting text to retrieve the current value of the
text export option for the specified text export component. If the retrieved text
export option is kMovieExportTextOnly, the text export component exports text
without time descriptors or time stamps. If the retrieved text export option is
either kMovieExportAbsoluteTime or kMovieExportRelativeTime, the text export
component exports text along with its text descriptors and time stamps.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-23

TextExportSetSettings 11

The TextExportSetSettings function sets the value of the text export option for
the specified text export component.

pascal ComponentResult TextExportSetSettings (
TextExportComponent ci,
long setting);

ci Specifies the text export component for this operation.

setting Specifies a constant that represents the current value of the text
export option. Possible values are kMovieExportTextOnly,
kMovieExportAbsoluteTime, and kMovieExportRelativeTime. For
more information, see “Text Export Options” (page 11-16).

DISCUSSION

You call this function when exporting text to set the value of the text export
option for the specified text export component. To export text only, without
time descriptors or time stamps, you should set the setting parameter to
kMovieExportTextOnly. To export text with text descriptors and absolute time
stamps, you should set the setting parameter to kMovieExportAbsoluteTime. To
export text with text descriptors and relative time stamps, you should set the
setting parameter to kMovieExportRelativeTime.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toolbox.

Importing Movie Data 11

This section describes new movie import component functions.

C H A P T E R 1 1

Movie Data Exchange Components

11-24 Movie Data Exchange Components Reference

MovieImportGetFileType 11

The MovieImportGetFileType allows your movie data import component to tell
the Movie Toolbox the appropriate file type for the most-recently imported
movie file.

pascal ComponentResult MovieImportGetFileType (MovieImportComponent ci,
OSType *fileType);

ci Identifies the Movie Toolbox’s connection to your movie data
import component.

fileType Contains a pointer to an OSType field. Your component should
place the file type value that best identifies the movie data just
imported. For example, Apple’s Audio CD movie data import
component sets this field to 'AIFF' whenever it creates an AIFF
file instead of a movie file.

DISCUSSION

You should implement this function only if your movie data import
component creates files other than QuickTime movies. By default, the Movie
Toolbox makes new files movies, unless you override that default by providing
this function.

RESULT CODES

MovieImportGetAuxiliaryDataType 11

The MovieImportGetAuxiliaryDataType function returns the type of the auxillary
data that it can accept. For example, calling the text import component with

badComponentSelector 0x80008002 Function not supported

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-25

MovieImportGetAuxiliaryDataType indicates that the text import component
will use 'styl' information in addition to 'text' data.

pascal ComponentResult MovieImportGetAuxiliaryDataType(
MovieImportComponent ci,
OSType *auxType)

ci Specifies the movie import component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

auxType A pointer to the type of auxillary data it can import.

RESULT CODES

MovieImportValidate 11

The MovieImportValidate function allows your movie data import component
to validate the data to be passed to your component.

pascal ComponentResult MovieImportValidate(
MovieImportComponent ci,
const FSSpec *theFile,
Handle theData,
Boolean *valid)

ci Specifies the movie import component for the request.
Applications obtain this reference from the Component
Manager’s OpenComponent function.

theFile Specifies the file to validate.

theData Specifies the data to validate.

valid Contains a pointer to a Boolean value. If the data and/or file is
valid, this value returns true. Otherwise, it returns false.

badComponentInstance 0x80008001 Invalid movie import component
instance

badComponentSelector 0x80008002 Function not supported

C H A P T E R 1 1

Movie Data Exchange Components

11-26 Movie Data Exchange Components Reference

DISCUSSION

Movie import components can implement this function to allow applications to
determine if a given file or handle to data is acceptable for a particular import
component. As this function may be called on many files, the validation
process should be as fast as possible.

RESULT CODES

Exporting Movie Data 11

Since QuickTime 1.6.1, the sound movie export component has been updated
to take advantage of Sound Manager 3.0. Previously, only the first sound track
in the movie was exported. Now sound tracks are mixed together before they
are exported. If you want to use sound mixing, you can use the
PutMovieIntoTypedHandle function to take advantage of the export component.
Furthermore, you can now specify the format of the exported sound, so you
can convert 16-bit sound to 8-bit sound or reduce stereo to mono. See Inside
Macintosh: QuickTime for a description of the PutMovieIntoTypedHandle function.

Configuring Movie Data Export Components 11

This section describes new and modified movie export component functions.

MovieExportGetAuxillaryData 11

QuickTime 1.6.1 added a new result code to this function. A movie export
component returns the following result code when
MovieExportGetAuxillaryData is called requesting a type of auxillary data that
the component cannot generate.

badComponentInstance 0x80008001 Invalid movie import component
instance

badComponentSelector 0x80008002 Function not supported

C H A P T E R 1 1

Movie Data Exchange Components

Movie Data Exchange Components Reference 11-27

RESULT CODES

MovieExportSetSampleDescription 11

The MovieExportSetSampleDescription function allows your application to
request the format of the exported data. This function is supported by the
sound movie export component, for example.

pascal ComponentResult MovieExportSetSampleDescription(
MovieExportComponent ci,
SampleDescriptionHandle desc,
OSType mediaType)

ci Specifies the movie component for the request. Applications
obtain this reference from the Component Manager’s
OpenComponent function.

desc Contains a handle to a valid QuickTime sample description.

mediaType Indicates the type of media the sample description is for. For
example, if the sample description was a sound description, this
parameter would be set to SoundMediaType.

DISCUSSION

A movie export component may use all, some, or none of the settings from the
sample description.

RESULT CODES

auxillaryExportDataUnavailable -2058 Cannot generate the requested
type of auxillary data.

badComponentInstance 0x80008001 Invalid movie import component
instance

badComponentSelector 0x80008002 Function not supported

C H A P T E R 1 1

Movie Data Exchange Components

11-28 Movie Data Exchange Components Reference

C H A P T E R 1 2

Contents 12-1

Contents

Figure 12-0
Listing 12-0
Table 12-0

12 Derived Media Handler
Components

Derived Media Handler Components Reference 12-3
Constants 12-3

Media Video Parameters 12-3
Data Types 12-4
Derived Media Handler Component Functions 12-5

Managing Your Media Handler Component 12-5
MediaIdle 12-5

General Data Management 12-6
MediaGSetActiveSegment 12-6
MediaInvalidateRegion 12-7
MediaGetNextStepTime 12-7
MediaTrackReferencesChanged 12-9
MediaTrackPropertyAtomChanged 12-10
MediaSetTrackInputMapReference 12-10
MediaGetSampleDataPointer 12-11
MediaReleaseSampleDataPointer 12-12
MediaCompare 12-12
MediaSetVideoParam 12-13
MediaGetVideoParam 12-14
MediaSetNonPrimarySourceData 12-14
MediaGetOffscreenBufferSize 12-18
MediaSetHints 12-19
MediaGetName 12-19

Graphics Data Management 12-20
MediaGetDrawingRgn 12-20
MediaGetGraphicsMode 12-21
MediaSetGraphicsMode 12-22

C H A P T E R 1 2

12-2 Contents

Sound Data Management 12-23
MediaSetSoundLocalizationData 12-23

C H A P T E R 1 2

Derived Media Handler Components Reference 12-3

Derived Media Handler Components 12

This chapter discusses the changes to derived media handler components as
documented in Chapter 10 of Inside Macintosh: QuickTime Components.

Derived Media Handler Components Reference 12

Constants 12

Media Video Parameters 12

The whichparam parameter to the MediaSetVideoParam and MediaGetVideoParam
functions specifies which video parameter you want to adjust. QuickTime
defines these constants that you can use to configure the whichparam parameter.

enum {
kMediaVideoParamBrightness = 1,
kMediaVideoParamContrast = 2,
kMediaVideoParamHue = 3,
kMediaVideoParamSharpness = 4,
kMediaVideoParamSaturation = 5,
kMediaVideoParamBlackLevel = 6,
kMediaVideoParamWhiteLevel = 7

};

Constant descriptions

kMediaVideoParamBrightness
The brightness value controls the overall brightness of the
digitized video image. Brightness values range from 0 to
65,535, where 0 is the darkest possible setting and 65,535 is
the lightest possible setting.

kMediaVideoParamContrast
The contrast value ranges from 0 to 65,535, where 0
represents no change to the basic image and larger values
increase the contrast of the video image (that is, increase
the slope of the transform).

C H A P T E R 1 2

Derived Media Handler Components

12-4 Derived Media Handler Components Reference

kMediaVideoParamHue
Hue is similar to the tint control on a television, and it is
specified in degrees with complementary colors set 180
degrees apart (red is 0°, green is +120°, and blue is –120°).
Supports hue values that range from 0 (–180° shift in hue)
to 65,535 (+179° shift in hue), where 32,767 represents a 0°
shift in hue.

kMediaVideoParamSharpness
The sharpness value ranges from 0 to 65,535, where 0
represents no sharpness filtering and 65,535 represents full
sharpness filtering. Higher values result in a visual
impression of increased picture sharpness

kMediaVideoParamSaturation
The saturation value controls color intensity. For example,
at high saturation levels, red appears to be red; at low
saturation, red appears pink. Valid saturation values range
from 0 to 65,535, where 0 is the minimum saturation value
and 65,535 specifies maximum saturation.

kMediaVideoParamBlackLevel
Black level refers to the degree of blackness in an
image.The highest setting produces an all-black image; on
the other hand, the lowest setting yields little, if any, black
even with black objects in the scene. Black level values
range from 0 to 65,535, where 0 represents the maximum
black value and 65,535 represents the minimum black
value.

kMediaVideoParamWhiteLevel
White level refers to the degree of whiteness in an image.
White level values range from 0 to 65,535, where 0
represents the minimum white value and 65,535 represents
the maximum white value

Data Types 12

The GetMovieCompleteParams data type, which defines the layout of the
complete movie parameter structure used by the MediaInitialize function, has
a new parameter, inputMap, which is a reference to the media’s input map. The
media input map should not be modified or disposed. Because of this change,

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-5

the version field of the GetMovieCompleteParams data type has been changed
from 0 to 1.

Derived Media Handler Component Functions 12

Managing Your Media Handler Component 12

This section describes functions that apply to all derived media handler
components.

MediaIdle 12

There is a minor change to the MediaIdle function that is related to the new
media handler support for partial screen redrawing (for more information on
this feature see the discussion of the MediaGetDrawingRgn function elsewhere in
this chapter).

From time to time, your derived media handler component may determine that
only a portion of the available drawing area needs to be redrawn. You can
signal that condition to the base media handler component by setting the
mPartialDraw flag to 1 in the flags your component returns to the Movie
Toolbox from your MediaIdle function. You return these flags using the
flagsOut parameter.

Whenever you set this flag to 1, the Movie Toolbox calls your component’s
MediaGetDrawingRgn function in order to determine the portion of the image that
needs to be redrawn.

As an example, consider a full-screen animation. Only rarely is the entire image
in motion. Typically, only a small portion of the screen image moves. By using
partial redrawing, you can significantly improve the playback performance of
such a movie.

C H A P T E R 1 2

Derived Media Handler Components

12-6 Derived Media Handler Components Reference

General Data Management 12

This section contains several new functions to support modifier tracks, active
segments, and video settings. These functions apply to all derived media
handler components.

MediaGSetActiveSegment 12

The MediaGSetActiveSegment function informs your derived media handlers of
the current active segment.

pascal ComponentResult MediaGSetActiveSegment(
MediaHandler mh,
TimeValue activeStart,
TimeValue activeDuration)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

activeStart Contains the starting time of the active segment to play. This
time value is expressed in your movie’s time scale.

activeDuration
Contains a time value that specifies the duration of the active
segment. This value is expressed in the movie’s time scale.

DISCUSSION

Using the SetMovieActiveSegment function, an application can limit the time
segment of the movie that will be used for play back. Derived media handlers
are given the values for the active segment by the MediaGSetActiveSegment
function called by the Movie Toolbox. Active segment information is usually
only needed by media handler’s that perform their own scheduling.

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-7

MediaInvalidateRegion 12

The MediaInvalidateRegion function updates the invalidated display region the
next time MediaIdle is called.

pascal ComponentResult MediaInvalidateRegion(
MediaHandler mh,
RgnHandle invalRgn)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

invalRgn Contains a handle to a region that has been invalidated. Your
media handler should not dispose or modify this region. The
invalRgn parameter will never be nil.

DISCUSSION

The MediaInvalidateRegion function is called by the Movie Toolbox when
UpdateMovie or InvalidateMovieRegion is called with a region that intersects
your media’s track.

Derived media handlers will need to implement MediaInvalidateRegion only if
they can perform efficient updates on a portion of their display area.

If a media handler implements the MediaInvalidateRegion function, it is
responsible for ensuring that the appropriate areas of the screen are updated on
the next call to MediaIdle. If a media handler does not implement this function,
the base media handler will set the mMustDrawflag the next time MediaIdle is
called.

MediaGetNextStepTime 12

The MediaGetNextStepTime function searches for the next forward or backward
step time from the given media time. The step time is the time of the next

C H A P T E R 1 2

Derived Media Handler Components

12-8 Derived Media Handler Components Reference

frame. This function allows a derived media handler to return the next step
time from the specified media time.

pascal ComponentResult MediaGetNextStepTime(
MediaHandler mh,
short flags,
TimeValue mediaTimeIn,
TimeValue *mediaTimeOut,
Fixed rate)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

flags The following interestingTimeFlags flags are defined:

nextTimeStep Searches for the next frame in the media. Set this
flag to 1 to search for the next frame.

nextTimeEdgeOk
Instructs the Movie Toolbox that you are willing
to receive information about elements that begin
or end at the time specified by the mediaTimeIn
parameter. Set this flag to 1 to accept this
information. This flag is especially useful at the
beginning or end of a media. The function
returns valid information about the beginning
and end of the media.

mediaTimeIn Specifies a time value that establishes the starting point for the
search. This time value is in the media’s time scale.

mediaTimeOut The step time calculated by the media handler. The media
handler should return the first time value it finds that meets the
search criteria specified in the flags parameter. This time value
is in the media’s time scale.

rate Contains the search direction. Negative values search backward
from the starting point specified in the mediaTimeIn parameter.
Other values cause a forward search.

DISCUSSION

The mechanism in QuickTime used for stepping backwards and forwards a
frame at a time are the interesting time calls: GetMovieNextInterestingTime,

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-9

GetTrackNextInterestingTime, and GetMediaNextInterestingTime. The normal
method for stepping forward to the next frame is to use one of these calls to
locate the time of the next visual sample. This works well for most media types,
including video and text. Unfortunately, it does not work well for MPEG.
QuickTime stores an entire MPEG stream as a single sample. Therefore
stepping to the next sample would actually skip to the end of the entire
sequence. To solve this problem, QuickTime 2.1 introduced a new flag,
nextTimeStep, for the interesting time calls. This flag is specifically intended for
stepping through frames.

The standard QuickTime movie controller has been updated to use this flag in
place of the old nextTimeSample flag. The nextTimeStep flag works correctly for
all media types including video and MPEG. To work correctly with MPEG,
applications that implement stepping functionality should use this new flag.

See Inside Macintosh: QuickTime for more information on interesting times.

MediaTrackReferencesChanged 12

The MediaTrackReferencesChanged function notifies the derived media handler
whenever the track references in the movie change.

pascal ComponentResult MediaTrackReferencesChanged (MediaHandler mh)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

DISCUSSION

When an application creates, modifies, or deletes a track reference, the media
handler’s MediaTrackReferencesChanged function is called. When this function is
called, a media handler should rebuild all information about track references
and reset its values for all media inputs to their default values.

C H A P T E R 1 2

Derived Media Handler Components

12-10 Derived Media Handler Components Reference

MediaTrackPropertyAtomChanged 12

The MediaTrackPropertyAtomChanged function notifies the derived media
handler whenever its media property atom has changed.

pascal ComponentResult MediaTrackPropertyAtomChanged (MediaHandler mh)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

DISCUSSION

The MediaTrackPropertyAtomChanged function is called whenever
SetMediaPropertyAtom is called. If the media handler uses information from the
property atom, it should rebuild the information at this time.

MediaSetTrackInputMapReference 12

When an application modifies the media input map, the MediaSetTrackInputMap
function provides the derived media handler with the updated input map.

pascal ComponentResult MediaSetTrackInputMapReference(
MediaHandler mh,
QTAtomContainer inputMap)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

inputMap Specifies the media input map for this operation. Do not modify
or dispose of the input map provided.

DISCUSSION

When the MediaSetTrackInputMapReference function is called, the media
handler should store the updated input map and recheck the types of all
inputs, if it is caching this information. The input map reference passed to this
function should not be disposed of or modified by the media handler.

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-11

MediaGetSampleDataPointer 12

The MediaGetSampleDataPointer function allows a derived media handler to
obtain a pointer to the sample data for a particular sample number, the size of
that sample, and the index of the sample description associated with that
sample.

pascal ComponentResult MediaGetSampleDataPointer(
MediaHandler mh,
long sampleNum,
Ptr *dataPtr,
long *dataSize,
long *sampleDescIndex)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

sampleNum Contains the number of the sample that is to be loaded.

dataPtr Contains a pointer to a pointer to receive the address of the
loaded sample data.

dataSize Contains a pointer to a field that is to receive the size, in bytes,
of the sample.

sampleDescIndex
Contains a pointer to a long integer. The
MediaGetSampleDataPointer function returns an index value to
the sample description that corresponds to the returned sample
data. If you do not want this information, set this parameter to
nil.

DISCUSSION

The MediaGetSampleDataPointer function returns a pointer to the data for a
particular sample number from a movie data file.

This function provides access to the base media handler’s caching services for
sample data. It is a service provided by the base media handler for its clients.

Each call to MediaGetSampleDataPointer must be balanced by a call to
MediaReleaseSampleDataPointer or the memory will not be released.

C H A P T E R 1 2

Derived Media Handler Components

12-12 Derived Media Handler Components Reference

MediaGetSampleDataPointer generally provides better overall performance than
GetMediaSample.

MediaReleaseSampleDataPointer 12

The MediaReleaseSampleDataPointer function balances calls to
MediaGetSampleDataPointer to release the memory. This function should only be
used by derived media handlers.

pascal ComponentResult MediaReleaseSampleDataPointer(
MediaHandler mh,
long sampleNum)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

sampleNum Contains the number of the sample that is to be released.

MediaCompare 12

The MediaCompare function allows a media handler to determine whether the
Movie Toolbox should allow one track to be pasted into another. MediaCompare
is provided with a reference to the media with which it should be compared.

pascal ComponentResult MediaCompare(
MediaHandler mh,
Boolean *isOK,
Media srcMedia,
ComponentInstance srcMediaComponent)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-13

isOK Contains a pointer to a Boolean value. Your media handler
must set this Boolean value to indicate whether the source
media and the media associated with the media handler have
equivalent media settings, so that pasting the two together
would cause no media information loss.

srcMedia Specifies the source media for this operation.

srcMediaComponent
Specifies the source media component for this operation.

MediaSetVideoParam 12

The MediaSetVideoParam function enables you to dynamically adjust the
brightness, contrast, hue, sharpness, saturation, black level, and white level of a
video image.

pascal ComponentResult MediaSetVideoParam(
MediaHandler mh,
long whichParam,
unsigned short *value)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

whichParam Contains a long integer which specifies the number of the video
parameter that should be adjusted.

value Contains the actual value of the video parameter. The meaning
of the values vary depending on the implementation.

DISCUSSION

The MediaSetVideoParam and MediaGetVideoParam functions are currently used
by the MPEG media handler.

See Media Video Parameters in this chapter for the constants and values you can
use for the whichParam and value parameters.

C H A P T E R 1 2

Derived Media Handler Components

12-14 Derived Media Handler Components Reference

MediaGetVideoParam 12

The MediaGetVideoParam function enables you to retrieve the value of the
brightness, contrast, hue, sharpness, saturation, black level, or white level of a
video image.

pascal ComponentResult MediaGetVideoParam(
MediaHandler mh,
long whichParam,
unsigned short *value)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

whichParam Contains a long integer which specifies the number of the video
parameter whose value you want to retrieve.

value Contains the actual value of the requested video parameter. The
meaning of the values vary depending on the implementation.

DISCUSSION

The MediaSetVideoParam and MediaGetVideoParam functions are currently used
by the MPEG media handler.

See the Inside Macintosh: QuickTime Components chapter on Video Digitizer
Components for more information about the whichParam and value parameters.

MediaSetNonPrimarySourceData 12

The MediaSetNonPrimarySourceData function allows a media handler to support
receiving media data from other media handlers.

pascal ComponentResult MediaSetNonPrimarySourceData(
MediaHandler mh,
long inputIndex,
long dataDescriptionSeed,
Handle dataDescription,
void *data,
long dataSize,

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-15

ICMCompletionProcRecordPtr asyncCompletionProc,
UniversalProcPtr transferProc,
void *refCon)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

inputIndex This value is the ID of the entry in the media’s input map that
the data provided by the call corresponds to.

dataDescriptionSeed
This value is changed each time the dataDescription has
changed. This allows for a quick check by the media handler to
see if the dataDescription has changed.

dataDescription
A handle to a data structure describing the input data.

data Points to the input data. This pointer must contain a 32-bit clean
address.

dataSize Contains the size of the sample in bytes.

asyncCompletionProc
Points to a completion function structure. If the
asyncCompletionProc is set to nil, the data pointer will only be
valid for the duration of this call. If the asyncCompletionProc is
not nil, it contains an ICMCompletionProcRecord that must be
called when your media handler is done with the provided data
pointer.

transferProc A routine that allows the application to transform the type of
the input data to the kind of data preferred by the codec. The
client of the codec passes the source data in the form most
convenient for it. If the codec needs the data in another form, it
can negotiate with the client or directly with the Image
Compression Manager to obtain the required data format.

refCon Contains a reference constant (defined as a void pointer). Your
application specifies the value of this reference constant in the
function structure you pass to the media handler.

C H A P T E R 1 2

Derived Media Handler Components

12-16 Derived Media Handler Components Reference

DISCUSSION

There are two parts to supporting modifier tracks in a derived media handler:
sending and receiving. The base media handler takes care of sending data for
all its clients. Therefore, authors of derived media handlers do not usually need
to implement sending data support.

Receiving data is a more complex situation. The base media handler takes care
of input types that it understands. The base media handler supports the
following types of data:

kTrackModifierTypeMatrix
kTrackModifierTypeGraphicsMode
kTrackModifierTypeClip
kTrackModifierTypeVolume
kTrackModifierTypeBalance

If a media handler wants to support receiving other types of data it must
implement the MediaSetNonPrimarySourceData routine.
MediaSetNonPrimarySourceData is called by modified tracks to supply the
current data for each input. All unrecognized input types should be delegated
to the base media handler so that they can be handled.

The following is a basic shell implementation of a derived media handler’s
MediaSetNonPrimarySourceData function. Note that it is necessary to delegate all
unhandled input types to the base media handler.

pascal ComponentResult MySetNonPrimarySourceData(MyGlobals store,
long inputIndex, long dataDescriptionSeed, Handle dataDescription,
void *data, long dataSize,
ICMCompletionProcRecordPtr asyncCompletionProc,
UniversalProcPtr transferProc, void *refCon)

{
ComponentResult err = noErr;
QTAtom inputAtom;
QTAtom typesAtom;
long inputType;

// determine what kind of input this is
inputAtom = QTFindChildByID(store->inputMap,

kParentAtomIsContainer, kTrackModifierInput, inputIndex, nil);
if (!inputAtom) {

err = cannotFindAtomErr;

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-17

goto bail;
}

typesAtom = QTFindChildByID(store->inputMap, inputAtom,
kTrackModifierType, 1, nil);

err = QTCopyAtomDataToPtr(store->inputMap, typesAtom, false,
sizeof(inputType), &inputType, nil);

if (err) goto bail;

switch(inputType) {
case kMyInputType:

if (data == nil) {
// no data, reset to default value

}
else {

// use this data
// when done, notify caller we're done with this data
if (asyncCompletionProc)

CallICMCompletionProc(
asyncCompletionProc->completionProc,
noErr, codecCompletionSource | codecCompletionDest,
asyncCompletionProc->completionRefCon);

}
break;

default:
err = MediaSetNonPrimarySourceData(store->delegateComponent,

inputIndex, dataDescriptionSeed, dataDescription, data,
dataSize, asyncCompletionProc, transferProc, refCon);

break;
}
bail:

return err;
}

C H A P T E R 1 2

Derived Media Handler Components

12-18 Derived Media Handler Components Reference

MediaGetOffscreenBufferSize 12

The MediaGetOffscreenBufferSize function determines the dimensions of the
offscreen buffer.

pascal ComponentResult MediaGetOffscreenBufferSize(
MediaHandler mh,
Rect *bounds,
short depth,
CTabHandle ctab)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

bounds Specifies the boundaries of your offscreen buffer.

depth Specifies the depth of the offscreen.

ctab Contains a handle to the color table associated with the
offscreen buffer.

DISCUSSION

Before the base media handler allocates an offscreen buffer for your derived
media handler, it calls your MediaGetOffscreenBufferSize function. The depth
and color table used for the buffer are also passed. When this function is called,
the bounds parameter specifies the size that the base media handler intends to
use for your offscreen buffer. You can modify this as appropriate before
returning. This capability is useful if your media handler can draw only at
particular sizes. It is also useful for implementing anti-aliased drawing (you
can request a buffer that is larger than your destination area and have the base
media handler scale the image down for you).

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-19

RESULT CODES

MediaSetHints 12

The MediaSetHints function implements the appropriate behavior for the
various media hints such as scrub mode and high-quality mode.

pascal ComponentResult MediaSetHints(
MediaHandler mh,
long hints)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

hints Contains all hint bits that currently apply to the given media.

DISCUSSION

When an application calls SetMoviePlayHints or SetMediaPlayHints, your media
handler’s MediaSetHints routine is called.

RESULT CODES

MediaGetName 12

The MediaGetName function returns the name of the media type. For example,
the video media handler returns the string “video.”

pascal ComponentResult MediaGetName(
MediaHandler mh,
Str255 name,
long requestedLanguage,
long *actualLanguage)

badComponentInstance 0x80008001 Invalid component instance specified

badComponentInstance 0x80008001 Invalid component instance specified

C H A P T E R 1 2

Derived Media Handler Components

12-20 Derived Media Handler Components Reference

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

name Specifies where to return the name of the media type.

requestedLanguage
Specifies the language in which you want the name returned.
This value is a standard Mac OS region code.

actualLanguage
Specifies the actual language in which the name is returned. This
value is a standard Mac OS region code.

function result The name of the media type.

RESULT CODES

Graphics Data Management 12

This section describes functions for managing graphics data. These functions
apply to all derived media handler components.

MediaGetDrawingRgn 12

The MediaGetDrawingRgn function allows your derived media handler
component to specify a portion of the screen that must be redrawn. This region
is defined in the movie’s display coordinate system.

pascal ComponentResult MediaGetDrawingRgn (ComponentInstance ci,
RgnHandle *partialRgn);

ci Identifies the Movie Toolbox’s connection to your derived
media handler.

badComponentInstance 0x80008001 Invalid component instance specified

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-21

partialRgn Points to a handle that defines the screen region to be redrawn.
Note that your component is responsible for disposing of this
region once drawing is complete. Since the base media handler
will use this region during redrawing, it is best to dispose of it
when your component is closed.

DISCUSSION

The Movie Toolbox calls this function in order to determine what part of the
screen needs to be redrawn. By default, the Movie Toolbox redraws the entire
region that belongs to your component. If your component determines that
only a portion of the screen has changed, and has indicated this to the Movie
Toolbox by setting the mPartialDraw flag to 1 in the flagsOut parameter of the
MediaIdle function, the Movie Toolbox calls your component’s
MediaGetDrawingRgn function. Your component returns a region that defines the
changed portion of the track’s display region.

RESULT CODES

Memory Manager errors

MediaGetGraphicsMode 12

The MediaGetGraphicsMode function allows you to obtain the graphics mode and
blend color values currently in use by any media handler.

pascal HandlerError MediaGetGraphicsMode (
MediaHandler mh,
long *mode,
RGBColor *opColor);

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

mode Contains a pointer to a long integer. The media handler returns
the graphics mode currently in use by the media handler. This
is a QuickDraw transfer mode value.

badComponentSelector 0x80008002 Function not supported

C H A P T E R 1 2

Derived Media Handler Components

12-22 Derived Media Handler Components Reference

opColor Contains a pointer to an RGB color structure. The Movie
Toolbox returns the color currently in use by the media handler.
This is the blend value for blends and the transparent color for
transparent operations. The Movie Toolbox supplies this value
to QuickDraw when you draw in addPin, subPin, blend,
transparent, or graphicsModeStraightAlphaBlend mode.

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toobox.

SEE ALSO

You can set the graphics mode and blend color of any media handler by calling
the MediaSetGraphicsMode function, which is described in the next section.

MediaSetGraphicsMode 12

The MediaSetGraphicsMode function allows you to set the graphics mode and
blend color of any media handler.

pascal HandlerError MediaSetGraphicsMode (
MediaHandler mh,
long mode,
const RGBColor *opColor);

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

mode Specifies the graphics mode of the media handler. This is a
QuickDraw transfer mode value.

opColor Contains a pointer to the color for use in blending and
transparent operations. The media handler passes this color to
QuickDraw as appropriate when you draw in addPin, subPin,
blend, transparent, or graphicsModeStraightAlphaBlend mode.

C H A P T E R 1 2

Derived Media Handler Components

Derived Media Handler Components Reference 12-23

RESULT CODES

Component Manager errors, as documented in Inside Macintosh: More Macintosh
Toobox.

SEE ALSO

You can retrieve the graphics mode and blend color currently in use by any
media handler by calling the MediaGetGraphicsMode function, which is
described in the previous section.

Sound Data Management 12

This section describes functions for managing sound data. These functions
apply to all derived media handler components.

MediaSetSoundLocalizationData 12

If you are creating a media handler that plays sound and wish to support 3D
Sound capabilities, you need to implement the MediaSetSoundLocalizationData
routine.

pascal ComponentResult MediaSetSoundLocalizationData (MediaHandler mh,
Handle data)

mh Identifies the Movie Toolbox’s connection to your derived
media handler.

data The data passed to your media handler, in the format of a
Sound Sprockets SSpLocalizationData record.

DISCUSSION

This routine is passed a handle containing the new SSpLocalizationData record
to use. If the handle is nil, it indicates that no 3D Sound effects should be used.
If you implement this routine, and return noErr as the result, it is assumed that
your media handle assumes responsibility for disposing of the data handle
passed. If the implementation of this routine returns an error, the caller will
dispose of the handle. This behavior is implemented to minimize the copying

C H A P T E R 1 2

Derived Media Handler Components

12-24 Derived Media Handler Components Reference

of the settings handle, making it easier for developers to implement the
MediaSetSoundLocalizationData function.

Note: The MediaSetSoundLocalizationData will be called regardless of whether
the 3D Sound settings were set on the track using
SetTrackSoundLocalizationSettings or via the Modifier Track mechanism.

C H A P T E R 1 3

Contents 13-1

Contents

Figure 13-0
Listing 13-0
Table 13-0

13 Tween Media Handler
Components

About the Tween Media Handler 13-3
Using the Tween Media Handler 13-4

Creating a Tween Track 13-5
Creating a Tween Component 13-10

Tween Media Handler Reference 13-11
Constants 13-12

Tween Component Constant 13-12
Tween Atom Types 13-12
Media Input Map 13-13
Tween Data Types 13-14

Data Types 13-16
Component Instance 13-16
Tween Record 13-17
Value Setting Function 13-17

Tween Component Functions 13-19
TweenerInitialize 13-19
TweenerReset 13-20
TweenerDoTween 13-21

C H A P T E R 1 3

13-2 Contents

C H A P T E R 1 3

About the Tween Media Handler 13-3

Tween Media Handler Components 13

This chapter describes the tween media handler and a set of functions you can
implement to create a tween component. The tween media handler and tween
components were introduced in QuickTime 2.5.

This chapter is divided into the following major sections:

■ “About the Tween Media Handler” introduces the tween media handler and
tween components.

■ “Using the Tween Media Handler” describes how you can use existing
tween components with the tween media handler and how to create your
own tween components.

■ “Tween Media Handler Reference” describes the constants, data types, and
functions for use with the tween media handler and tween components.

About the Tween Media Handler 13

The tween media handler is a track that is used exclusively as a modifier track.
It is used to algorithmically generate values to modify the playback of other
tracks. The tween media handler sends values to other media handlers; it never
presents data. For information about modifier tracks, see the chapter “Movie
Toolbox” in this book.

Using a tween media track as a modifier track differs from using a base media
track in that the tween media handler only requires a start value and a stop
value to be specified, whereas, a base media handler requires a series of
discrete values to be specified.

The value sent to another track is the start value plus the difference between
the stop value and the start value multiplied by the elapsed percentage of the
duration of the sample. Thus, the value sent halfway through the sample is the
start value plus the difference between the stop and start value multiplied by
.50. The formula is as follows:

This kind of calculation is called interpolation. Specifically, it is a linear
interpolation because the range of possible values between the start and stop
values can be graphed as a straight line.

value start stop start–() percent⋅〈 〉+=

C H A P T E R 1 3

Tween Media Handler Components

13-4 Using the Tween Media Handler

The interpolation provided by the tween media handler is implemented by
tween components. There is one component for each kind of data from which
the values are derived. The Apple-supplied components support the following
kinds of data:

■ long and short integers

■ fixed-point numbers

■ QuickDraw points and rectangles

■ RGB colors

■ QuickTime 3x3 matricies

■ QuickDraw 3D transforms, scales, rotations, matricies, quaternions, and
cameras

■ 3D sound localization data

For a complete list of Apple-supplied tween components, see “Constants”
(page 13-12).

Apple-supplied components only support linear interpolation for deriving
tween values. You can implement your own components to support other data
types or to perform non-linear interpolation.

Using the Tween Media Handler 13

You use the tween media handler to send tween values from a tween media
track to a receiving track, such as a video track or a sound track. To send tween
values, you must create a tween media track. The tween media handler sends
the values for you based on how you set up the sample data in the track. You
may also decide to implement a tween component from which you can derive
tween values.

This section is divided into the following topics:

■ “Creating a Tween Track” discusses how to create a tween media track that
modifies a receiving track

■ “Creating a Tween Component” describes the steps you must take to
implement your own tween component

C H A P T E R 1 3

Tween Media Handler Components

Using the Tween Media Handler 13-5

Creating a Tween Track 13

To create a tween media track, you must:

■ Create a tween track and its media.

■ Create one or more tween media samples.

■ Add the media samples to the tween media.

■ Add the tween media to the track.

■ Create a link from the tween track to the track to which the tween media
handler should send tween values.

■ Bind the tween entry to the desired attributes in the receiving track.

The sample code shown in this section creates a tween sample that interpolates
a short integer from 512 to 0. The tween media is attached to the sound track of
a QuickTime movie to modify the sound track’s volume. The data type for the
tween component is kTweenTypeShort.

The sample code shown in Listing 13-1 creates a new track (t) to be used as the
tween track and new tween media (type TweenMediaType).

Listing 13-1 Creating a tween track and tween media

Track t;
Media md;
SampleDescriptionHandle desc;

// ...
// set up the movie, m
// ...

// allocate a sample description handle
desc = (SampleDescriptionHandle)NewHandleClear (

sizeof (SampleDescription));

// create the tween track, t
t = NewMovieTrack (m, 0, 0, kNoVolume);

// create the tween media, md

C H A P T E R 1 3

Tween Media Handler Components

13-6 Using the Tween Media Handler

md = NewTrackMedia (t, TweenMediaType, 600, nil, 0);

(**desc).descSize = sizeof(SampleDescription);

Next, an application must create a tween media sample. The tween media
sample is defined as a QT atom container structure that contains one or more
kTweenEntry atoms. (See the chapter “MovieToolBox” for additional
information on QT atom containers.) Each kTweenEntry atom defines a separate
tween operation. A single tween sample can describe several parallel tween
operations.

The sample code shown in Listing 13-2 creates a new QT atom container and
inserts a kTweenEntry atom into the container. Then, it creates two leaf atoms,
both children of the kTweenEntry atom. The first leaf atom (atom type
kTweenType) contains the type of the tween data, kTweenTypeShort. The second
leaf atom (atom type kTweenData) contains the two data values for the tween
operation, 512 and 0.

Listing 13-2 Creating a tween sample

QTAtomContainer container = nil;
short tweenDataShort[2];
QTAtomType tweenType;

tweenDataShort[0] = 512;
tweenDataShort[1] = 0;

// create a new atom container to hold the sample
QTNewAtomContainer (&container);

// create the parent tween entry atom
tweenType = kTweenTypeShort;
QTInsertChild (container, kParentAtomIsContainer, kTweenEntry, 1, 0, 0,

nil, &tweenAtom);

// add two child atoms to the tween entry atom
// * the type atom, kTweenType
QTInsertChild (container, tweenAtom, kTweenType, 1, 0,

sizeof(tweenType), &tweenType, nil);

C H A P T E R 1 3

Tween Media Handler Components

Using the Tween Media Handler 13-7

// * the data atom, kTweenData
QTInsertChild (container, tweenAtom, kTweenData, 1, 0, sizeof(short) * 2,

tweenDataShort, nil);

You do not have to start the tween at the beginning of the sample, nor do you
have to stop at the end of the sample. You can specify the start of the tween
and its duration by adding additional child atoms to the tween entry. You can
add a kTweenStartOffset atom to start the tween operation at 500 units into the
sample with the following lines of code:

TimeValue time = 500;
QTInsertChild (container, tweenAtom, kTweenStartOffset, 1, 0,

sizeof(TimeValue), &time, nil);

You can specify a duration for the tween operation independent of the sample’s
duration by adding a kTweenDuration atom to the tween entry, as follows:

TimeValue duration = 1000;
QTInsertChild (container, tweenAtom, kTweenDuration, 1, 0,

sizeof(TimeValue), &duration, nil);

Once the tween samples have been created, you can add them to the tween
media and then add the tween media to the track, as shown in Listing 13-3.

Listing 13-3 Adding the tween sample to the media and the media to the track

// add the sample to the tween media
BeginMediaEdits (md);
AddMediaSample (md, container, 0,

GetHandleSize(container), kSampleDuration, desc, 1, 0, nil);
EndMediaEdits(md);

// dispose of the sample description handle and the atom container
DisposeHandle ((Handle)desc);
QTDisposeAtomContainer(container);

// add the media to the track
InsertMediaIntoTrack(t, 0, 0, kSampleDuration, kFix1);

C H A P T E R 1 3

Tween Media Handler Components

13-8 Using the Tween Media Handler

Once you have added the tween media to its track, you need to call the
AddTrackReference function to create a link between the tween track to the
receiving track. AddTrackReference returns the index of the reference it creates.

The sample code shown in Listing 13-4 retrieves the sound track from a movie
and calls AddTrackReference to create a link between the tween track (t) and the
sound track. The reference index is returned in the parameter referenceIndex.

Listing 13-4 Creating a link between the tween track and the sound track

Track soundTrack;

// retrieve the sound track from the movie
soundTrack = GetMovieIndTrackType (theMovie , 1,

AudioMediaCharacteristic,
movieTrackCharacteristic | movieTrackEnabledOnly);

long referenceIndex;

// create a link between the tween track and the sound track
// on return, referenceIndex contains the index of the link
err = AddTrackReference (soundTrack, t, kTrackModifierReference,

&referenceIndex);

Once you have linked the tween track to its receiving track, you must update
the input map of the receiving track’s media to indicate how the receiving track
should interpret the data it receives from the tween track. To do this, you create
a QT atom container and insert an atom of type kTrackModifierInput whose ID
is the index returned by the AddTrackReference function. Then, you insert two
atoms as children of the kTrackModifierInput atom:

■ A leaf atom of type kTrackModifierType that contains the attribute of the
receiving track to be modified. For example, if the tween entry modifies the
matrix of the track, the leaf atom would contain the type
kTrackModifierTypeMatrix.

■ A leaf atom of type kInputMapSubInputID that contains the ID of the tween
entry atom. This binds the tween entry to the receiving track.

Once you have created the appropriate atoms in the input map, you call
SetMediaInputMap to assign the input map to the receiving track’s media.

C H A P T E R 1 3

Tween Media Handler Components

Using the Tween Media Handler 13-9

The sample code shown in Listing 13-5 creates an input map for the sound
track of a movie. In this code, the tween media is linked to a sound track; the
interpolated tween values are used to modify the sound track’s volume.

Listing 13-5 Binding a tween entry to its receiving track

QTAtomContainer inputMap = nil;

// create an atom container to hold the input map
if (QTNewAtomContainer (&inputMap) == noErr)
{

QTAtom inputAtom;
OSType inputType;
long tweenID = 1;

// create a kTrackModifierInput atom
// whose ID is referenceIndex
QTInsertChild(inputMap, kParentAtomIsContainer,

kTrackModifierInput, referenceIndex, 0, 0, nil,
&inputAtom);

// add a child atom of type kTrackModifierTypeVolume
inputType = kTrackModifierTypeVolume;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,
 sizeof(inputType), &inputType, nil);

// add a child atom for the ID of the tween to
// modify the volume
QTInsertChild (inputMap, inputAtom, kInputMapSubInputID, 1,

0, sizeof(tweenID), &tweenID, nil);

// assign the input map to the sound media
SetMediaInputMap(GetTrackMedia(soundTrack), inputMap);

// dispose of the input map
QTDisposeAtomContainer(inputMap);

}

C H A P T E R 1 3

Tween Media Handler Components

13-10 Using the Tween Media Handler

Creating a Tween Component 13

Your tween component must provide three functions in addition to the
standard functions required to implement a component. The functions you
must provide are TweenInitialize, TweenDoTween, and TweenReset. The
following examples show a tween component that interpolates values for short
integers. QuickTime provides a component for short integers (kTweenTypeShort)
for you; you do not need to implement a component to handle interpolation of
short integers yourself.

Listing 13-6 shows the TweenerShortInitialize function, which QuickTime
calls to set up the component. In this example, TweenerShortInitialize simply
returns. In a more complex example, TweenerShortInitialize might allocate
storage to be used during the tween operation.

Listing 13-6 A function to initialize a tween component

pascal ComponentResult TweenerShortInitialize(TweenerComponent tc,
 QTAtomContainer container,
 QTAtom tweenAtom,
 QTAtom dataAtom)

{
return noErr;

}

Listing 13-7 shows the TweenShortDoTween function, which QuickTime calls
when it needs to send a tween value from the tween track to a media track. The
data atom and the function that is called to set the value are stored in the tween
record.

Listing 13-7 A function to set a value during a tween operation

pascal ComponentResult TweenShortDoTween(TweenerComponent tc,
 TweenRecord *tr)

{
short *data;
short tFrom, tTo, tValue;

QTGetAtomDataPtr(tr->container, tr->dataAtom, nil, (Ptr *)&data);

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-11

tFrom = data[0];
tTo = data[1];
tValue = tFrom + FixMul(tTo - tFrom, tr->percent);

(tr->dataProc)((struct TweenRecord *)tr, &tValue,
sizeof(tValue), 1, nil, nil, nil, nil);

return noErr;
}

Listing 13-8 shows the TweenShortReset function, which QuickTime calls after
the tween sample completes. In this example, because TweenerShortInitialize
does not allocate any storage, TweenerShortReset simply returns. In a more
complex example, TweenerShortReset would release any storage allocated by
TweenerShortInitialize and any storage allocated during the tween operation.

Listing 13-8 A function to reset a tween component

pascal ComponentResult TweenerShortReset (TweenerComponent tc)
{

return noErr;
}

Tween Media Handler Reference 13

This section describes the constants, data types, and routines associated with
the tween media handler and tween components.

C H A P T E R 1 3

Tween Media Handler Components

13-12 Tween Media Handler Reference

Constants 13

Tween Component Constant 13

The TweenComponentType constant specifies that the component is a tween
component.

enum {
TweenComponentType = 'twen'

};

Tween Atom Types 13

The following atom types are defined for tween-related atoms:

enum {
kTweenEntry = 'twen',
kTweenData = 'data',
kTweenType = 'twnt',
kTweenStartOffset = 'twst',
kTweenDuration = 'twdu',
kTween3dInitialCondition = 'icnd',
kTweenInterpolationStyle = 'isty',
kTweenRegionData = 'qdrg',
kTweenPictureData = 'PICT'

};

kInputMapSubInputID = 'subi',
};

kTweenEntry A parent atom that defines a set of values for a tween
operation. Its child atoms define the tween data type, the
tween data, and additional attributes of the tween
operation.

kTweenData A leaf atom that contains the data values for a tween
operation. You create a kTweenData atom as a child of a
kTweenEntry atom.

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-13

kTweenType A leaf atom that contains the type of the data for a tween
operation (for example, kTweenTypeShort). You create a
kTweenType atom as a child of a kTweenEntry atom.

kTweenStartOffset A leaf atom that contains the starting offset, in time units,
of a tween operation. You create a kTweenStartOffset atom
as a child of a kTweenEntry atom. (Optional)

kTweenDuration A leaf atom that contains the duration, in time units, of a
tween operation. You create a kTweenDuration atom as a
child of a kTweenEntry atom. (Optional)

kTween3dInitialCondition
A leaf atom that contains an initial value for a 3D tween
operation. You create a kTween3DInitialCondition atom as
a child of a kTweenEntry atom. The type of the initial value
should be the same as the type of data to be tweened. If
you do not provide an initial value, the tween operation is
performed against a value of 0. (Optional)

kTweenInterpolationStyle
Reserved.

kTweenRegionData A leaf atom that contains a region. You create a
kTweenRegionData atom as an additional child of the
kTweenEntry atom when the tween type is
kTweenTypeQDRegion. The region is mapped onto the
interpolated rectangle calculated by the tween operation.

kTweenPictureData A leaf atom that contains a PICT image. You create a
kTweenPictureData atom as a child of a kTweenEntry atom.
Only used when tween type is between Region Data.

Media Input Map 13

The following input type is defined for tween-related atoms:

enum {
kInputMapSubInputID = 'subi',

};

kInputMapSubInputID
A leaf atom that contains the ID of a tween entry. You
create a kInputMapSubInputID atom in a receiving track’s
input map to define the relationship between the tween

C H A P T E R 1 3

Tween Media Handler Components

13-14 Tween Media Handler Reference

entry and the receiving track.You create a
kInputMapSubInputID atom as a child of a
kTrackModifierInput atom.

Tween Data Types 13

Each tween component is identified by a media subtype that specifies the kind
of data handled by the component. The media subtype also specifies the kind
of interpolation that occurs. The data is placed in an atom of type kTweenData.
The kind of data stored for a tween component is specified by one of the
following constants:

enum {
kTweenTypeShort = 1,
kTweenTypeLong = 2,
kTweenTypeFixed = 3,
kTweenTypePoint = 4,
kTweenTypeQDRect = 5,
kTweenTypeQDRegion = 6,
kTweenTypeMatrix = 7,
kTweenTypeRGBColor = 8,
kTweenTypeGraphicsModeWithRGBColor = 9,
kTweenType3dScale = '3sca',
kTweenType3dTranslate = '3tra',
kTweenType3dRotate = '3rot',
kTweenType3dRotateAboutPoint = '3rap',
kTweenType3dRotateAboutAxis = '3rax',
kTweenType3dQuaternion = '3qua',
kTweenType3dMatrix = '3mat',
kTweenType3dCameraData = '3cam',

 kTweenType3dSoundLocalizationData = ‘3slc’
};

kTweenTypeShort Two signed 16-bit integers from which to interpolate the
tween value.

kTweenTypeLong Two signed 32-bit integers from which to interpolate the
tween value.

kTweenTypeFixed Two 32-bit fixed point values from which to interpolate the
tween value.

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-15

kTweenTypePoint Two QuickDraw points from which to interpolate the
tween value. Each coordinate (h and v) of the points is
interpolated independently. The results of the
interpolation on each coordinate are used to specify the
tween value, which is a point.

kTweenTypeQDRect Two QuickDraw rectangles. Each coordinate (r, l, b, t) of
the rectangles is interpolated independently. The result of
the interpolation on each coordinate is used to create the
tween value, which is a rectangle.

kTweenTypeQDRegion Two QuickDraw rectangles and a region, stored in a
kTweenRegionData atom. Each coordinate (r, l, b, t) of the
rectangles is interpolated independently. The result of the
interpolation on each coordinate specify a rectangle, into
which the region is mapped. The resultant region specifies
the tween value.
Alternatly, the kTweenPictureData atom can be used instead
of kTweenTypeQDRegion. The picture is used to generate a
region by imaging it the size specified by interpolaring the
two rectangles. This allows for smoother region based
tween operations to be created.

kTweenTypeMatrix Two QuickTime 3x3 matrices. The corresponding cells in
the matricies are interpolated independently. The result of
the interpolation on each cell specifies a tween value,
which is a matrix. Only matrices that specify translation
and scaling should be used.

kTweenTypeRGBColor Two RGB colors from which to interpolate the tween
value. Each color component (r, g, b) of the colors is
interpolated independently. The results of the
interpolation on each color component are used to specify
the tween value, which is an RGB color.

kTweenTypeGraphicsModeWithRGBColor
Two ModifierTrackGraphicsModeRecord records from which
to interpolate a tween value. Only the color is interpolated.
The graphics mode is taken from the first modifier track
graphic mode received.

kTweenType3dScale A QuickTime 3D TQ3Vector3D record, from which the scale
transform is used to interpolate a tween value.

C H A P T E R 1 3

Tween Media Handler Components

13-16 Tween Media Handler Reference

kTweenType3dTranslate
A QuickTime 3D TQ3Vector3D record, from which the
translation transform is used to interpolate a tween value.

kTweenType3dRotate A QuickTime 3D TQ3RotateTransformData record, from
which the rotation transform is used to interpolate a tween
value.

kTweenType3dRotateAboutPoint
A QuickTime 3D TQ3RotateAboutPointTransformData
record, from which the rotate about point transform is
used to interpolate a tween value.

kTweenType3dRotateAboutAxis
A QuickTime 3D TQ3RotateAboutAxisTransformData record,
from which the angle field of the rotate about axis
transform is used to interpolate a tween value.

kTweenType3dQuaternion
A QuickTime 3D TQ3Quaternion record, from which the
quaternion transform is used to interpolate a tween value.

kTweenType3dMatrix A QuickTime 3D TQ3Matrix4x4 record, from which the 4x4
matrix transform is used to interpolate a tween value.

kTweenType3dCameraData
A QuickTime 3D TQ3CameraData record, from which the
camera data is used to interpolate a tween value.

kTweenType3dSoundLocalizationData
Two SSpLocalizationData records, from which the sound
data is used to interpolate a 3D sound value.

Data Types 13

The following sections describe the component instance definition, tween
record, and the value setting prototype function used by tween components.

Component Instance 13

The component instance for a component, TweenerComponent, identifies an
application’s use of a component. For more information about component
instances, see the Component Manager chapter of Inside Macintosh: More
Toolbox Essentials.

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-17

typedef ComponentInstance TweenerComponent;

Tween Record 13

QuickTime maintains a tween record structure that is provided to your tween
component’s TweenDoTween method. The TweenRecord structure is defined as
follows.

typedef struct TweenRecord TweenRecord;

struct TweenRecord {
long version;
QTAtomContainer container;
QTAtom tweenAtom;
QTAtom dataAtom;
Fixed percent;
TweenerDataUPP dataProc;
void * private1;
void * private2;

};

Field descriptions
version The version number of this structure. This field is

initialized to 0.
container The atom container that contains the tween data.
tweenAtom The atom for this tween entry’s data in the container.
percent The percentage by which to change the data.
dataProc The procedure the tween component calls to send the

tweened value to the receiving track.
private1 Reserved.
private2 Reserved.

Value Setting Function 13

The function that you call to send the interpolated value to the receiving track
is defined as a universal procedure in systems that support the Code Fragment
Manager (CFM) or defined as a data procedure for non-CFM systems:

C H A P T E R 1 3

Tween Media Handler Components

13-18 Tween Media Handler Reference

typedef UniversalProcPtr TweenerDataUPP; /* CFM */

typedef TweenerDataProcPtr TweenerDataUPP; /* non-CFM */

The TweenerDataUPP function pointer specifies the function the tween
component calls with the value generated by the tween operation. A tween
component calls this function from its implementation of the TweenerDoTween
function.

typedef pascal ComponentResult (*TweenerDataProcPtr)(
TweenRecord *tr,
void *tweenData,
long tweenDataSize,
long dataDescriptionSeed,
Handle dataDescription,
ICMCompletionProcRecordPtr asyncCompletionProc,
ProcPtr transferProc,
void *refCon);

tr Contains a pointer to the tween record for the tween operation.

tweenData Contains a pointer to the generated tween value.

tweenDataSize Specifies the size, in bytes, of the tween value.

dataDescriptionSeed
Specifies the starting value for the calculation. Every time the
content of the dataDescription handle changes, this value
should be incremented.

dataDescription
Specifies a handle containing a description of the tween value
passed. For basic types such as integers, the calling tween
component should set this parameter to nil. For more complex
types such as compressed image data, the calling tween
component should set this handle to contain a description of
the tween value, such as an image description.

asyncCompletionProc
Contains a pointer to a completion procedure for asynchronous
operations. The calling tween component should set the value
of this parameter to nil.

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-19

transferProc Contains a pointer to a procedure to transfer the data. The
calling tween component should set the value of this parameter
to nil.

refCon Contains a pointer to a reference constant. The calling tween
component should set the value of this parameter to nil.

DISCUSSION

You call this function by invoking the function specified in the tween record’s
dataProc field.

RESULT CODES

Tween Component Functions 13

This section describes the functions that you must provide to implement a
tween component. QuickTime calls these functions when it uses your
component.

TweenerInitialize 13

The TweenerInitialize function is called to initialize your tween component for
a single tween operation.

extern pascal ComponentResult TweenerInitialize(
TweenerComponent tc,
QTAtomContainer container,
QTAtom tweenAtom,
QTAtom dataAtom)

tc Specifies the tween component for this operation.

container Specifies the container that holds the atoms specified by the
tweenAtom and dataAtom parameters.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1 3

Tween Media Handler Components

13-20 Tween Media Handler Reference

tweenAtom Specifies the atom that contains all parameters for defining this
tween. This includes the data atom and any special atoms, such
as an atom of type kTweenRegionData, that may be necessary.

dataAtom Specifies the atom that contains the values to be tweened. This
atom is a child of the atom specified by the tweenAtom parameter.

DISCUSSION

This function sets up the tween component when it is first used. In your
TweenerInitialize function, you can allocate storage and set up any structures
that you need for the duration of a tween operation. Although the container
that holds the data atom is available during each call to the TweenerDoTween
function, you can improve the performance of your tween component by
extracting the data to be used by the TweenerDoTween function in the
TweenerInitialize function.

The data atom parameter is provided as a convenience; you can also call QT
atom container functions to locate the data atom in the container. For more
information about the QT atom container functions, see the chapter “Movie
Toolbox” in this book.

RESULT CODES

TweenerReset 13

The TweenerReset function is called to clean up when the tween operation is
finished.

extern pascal ComponentResult TweenerReset (TweenerComponent tc)

tc Specifies the tween component for this operation.

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1 3

Tween Media Handler Components

Tween Media Handler Reference 13-21

DISCUSSION

This function releases storage allocated by the tween component when the
component is no longer being used. The TweenerReset function should release
any storage allocated by the TweenerInitialize function and close or release
any other resources used by the component. A tween component may receive a
tweener initialize or a close call after being reset.

RESULT CODES

TweenerDoTween 13

The TweenerDoTween function is called to perform a tween operation.

extern pascal ComponentResult TweenerDoTween(
TweenerComponent tc,
TweenRecord *tr)

tc Specifies the tween component for this operation.

tr Contains a pointer to the tween record for the tween operation.

DISCUSSION

QuickTime calls this function to interpolate the data used during a tween
operation. The tween record contains complete information about the tween
operation, including the start and end values for the operation and a
percentage that indicates the progress towards completion of the tween
sample. For more information about the structure of a tween record, see
“Tween Record” (page 13-17).

Your TweenerDoTween function should use the information in the tween record
to calculate the tweened value. TweenerDoTween should call the data function
specified in the tween record, passing it the tweened value. For more
information about the data procedure, see “Value Setting Function”
(page 13-17).

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1 3

Tween Media Handler Components

13-22 Tween Media Handler Reference

RESULT CODES

noErr 0 No error
paramErr -50 Invalid parameter specified

C H A P T E R 1 4

Contents 14-1

Contents

Figure 14-0
Listing 14-0
Table 14-0

14 Sprite Media Handler

About the Sprite Media Handler 14-3
Key Frame Samples and Override Samples 14-4
Sprite Track Media Format 14-5
Sprite Track Properties 14-8
Alternate Sources for Sprite Image Data 14-9

Using the Sprite Media Handler 14-10
Defining a Key Frame Sample 14-11

Creating the Movie, Sprite Track, and Media 14-11
Adding Images to the Key Frame Sample 14-12
Adding Sprites to the Key Frame Sample 14-16

Defining Override Samples 14-19
Setting Properties of the Sprite Track 14-21
Getting Sprite Data From a Modifier Track 14-22

Sprite Media Handler Reference 14-27
Constants 14-27

Sprite Track Formats 14-27
Sprite Media Atom Types 14-27

Sprite Media Handler Functions 14-30
SetSpriteMediaSpriteProperty 14-30
GetSpriteMediaSpriteProperty 14-31
HitTestSpriteMedia 14-32
CountSpriteMediaSprites 14-33
CountSpriteMediaImages 14-34
GetSpriteMediaIndImageDescription 14-34
GetDisplayedSampleNumber 14-35

C H A P T E R 1 4

14-2 Contents

C H A P T E R 1 4

About the Sprite Media Handler 14-3

Sprite Media Handler 14

This chapter describes the sprite media handler, a media handler you can use
to add a sprite animation track to a QuickTime movie. This chapter is divided
into the following major sections:

■ “About the Sprite Media Handler” introduces the sprite media handler and
describes the characteristics of a sprite track.

■ “Using the Sprite Media Handler” describes how you can create a sprite
track and add it to a QuickTime movie.

■ “Sprite Media Handler Reference” describes the constants, data types, and
functions for use with the sprite media handler.

About the Sprite Media Handler 14

The sprite media handler is a media handler that makes it possible to add a
track containing a sprite animation to a QuickTime movie. The sprite media
handler provides routines for manipulating the sprites and images in a sprite
track. The sprite media handler makes use of routines provided by the Sprite
Toolbox. For background information about sprites, sprite animation, and the
Sprite Toolbox, see Chapter 1, “Movie Toolbox.”

As with sprites created in a sprite world, sprites in a sprite track have
properties that define their locations, images, and appearance. However, you
create the sprite track and its sprites differently than you create the sprites in a
sprite world.

A sprite track is defined by one or more key frame samples, each followed by
any number of override samples. A key frame sample and its subsequent
override samples define a scene in the sprite track. A key frame sample is a QT
atom container that contains atoms defining the sprites in the scene and their
initial properties. The override samples are other QT atom containers that
contain atoms that modify sprite properties, thereby animating the sprites in
the scene. For more information about QT atoms and atom containers, see
Chapter 1, “Movie Toolbox.”

A key frame sample also contains all of the images used by the sprites. This
allows the sprites in a sprite track to share image data. The images consist of
two parts, an image description handle (ImageDescriptionHandle) concatenated
with a compressed image. The image description handle describes the
compressed image. You can compress the image using any QuickTime codec.

C H A P T E R 1 4

Sprite Media Handler

14-4 About the Sprite Media Handler

Images are stored in a key frame sample by index; each sprite has an image
index property (kSpritePropertyImageIndex) that specifies the sprite’s current
image. All images assigned to a sprite should be created using the same image
description.

The matrix, layer, visible, and graphics mode sprite properties have the same
meaning for a sprite in a sprite track as for a sprite created in a sprite world.

As with sprite worlds, you can create a sprite track that has a solid background
color, a background image composed of the images of one or more background
sprites, or both a background color and a background image.

Key Frame Samples and Override Samples 14

A sprite track is defined by one or more key frame samples, each followed by
any number of override samples. A key frame sample for a sprite track defines
the following aspects of a sprite track:

■ The number of sprites in the scene and their initial properties.

■ All of the shared image data to be used by the sprites in the scene, including
image data to be used in the subsequent override samples. Because a key
frame sample contains the image data for the scene, the key frame sample
tends to be larger than its subsequent override samples.

An override sample overrides some aspect of the key frame sample. For
example, an override sample might modify the location of sprites defined in
the key frame sample. Override samples do not contain any image data, so
they can be very small. An override sample can show or hide a sprite defined
in the key frame sample, but it cannot define new sprites or remove sprites
defined in its key frame sample. An override sample can override any number
of properties for any number of sprites. For example, a single override sample
might change the layer and location of sprite ID three, and hide sprite ID ten.

There are two sprite track formats that define how a key frame sample and its
subsequent override samples are interpreted. If the current sample is a key
frame sample, the key frame sample alone fully describes the current state of
the track. If the current sample is an override sample, the current state may
differ depending on the sprite track format:

■ If the sprite track format is kKeyFrameAndSingleOverride, the current state is
defined by the most recent key frame sample and the current override
sample. This is the default format. The advantage of this format is that it
allows for excellent performance during random access. A sprite track that

C H A P T E R 1 4

Sprite Media Handler

About the Sprite Media Handler 14-5

uses this format can play backwards and drop frames smoothly. The
disadvantage of this format is that the file size of the track may be larger
than a track that uses the other format.

■ If the sprite track format is kKeyFrameAndAllOverrides, the current state is
defined by the most recent key sample and all subsequent override samples,
including the current override sample. This format results in a smaller file
size. However, you should not use this format if you want your sprite track
to play backwards or drop frames smoothly. When you play a movie that
contains a sprite track whose format is kKeyFrameAndAllOverrides, you
should configure the movie to play all frames.

Sprite Track Media Format 14

The sprite track media format is hierarchical and is based on QT atoms and
atom containers. A sprite track sample is a flattened QT atom container
structure. A new set of Movie Toolbox functions, the QT atom functions, make
it easy to create and manipulate data in this format. For more information on
QT atoms and atom containers, see the chapter “Movie Toolbox” in this book.

Figure 14-1 shows the high-level structure of a sprite track key frame sample. A
key frame sample is represented by a QT atom container. Each atom in the
atom container is represented by its atom type, atom ID, and, if it is a leaf atom,
the type of its data.

Figure 14-1 A key frame sample atom container

QT atom
container

kSpriteAtomType

ID:numSprites

kSpriteSharedDataAtomType

ID:1

kSpriteAtomType

ID:1

Sprite property atoms Shared data atoms

C H A P T E R 1 4

Sprite Media Handler

14-6 About the Sprite Media Handler

The QT atom container contains one child atom for each sprite in the key frame
sample. Each sprite atom has a type of kSpriteAtomType. The sprite IDs are
numbered from one to the number of sprites defined by the key frame sample
(numSprites). Each sprite atom contains leaf atoms that define the properties of
the sprite, as shown in Figure 14-2. For example, the kSpritePropertyLayer
property defines a sprite’s layer. Each sprite property atom has an atom type
that corresponds to the property and an ID of 1.

Figure 14-2 Atoms that describe a sprite and its properties

In addition to the sprite atoms, the QT atom container contains one atom of
type kSpriteSharedDataAtomType with an ID of 1. The atoms contained by the
shared data atom describe data that is shared by all sprites. The shared data
atom contains one atom of type kSpriteImagesContainerAtomType with an ID of
1 (Figure 14-3). The image container atom contains one atom of type
kImageAtomType for each image in the key frame sample. The image atom IDs
are numbered from one to the number of images (numImages). Each image atom
contains a leaf atom that holds the image data (type kSpriteImageDataAtomType)
and an optional leaf atom (type kSpriteNameAtomType) that holds the name of
the image.

kSpriteAtomType

ID:1

kSpritePropertyImageIndex

ID:1

short

kSpritePropertyLayer

ID:1

short

kSpritePropertyGraphicsMode

ID:1

ModifierTrackGraphicsModeRecord

kSpritePropertyMatrix

ID:1

MatrixRecord

kSpritePropertyVisible

ID:1

short

kSpriteNameAtomType

ID:1

"The sprite name"

C H A P T E R 1 4

Sprite Media Handler

About the Sprite Media Handler 14-7

Figure 14-3 Atoms that describe sprite images

The format of an override sample is identical to that of a key frame sample
with the following exceptions.

■ An override sample does not contain images, which means it does not
contain an atom of type kSpriteImagesContainerAtomType or any of its
children.

■ In an override sample, all of the sprite atoms and sprite property atoms are
optional.

For example, to define an override sample that modifies the location of the
third sprite defined by the previous key frame sample, you would create a QT
atom container and add the following atoms to it (assuming that the sprite
track format is of type kKeyFrameAndSingleOverride):

kSpriteImageContainerAtomType

ID:1

kSpriteSharedDataAtomType

ID:1

kSpriteImageAtomType

ID:1

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteNameAtomType

 ID:1

 "The image name"

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteImageAtomType

ID:numImages

C H A P T E R 1 4

Sprite Media Handler

14-8 About the Sprite Media Handler

Figure 14-4 An example of an override sample atom container

Sprite Track Properties 14

In addition to defining properties for individual sprites, you can also define
properties that apply to an entire sprite track. These properties may override
default behavior or provide hints to the sprite media handler. The following
sprite track properties are supported:

■ The kSpriteTrackPropertyBackgroundColor property specifies a background
color for the sprite track. The background color is used for any area that is
not covered by regular sprites or background sprites. If you do not specify a
background color, the sprite track uses black as the default background color.

■ The kSpriteTrackPropertyOffscreenBitDepth property specifies a preferred
bit depth for the sprite track’s offscreen buffer. The allowable values are 8
and 16. To save memory, you should set the value of this property to the
minimum depth needed. If you do not specify a bit depth, the sprite track
allocates an offscreen buffer with the depth of the deepest intersecting
monitor.

■ The kSpriteTrackPropertySampleFormat property specifies the sample format
for the sprite track. If you do not specify a sample format, the sprite track
uses the default format, kKeyFrameAndSingleOverride.

To specify sprite track properties, you create a single QT atom container and
add a leaf atom for each property you want to specify. To add the properties to

kSpritePropertyMatrix

ID:1

MatrixRecord

kSpriteAtomType

ID:3

QT atom
container

C H A P T E R 1 4

Sprite Media Handler

About the Sprite Media Handler 14-9

a sprite track, you call the new media handler function SetMediaPropertyAtom.
To retrieve a sprite track’s properties, you call the media handler function
GetMediaPropertyAtom.

The sprite track properties and their corresponding atom data are outlined in
Table 14-1.

Alternate Sources for Sprite Image Data 14

A sprite in a sprite track can obtain its image data from sources other than the
images in the sprite track’s key frame sample. The alternate image data
overrides a particular image index in the sprite track so that all sprites with
that image index will use the image data provided by the alternate source.

A sprite track can receive image data from another track within the same
movie, called a modifier track. This is useful for compositing traditional video
tracks with sprites. For example, you might create a sprite track in which sprite
characters are watching television. The sprite track can receive video from
another track, called a modifier track, to use as the image data for the television
screen sprite. Other sprites can move in front of and behind the television. A
sprite track can have more than one modifier track feeding it image data and
more than one sprite can use the image data from a modifier track at one time.

In order for a sprite to receive image data from a modifier track, you must call
the AddTrackReference function to link the modifier track to the sprite track that
it modifies. In addition, you must update the sprite media’s input map with an
atom that specifies the input type (kTrackModifierTypeSpriteImage) and an
atom that specifies the index of the image to replace
(kSpritePropertyImageIndex).

Table 14-1 Sprite track properties

Atom type Atom ID Leaf data type

kSpriteTrackPropertyBackgroundColor 1 RGBColor

kSpriteTrackPropertyOffscreenBitDepth 1 unsigned short

kSpriteTrackPropertySampleFormat 1 long

C H A P T E R 1 4

Sprite Media Handler

14-10 Using the Sprite Media Handler

A sprite track can also receive sprite image data from an application. For
example, an application might provide live, digitized video data to a sprite
track by calling MediaSetNonPrimarySourceData.

In addition to receiving image data, a sprite track can receive modifier track
data to control its sprites. Currently, three kinds of modifier inputs are
supported: images from a video track (kTrackModifierTypeImage), a matrix from
a base track (kTrackModifierObjectMatrix), and a graphics mode from a base
track (kTrackModifierObjectGraphicsMode).

For example, a modifier track can send matrices to individual sprites to control
their locations. To do this, set up a modifier track, such as a tween track, to
send matrix data to the sprite track. You must update the sprite media’s input
map with an atom that specifies the input type (kTrackModifierObjectMatrix)
and an atom that specifies the ID of the sprite to replace
(kTrackModifierObjectID). If the sprite track also contains matrices to move the
sprites, the results are undefined.

For background information on modifier tracks, see the chapter “Movie
Toobox” in this book.

Using the Sprite Media Handler 14

The sprite media handler provides functions that allow an application to create
and manipulate a sprite animation as a track in a QuickTime movie.

The following sections are illustrated with code from the sample program
MakeSpriteMovie.c, which shows how to create a QuickTime sprite track. The
sample code creates a 640 by 480 pixel movie with one sprite track. The sprite
track can have either a static background picture sprite or a solid color
background. The sprite track has three other sprites whose properties change
over time. The sprite track’s media contains one key frame sample followed by
many override samples. The key frame sample contains all of the images used
by the sprites. The override samples contain the overrides of the locations,
image indices, and layers needed to modify the sprites.

■ “Defining a Key Frame Sample” discusses the tasks you must perform to
create a key frame sample and add sprites and sprite image data to it

■ “Defining Override Samples” describes how to create override samples and
add them to the sprite track

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-11

■ “Setting Properties of the Sprite Track” discusses how to set global
characteristics of the sprite track

■ “Getting Sprite Data From a Modifier Track” describes how to replace a
sprite’s image data with a modifier track

Defining a Key Frame Sample 14

In order to create a sprite track in a QuickTime movie, you must first create the
movie ifself, a track to contain the sprites, and the track’s media. Then, you
define a key frame sample. A key frame sample defines the number of sprites,
their initial property values, and the shared image data used by the sprites in
the key frame sample and in all override samples that follow the key frame
sample. The sample code discussed in this section creates a single key frame
sample; however, a sprite track may contain multiple key frame samples, each
with its own override samples.

Creating the Movie, Sprite Track, and Media 14

Listing 14-1 shows a code fragment from the sample code function
CreateSampleSpriteMovie. This function creates a new movie file and calls
another sample code function, AddSpriteTrackToMovie, which is responsible for
creating a sprite track and adding it to the movie.

Listing 14-1 Creating a sprite track movie

// global constants
#define kSpriteTrackWidth 640
#define kSpriteTrackHeight 480

Movie theMovie = nil;

// ...
// create a movie file
// ...

// add the sprite track to the movie
FailOSErr (AddSpriteTrackToMovie (theMovie, kSpriteTrackWidth,

kSpriteTrackHeight, true));

C H A P T E R 1 4

Sprite Media Handler

14-12 Using the Sprite Media Handler

The following code fragment from AddSpriteTrackToMovie (Listing 14-2) creates
a new track and media, and calls BeginMediaEdits to prepare to add samples to
the track’s media.

Listing 14-2 Creating a track and media

// global constants
#define kSpriteMediaTimeScale 600

newTrack = NewMovieTrack (theMovie, ((long)trackWidth << 16),
((long)trackHeight << 16), 0);

newMedia = NewTrackMedia (newTrack, SpriteMediaType,
kSpriteMediaTimeScale, nil, 0);

FailOSErr (BeginMediaEdits (newMedia));

Adding Images to the Key Frame Sample 14

Listing 14-3 shows the first part of the AddSpriteTrackToMovie function. The first
task the function performs is to create a QT atom container to hold the key
frame sample and add all of the images to be used for sprites to the key frame
sample. For each image, this function calls the sample code function
AddPICTImageToKeyFrameSample to compress the PICT image and then adds the
compressed image to the key frame sample. The last parameter passed to the
AddPICTImageToKeyFrameSample is the index of the image.

Listing 14-3 Adding images to the key frame sample

// global constants
#define kIconPictID 127
#define kWorldPictID 128
#define kBackgroundPictID 158
#define kFirstSpaceShipPictID (kBackgroundPictID + 1)
#define kNumSpaceShipImages 24

RGBColor keyColor;

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-13

keyColor.red = keyColor.green = keyColor.blue = 0xFFFF;// white

// create an empty key frame sample
FailOSErr (QTNewAtomContainer(&sample));

// add images to the key frame sample
err = AddPICTImageToKeyFrameSample (sample, kIconPictID,

&keyColor, 1);
err = AddPICTImageToKeyFrameSample (sample, kWorldPictID,

&keyColor, 2);
err = AddPICTImageToKeyFrameSample (sample, kBackgroundPictID,

&keyColor, 3);
for (i = 1; i <= kNumSpaceShipImages; i++)

err = AddPICTImageToKeyFrameSample (sample,
kFirstSpaceShipPictID + i - 1, &keyColor, i + 3);

The AddPICTImageToKeyFrameSample function (Listing 14-4) calls another sample
code function, MakePictTransparent, which strips any surrounding background
color from a PICT image. MakePictTransparent does this by using the animation
compressor to recompress the PICT image using a key color.

AddPICTImageToKeyFrameSample then calls the sample code function
ExtractCompressData, which extracts the compressed image data from the PICT
image. Finally, AddPICTImageToKeyFrameSample calls the sample code function
AddCompressedImageToKeyFrameSample, which is responsible for preparing the
compressed image data and adding it to the key frame sample.

Listing 14-4 The AddPICTImageToKeyFrameSample function

OSErr AddPICTImageToKeyFrameSample (QTAtomContainer keySample,
short pictID, RGBColor *keyColor, short id)

{
OSErr err = noErr;
PicHandle picture;
Handle compressedPicture;
ImageDescriptionHandle idh;

// get picture from resource
picture = (PicHandle) GetPicture (pictID);

C H A P T E R 1 4

Sprite Media Handler

14-14 Using the Sprite Media Handler

DetachResource ((Handle)picture);

// make the PICT “transparent”
MakePictTransparent (picture, keyColor);
// extract the compressed image data from the PICT
ExtractCompressData (picture, &compressedPicture, &idh);

// prepare the compressed image and add it to the key frame sample
HLock (compressedPicture);
AddCompressedImageToKeyFrameSample (keySample, idh,

GetHandleSize (compressedPicture), *compressedPicture, id);

bail:
if (picture)

KillPicture (picture);
if (compressedPicture)

DisposeHandle(compressedPicture);
if (idh)

DisposeHandle ((Handle)idh);
return err;

}

The AddCompressedImageToKeyFrameSample function (Listing 14-5) converts the
compressed image to the appropriate format to be used by a sprite by
appending the compressed image to an image description handle. Then, the
function adds the appropriate atoms to represent the sprite image to the key
frame sample:

■ The function ensures that the sample contains a sprite shared data atom
(atom type kSpriteSharedDataAtomType) with a child image container atom
(atom type kSpriteImagesContainerAtomType).

■ The function inserts a sprite image atom (atom type kSpriteImageAtomType)
as a child of the image container atom.

■ The function inserts a leaf atom as a child of the sprite image atom. The leaf
atom’s data is the concatenated image description handle and image.

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-15

Listing 14-5 The AddCompressedImageToKeyFrameSample function

OSErr AddCompressedImageToKeyFrameSample (QTAtomContainer keySample,
ImageDescriptionHandle idh, long dataSize, Ptr compressedDataPtr,
QTAtomID imageID)

{
OSErr err = noErr;
Handle imageData;
QTAtom defaultsAtom, imagesContainerAtom, imageAtom;

// append compressed picture data to imageDescription to
// obtain sprite image data
FailMemErr (imageData = NewHandle(0));
FailMemErr (HandAndHand((Handle)idh, imageData));
FailMemErr (PtrAndHand (compressedDataPtr, imageData, dataSize));

// if no kSpriteSharedDataAtomType atom in key sample, add one
if ((defaultsAtom = QTFindChildByIndex (keySample, 0,

kSpriteSharedDataAtomType, 1, nil)) == 0)
FailOSErr (QTInsertChild (keySample, 0,

kSpriteSharedDataAtomType, 1, 0, 0, nil, &defaultsAtom));

// if no kSpriteImagesContainerAtomType in key sample, add one
if ((imagesContainerAtom = QTFindChildByIndex (keySample,

defaultsAtom, kSpriteImagesContainerAtomType, 1, nil)) == 0)
FailOSErr (QTInsertChild (keySample, defaultsAtom,

kSpriteImagesContainerAtomType, 1, 0, 0, nil,
&imagesContainerAtom));

// add the image and image data atoms to the key sample
FailOSErr (QTInsertChild(keySample, imagesContainerAtom,

kSpriteImageAtomType, imageID, 0, 0, nil, &imageAtom));
HLock (imageData);
FailOSErr (QTInsertChild (keySample, imageAtom,

kSpriteImageDataAtomType, 1, 0, GetHandleSize(imageData),
*imageData, nil));

bail:
if (imageData)

C H A P T E R 1 4

Sprite Media Handler

14-16 Using the Sprite Media Handler

DisposeHandle (imageData);
return err;

}

Adding Sprites to the Key Frame Sample 14

The AddSpriteTrackToMovie function adds the sprites with their initial property
values to the key frame sample, as shown in Listing 14-6. If the
withBackgroundPicture parameter is true, the function adds a background
sprite. The function initializes the background sprite’s properties, including
setting the layer property to kBackgroundSpriteLayerNum to indicate that the
sprite is a background sprite. The function calls SetSpriteData (Listing 14-7),
which adds the appropriate property atoms to the spriteData atom container.
Then, AddSpriteTrackToMovie calls AddSpriteToSample (Listing 14-8) to add the
atoms in the spriteData atom container to the key frame sample atom container.

AddSpriteTrackToMovie adds the other sprites to the key frame sample and then
calls AddSpriteSampleToMedia (Listing 14-9) to add the key frame sample to the
media.

Listing 14-6 Adding sprites to the key frame

// global constants
#define kBackgroundImageIndex 3
#define kFirstSpaceShipImageIndex 4
#define kSpriteMediaFrameDuration 8

FailOSErr (QTNewAtomContainer (&spriteData));

if (withBackgroundPicture)
{

// add background sprite
location.h = 0;
location.v = 0;
visible = true;
layer = kBackgroundSpriteLayerNum;
imageIndex = kBackgroundImageIndex;
SetSpriteData (spriteData, &location, &visible, &layer, &imageIndex);
err = AddSpriteToSample (sample, spriteData, 1);

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-17

}

// add space ship sprite
location.h = 0;
location.v = 60;
visible = true;
layer = -1;
imageIndex = kFirstSpaceShipImageIndex;
SetSpriteData (spriteData, &location, &visible, &layer, &imageIndex);
err = AddSpriteToSample (sample, spriteData, 2);

// ...
// add other sprites
// ...

err = AddSpriteSampleToMedia (newMedia, sample,
kSpriteMediaFrameDuration, true);

For each new property value that is passed into it as a parameter, the
SetSpriteData function (Listing 14-7) calls QTFindChildByIndex to find the
appropriate property atom. If the property atom already exists in the QT atom
container, SetSpriteData calls QTSetAtomData to update the property’s value. If
the property atom does not exist in the container, SetSpriteData calls
QTInsertChild to insert a new property atom.

Listing 14-7 The SetSpriteData function

OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
short *visible, short *layer, short *imageIndex)

{
OSErr err = noErr;
QTAtom propertyAtom;

if (location) {
MatrixRecordmatrix;

// set up the value for the matrix property
SetIdentityMatrix (&matrix);
matrix.matrix[2][0] = ((long)location->h << 16);
matrix.matrix[2][1] = ((long)location->v << 16);

C H A P T E R 1 4

Sprite Media Handler

14-18 Using the Sprite Media Handler

// if no matrix atom is in the container, insert a new one
if ((propertyAtom = QTFindChildByIndex (sprite, 0,

kSpritePropertyMatrix, 1, nil)) == 0)
FailOSErr (QTInsertChild (sprite, 0, kSpritePropertyMatrix,

1, 0, sizeof(MatrixRecord), &matrix, nil))
// otherwise, replace the atom’s data
else

FailOSErr (QTSetAtomData (sprite, propertyAtom,
sizeof(MatrixRecord), &matrix));

}

// ...
// handle other properties in a similar fashion
// ...

return err;
}

The AddSpriteToSample function (Listing 14-8) checks to see whether a sprite
has already been added to a sample. If not, the function calls QTInsertChild to
create a new sprite atom in the atom container that represents the sample.
Then, AddSpriteToSample calls QTInsertChildren to insert the atoms in the sprite
atom container as children of the newly created atom in the sample container.

Listing 14-8 The AddSpriteToSample function

OSErr AddSpriteToSample (QTAtomContainer theSample,
QTAtomContainer theSprite, short spriteID)

{
OSErr err = noErr;
QTAtom newSpriteAtom;

FailIf (QTFindChildByID (theSample, 0, kSpriteAtomType, spriteID,
nil), paramErr);

FailOSErr (QTInsertChild (theSample, 0, kSpriteAtomType, spriteID,
0, 0, nil, &newSpriteAtom)); // index of zero means append

FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-19

bail:
return err;

}

The AddSpriteSampleToMedia function, shown in Listing 14-9, calls
AddMediaSample to add either a key frame sample or an override sample to the
sprite media.

Listing 14-9 The AddSpriteSampleToMedia function

OSErr AddSpriteSampleToMedia (Media theMedia, QTAtomContainer sample,
TimeValue duration, Boolean isKeyFrame)

{
OSErr err = noErr;
SampleDescriptionHandle sampleDesc = nil;

FailMemErr (sampleDesc = (SampleDescriptionHandle) NewHandleClear(
sizeof(SampleDescription)));

FailOSErr (AddMediaSample (theMedia, (Handle) sample, 0,
GetHandleSize(sample), duration, sampleDesc, 1,
isKeyFrame ? 0 : mediaSampleNotSync, nil));

bail:
if (sampleDesc)

DisposeHandle ((Handle)sampleDesc);

return err;
}

Defining Override Samples 14

Once you have defined a key frame sample for the sprite track, you can add
any number of override samples to modify sprite properties.

Listing 14-10 shows the portion of the AddSpriteTrackToMovie function that
adds override samples to the sprite track to make the sprites appear to spin
and move. For each override sample, the function modifies the space ship
sprite’s image index and location. The function calls SetSpriteData to update

C H A P T E R 1 4

Sprite Media Handler

14-20 Using the Sprite Media Handler

the appropriate property atoms in the sprite atom container. Then, the function
calls AddSpriteToSample to add the sprite atom container to the sample atom
container. After all of the modifications have been made to the override sample,
the function calls AddSpriteSampleToMedia to add the override sample to the
media.

After adding all of the override samples to the media, AddSpriteTrackToMovie
calls EndMediaEdits to indicate that it is done adding samples to the media.
Then, AddSpriteTrackToMovie calls InsertMediaIntoTrack to insert the new
media segment into the track.

Listing 14-10 Adding override samples

// global constants
#define kNumOverrideSamples 199
#define kFirstSpaceShipImageIndex 4
#define kNumSpaceShipImages 24
#define kLastSpaceShipImageIndex (kFirstSpaceShipImageIndex +

kNumSpaceShipImages - 1)
#define kSpriteMediaFrameDuration 8

imageIndex = kFirstSpaceShipImageIndex;
location.h = 0;
location.v = 80;
// for each override sample
for (i = 1; i < kNumOverrideSamples; i++)
{

// clear out the sample and spriteData atom containers
QTRemoveChildren (sample, 0);
QTRemoveChildren (spriteData, 0);

// bump the space ship’s image index every third frame to spin
if ((i % 3) == 0) {

imageIndex++;
if (imageIndex > kLastSpaceShipImageIndex)

imageIndex = kFirstSpaceShipImageIndex;
}

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-21

// bump location of space ship sprite in each frame by one pixel
// vertically and two horizontally
location.h += 2;
location.v++;

// add the space ship sprite to the override sample
SetSpriteData (spriteData, &location, nil, nil, &imageIndex);
err = AddSpriteToSample (sample, spriteData, 2);

// ...
// make modifications to other sprites and add to the override sample
// ...

// add the override sample to the media
err = AddSpriteSampleToMedia (newMedia, sample,

kSpriteMediaFrameDuration, false);
}

EndMediaEdits (newMedia);
InsertMediaIntoTrack (newTrack, 0, 0, GetMediaDuration (newMedia),

0x010000);

Setting Properties of the Sprite Track 14

In addition to adding key frame samples and override samples to the sprite
track, you may want to set one or more global properties of the sprite track. For
example, if you want to define a background color for your sprite track, you
must set the sprite track’s background color property. You do this by creating a
leaf atom of type kSpriteTrackPropertyBackgroundColor whose data is the
desired background color.

After adding the override samples, AddSpriteTrackToMovie adds a background
color to the sprite track, as shown in Listing 14-11. If the withBackgroundPicture
parameter is false, this function defines a solid background color for the sprite
track. The function calls QTNewAtomContainer to create a new atom container for
sprite track properties. AddSpriteTrackToMovie adds a new atom of type
kSpriteTrackPropertyBackgroundColor to the container and calls
SetMediaPropertyAtom to set the sprite track’s properties.

C H A P T E R 1 4

Sprite Media Handler

14-22 Using the Sprite Media Handler

Listing 14-11 Defining a background color

// add a background color to the sprite track
if (withBackgroundPicture == false)
{

QTAtomContainer trackProperties;
RGBColor backgroundColor;

backgroundColor.red = 0x8000;
backgroundColor.green = 0;
backgroundColor.blue = 0xffff;

// create a new atom container for sprite track properties
QTNewAtomContainer (&trackProperties);

// add an atom for the background color property
QTInsertChild (trackProperties, 0,

kSpriteTrackPropertyBackgroundColor, 1, 1, sizeof(RGBColor),
&backgroundColor, nil);

// set the sprite track’s properties
err = SetMediaPropertyAtom (newMedia, trackProperties);

QTDisposeAtomContainer(trackProperties);
}

Getting Sprite Data From a Modifier Track 14

The sample program AddReferenceTrack.c illustrates how you can modify a
movie to use a modifier track for a sprite’s image data. The sample program
prompts the user for a movie that contains a single sprite track. Then, it adds a
track from a second movie to the original movie as a modifier track. The
modifier track overrides the image data for a selected image index.

Listing 14-12 shows the first part of the main function of the sample program. It
performs the following tasks:

■ It loads the movie containing the sprite track.

■ It calls GetMovieTrackCount to determine the total number of tracks in the
sprite track movie.

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-23

■ It loads the movie containing the modifier track (movieB).

Listing 14-12 Loading the movies

OSErr err;
short movieResID = 0, resFref, resID = 0, resRefNum;
StandardFileReply reply;
SFTypeList types;
Movie m;
FSSpec fss;
Movie movieB;
long origTrackCount;

// prompt for a movie containing a sprite track and load it
types[0] = MovieFileType;
StandardGetFilePreview (nil, 1, types, &reply);
if (!reply.sfGood) return;

err = OpenMovieFile (&reply.sfFile, &resFref, fsRdPerm);
if (err) return;

err = NewMovieFromFile (&m, resFref, &movieResID, (StringPtr)nil,
newMovieActive, ni);

if (err) return;

CloseMovieFile (resFref);

// get the number of tracks
origTrackCount = GetMovieTrackCount (m);

// load the movie to be used as a modifier track
FSMakeFSSpec (reply.sfFile.vRefNum, reply.sfFile.parID, "\pAdd Me",

&fss);

err = OpenMovieFile (&fss, &resFref, fsRdPerm);
if (err) return;

err = NewMovieFromFile (&movieB, resFref, &resID, (StringPtr)nil, 0,
nil);

C H A P T E R 1 4

Sprite Media Handler

14-24 Using the Sprite Media Handler

if (err) return;

CloseMovieFile (resFref);

Once the two movies have been loaded, the sample program retrieves the first
track, which is the sprite track, from the original movie, and sets the selection
to the start of the movie (Listing 14-13). The sample program iterates through
all the tracks in the modifier movie, disposing of all non-video tracks.

Next, the sample program calls AddMovieSelection to add the modifier track to
the original movie. Finally, the sample program calls AddTrackReference to
associate the modifier track with the sprite track it will modify.
AddTrackReference returns an index of the added reference in the
referenceIndex variable.

Listing 14-13 Adding the modifier track to the movie

Movie m;
TimeValue oldDuration;
Movie movieB;
long i, origTrackCount, referenceIndex;
Track newTrack, spriteTrack;

// get the first track in original movie and position at the start
spriteTrack = GetMovieIndTrack (m, 1);
SetMovieSelection (m, 0 ,0);

// remove all tracks except video in modifier movie
for (i = 1; i <= GetMovieTrackCount (movieB); i++)
{

Track t = GetMovieIndTrack (movieB, i);
OSType aType;

GetMediaHandlerDescription (GetTrackMedia(t), &aType, nil, nil);
if (aType != VideoMediaType)
{

DisposeMovieTrack (t);
i--;

}
}

C H A P T E R 1 4

Sprite Media Handler

Using the Sprite Media Handler 14-25

// add the modifier track to original movie
oldDuration = GetMovieDuration (m);
AddMovieSelection (m, movieB);
DisposeMovie (movieB);

// truncate the movie to the length of the original track
DeleteMovieSegment (m, oldDuration,

GetMovieDuration (m) - oldDuration);

// associate the modifier track with the original sprite track
newTrack = GetMovieIndTrack (m, origTrackCount + 1);
AddTrackReference (spriteTrack, newTrack, kTrackModifierReference,

&referenceIndex);

In addition to adding a reference to the modifier track, the sample program
must update the sprite media’s input map to describe how the modifier track
should be interpreted by the sprite track. The sample program performs the
following tasks (Listing 14-14):

■ It retrieves the sprite track’s media by calling GetTrackMedia

■ It calls GetMediaInputMap to retrieve the media’s input map.

■ It adds a parent atom to the input map of type kTrackModifier input. The ID
of the atom is the reference index retrieved by the AddTrackReference
function.

■ It adds two child atoms, one that specifies that the input type of the modifier
track is of type kTrackModifierTypeSpriteImage, and one that specifies the
index of the sprite image to override.

■ It calls SetMediaInputMap to update the media’s input map.

Listing 14-14 Updating the media’s input map

#define kImageIndexToOverride 1

Movie m, movieB;
long referenceIndex, imageIndexToOverride;
Track spriteTrack;
QTAtomContainerinputMap;

C H A P T E R 1 4

Sprite Media Handler

14-26 Using the Sprite Media Handler

QTAtom inputAtom;
OSType inputType;
Media spriteMedia;

// get the sprite media’s input map
spriteMedia = GetTrackMedia (spriteTrack);
GetMediaInputMap (spriteMedia, &inputMap);

// add an atom for a modifier track
QTInsertChild (inputMap, kParentAtomIsContainer,

kTrackModifierInput, referenceIndex, 0, 0, nil, &inputAtom);

// add a child atom to specify the input type
inputType = kTrackModifierTypeSpriteImage;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,

sizeof(inputType), &inputType, nil);

// add a second child atom to specify index of image to override
imageIndexToOverride = kImageIndexToOverride;
QTInsertChild (inputMap, inputAtom, kSpritePropertyImageIndex, 1, 0,

sizeof(imageIndexToOverride), &imageIndexToOverride, nil);

// update the sprite media’s input map
SetMediaInputMap (spriteMedia, inputMap);
QTDisposeAtomContainer (inputMap);

Once the media’s input map has been updated, the application can save the
movie.

C H A P T E R 1 4

Sprite Media Handler

Sprite Media Handler Reference 14-27

Sprite Media Handler Reference 14

Constants 14

Sprite Track Formats 14

The following constants represent formats of a sprite track. The value of the
constant indicates how override samples in a sprite track should be interpreted.
You set a sprite track’s format by creating a kSpriteTrackPropertySampleFormat
atom.

enum {
kKeyFrameAndSingleOverride = 1L << 1,
kKeyFrameAndAllOverrides = 1L << 2

};

Constant descriptions

kKeyFrameAndSingleOverride
The current state of the sprite track is defined by the most
recent key frame sample and the current override sample.
This is the default format.

kKeyFrameAndAllOverrides
The current state of the sprite track is defined by the most
recent key frame sample and all subsequent override
samples up to and including the current override sample.

Sprite Media Atom Types 14

The following string constants represent atom types for sprite media.

enum {
kSpriteAtomType = 'sprt',
kSpriteImagesContainerAtomType = 'imct',
kSpriteImageAtomType = 'imag',

C H A P T E R 1 4

Sprite Media Handler

14-28 Sprite Media Handler Reference

kSpriteImageDataAtomType = 'imda',
kSpriteSharedDataAtomType = 'dflt',
kSpriteNameAtomType = 'name'
kSpritePropertyMatrix = 1
kSpritePropertyVisible = 4
kSpritePropertyLayer = 5
kSpritePropertyGraphicsMode = 6
kSpritePropertyImageIndex = 101
kSpritePropertyBackgroundColor = 101
kSpritePropertyOffscreenBitDepth = 102
kSpritePropertySampleFormat = 103

};

Constant descriptions

kSpriteAtomType The atom is a parent atom that describes a sprite. It
contains atoms that describe properties of the sprite.
Optionally, it may also include an atom of type
kSpriteNameAtomType that defines the name of the sprite.

kSpriteImagesContainerAtomType
The atom is a parent atom that contains atoms of type
kSpriteImageAtomType.

kSpriteImageAtomType
The atom is a parent atom that contains an atom of type
kSpriteImageDataAtomType. Optionally, it may also include
an atom of type kSpriteNameAtomType that defines the name
of the image.

kSpriteImageDataAtomType
The atom is a leaf atom that contains image data.

kSpriteSharedDataAtomType
The atom is a parent atom that contains shared sprite data,
such as an atom container of type
kSpriteImagesContainerAtomType.

kSpriteNameAtomTypeThe atom is a leaf atom that contains the name of a sprite
or an image. The leaf data is composed of one or more
ASCII characters.

kSpritePropertyImageIndex
A leaf atom containing the image index property which is
of type short. This atom is a child atom of the kSpriteAtom.

C H A P T E R 1 4

Sprite Media Handler

Sprite Media Handler Reference 14-29

kSpritePropertyLayer
A leaf atom containing the layer property which is of type
short. This atom is a child atom of the kSpriteAtom.

kSpritePropertyMatrix
A leaf atom containing the matrix property which is of
type MatrixRecord. This atom is a child atom of the
kSpriteAtom.

kSpritePropertyVisible
A leaf atom containing the visible property which is of
type short. This atom is a child atom of the kSpriteAtom.

kSpritePropertyGraphicsMode
A leaf atom containing the matrix property which is of
type ModifyerTrackGraphicsModeRecord. This atom is a
child atom of the kSpriteAtom.

kSpritePropertyBackgroundColor
A leaf atom containing the background color property
which is of type RGBColor. This atom is used in a sprite
track’s MediaPropertyAtom atom container.

kSpritePropertyOffscreenBitDepth
A leaf atom containing the preferred offscreen bitdepth
which is of type short. This atom is used in a sprite track’s
MediaPropertyAtom atom container.

kSpritePropertySampleFormat
A leaf atom containing the sample format property which
is of type short. This atom is used in a sprite track’s
MediaPropertyAtom atom container.

C H A P T E R 1 4

Sprite Media Handler

14-30 Sprite Media Handler Reference

Sprite Media Handler Functions 14

SetSpriteMediaSpriteProperty 14

The SetSpriteMediaSpriteProperty function sets the specified property of a
sprite.

pascal ComponentResult SetSpriteMediaSpriteProperty (
MediaHandler mh,
short spriteIndex,
long propertyType,
void* propertyValue);

mh Specifies the sprite media handler for this operation.

spriteIndex Specifies the index of the sprite to be modified.

propertyType Specifies the property to be set.

propertyValue
Specifies the new value of the property.

DISCUSSION

You call this function to modify a property of a sprite. You set the propertyType
parameter to the property you want to modify. You set the spriteIndex
parameter to the index of the sprite whose property you want to set. The index
must be between one and the number of available sprites. You can determine
how many sprites are available by calling CountSpriteMediaSprites.

The type of data you pass for the propertyValue parameter depends on the
property type. The following table lists the sprite properties and the data types
of the corresponding property values.

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyVisible short

C H A P T E R 1 4

Sprite Media Handler

Sprite Media Handler Reference 14-31

RESULT CODES

GetSpriteMediaSpriteProperty 14

The GetSpriteMediaSpriteProperty function retrieves the value of the specified
sprite property.

pascal ComponentResult GetSpriteMediaSpriteProperty (
MediaHandler mh,
short spriteIndex,
long propertyType,
void* propertyValue);

mh Specifies the sprite media handler for this operation.

spriteIndex Specifies the index of the sprite for this operation.

propertyType Specifies the property whose value should be retrieved.

propertyValue
On return, contains a pointer to the value of the property.

DISCUSSION

You call this function to retrieve a value of a sprite property. You set the
propertyType parameter to the property you want to retrieve. You set the
spriteIndex parameter to the index of the sprite whose property you want to
retrieve. The index must be between one and the number of available sprites.

kSpritePropertyLayer short

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

kSpritePropertyImageIndex short

noErr 0 No error
invalidSpritePropertyErr -2065 Specified sprite property does not exist
invalidSpriteIndexErr -2067 Sprite index is out of range

Sprite Property Data Type

C H A P T E R 1 4

Sprite Media Handler

14-32 Sprite Media Handler Reference

You can determine how many sprites are available by calling
CountSpriteMediaSprites.

On return, the propertyValue parameter contains a pointer to the specified
property’s value; the data type of that value depends on the property. The
following table lists the sprite properties and the data types of the
corresponding property values.

RESULT CODES

HitTestSpriteMedia 14

The HitTestSpriteMedia function determines whether any sprites are at a
specified location.

pascal ComponentResult HitTestSpriteMedia (
MediaHandler mh,
long flags,
Point loc,
short* spriteHitIndex);

mh Specifies the sprite media handler for this operation.

flags Specifies flags to control the hit testing operation.

loc Specifies a point in the coordinate system of the sprite track’s
movie to test for the existence of a sprite.

Sprite Property Data Type

kSpritePropertyMatrix MatrixRecord *

kSpritePropertyVisible short *

kSpritePropertyLayer short *

kSpritePropertyGraphicsMode ModifierTrackGraphicsModeRecord *

kSpritePropertyImageIndex short *

noErr 0 No error
invalidSpritePropertyErr -2065 Specified sprite property does not exist
invalidSpriteIndexErr -2067 Sprite index is out of range

C H A P T E R 1 4

Sprite Media Handler

Sprite Media Handler Reference 14-33

spriteHitIndex
Contains a pointer to a short integer. On return, this integer
contains the index of the frontmost sprite at the location
specified by loc. If no sprite exists at the location, the function
sets the value of this parameter to 0.

DISCUSSION

You call this function to determine whether any sprites exist at a specified
location in the coordinate system of a sprite track’s movie. You can pass flags to
this function to control the hit testing operation more precisely. For example,
you may want the hit test operation to detect a sprite whose bounding box
contains the specified location. The allowable flags for sprite hit testing are
described in the chapter “Movie Toolbox” in this book.

CountSpriteMediaSprites 14

The CountSpriteMediaSprites function retrieves the number of sprites that
currently exist in a sprite track.

pascal ComponentResult CountSpriteMediaSprites (
MediaHandler mh,
short* numSprites);

mh Specifies the sprite media handler for this operation.

numSprites Contains a pointer to a short integer. On return, this integer
contains the number of sprites for the sprite media’s current
time.

DISCUSSION

This function determines the number of sprites that currently exist based on
the key frame that is in effect.

C H A P T E R 1 4

Sprite Media Handler

14-34 Sprite Media Handler Reference

CountSpriteMediaImages 14

The CountSpriteMediaImages function retrieves the number of images that
currently exist in a sprite track.

pascal ComponentResult CountSpriteMediaImages (
MediaHandler mh,
short* numImages);

mh Specifies the sprite media handler for this operation.

numImages Contains a pointer to a short integer. On return, this integer
contains the number of images for the sprite media’s current
time.

DISCUSSION

This function determines the number of images that currently exist based on
the key frame that is in effect.

GetSpriteMediaIndImageDescription 14

The GetSpriteMediaIndImageDescription function retrieves an image
description for the specified image in a sprite track.

pascal ComponentResult GetSpriteMediaIndImageDescription (
MediaHandler mh,
short imageIndex,
ImageDescriptionHandle imageDescription);

mh Specifies the sprite media handler for this operation.

imageIndex Specifies the index of the image whose image description
should be retrieved.

imageDescription
Specifies an image description handle. On return, this handle
contains the image description for the specified image.

C H A P T E R 1 4

Sprite Media Handler

Sprite Media Handler Reference 14-35

DISCUSSION

You set the imageIndex parameter to the index of the image whose image
description you want to retrieve. The index must be between one and the
number of available images. You can determine how many images are
available by calling CountSpriteMediaImages.

The handle specified by the imageDescription parameter must be unlocked; this
function resizes the handle if necessary.

RESULT CODES

Memory Manager errors, as documented in Inside Macintosh: Memory.

GetDisplayedSampleNumber 14

The GetDisplayedSampleNumber function retrieves the number of the sample that
is currently being displayed.

pascal ComponentResult GetDisplayedSampleNumber (
MediaHandler mh,
long* sampleNum);

mh Specifies the sprite media handler for this operation.

sampleNum Contains a pointer to a long integer. On return, this integer
contains the number of the sample that is currently being
displayed.

DISCUSSION

You call this function when you need to retrieve the sample number of the
sample that is being displayed.

noErr 0 No error
paramErr -50 Invalid parameter specified
invalidImageIndexErr -2068 Image index is out of range

C H A P T E R 1 4

Sprite Media Handler

14-36 Sprite Media Handler Reference

C H A P T E R 1 5

Contents 15-1

Contents

Figure 15-0
Listing 15-0
Table 15-0

15 Preview Components

New Features of Preview Components 15-3
Single Fork Preview Support 15-3

Preview Components Reference 15-3
Resources 15-3

The Preview Resource 15-3

C H A P T E R 1 5

15-2 Contents

C H A P T E R 1 5

New Features of Preview Components 15-3

Preview Components 15

This chapter discusses new features and changes to preview components as
documented in Chapter 12 of Inside Macintosh: QuickTime Components.

New Features of Preview Components 15

Single Fork Preview Support 15

QuickTime has always supported the display of file previews using the
StandardGetFilePreview function. The format for storing these file previews has
always been based on Macintosh resources. However, this approach does not
work for files created or viewed on operating systems that do not support
resource forks. Beginning with QuickTime 2.1, you can now use the
StandardGetFilePreview function to display previews that are stored in the data
fork of a file. QuickTime does not, however, provide support for creating
previews that are stored in the data fork of a file. Applications must create
these previews themselves.

Preview Components Reference 15

This section describes the new structure associated with preview components.
This new structure makes it possible for your application to use
StandardGetFilePreview to display previews stored entirely in the data fork of a
file. Likewise, your application can create file previews and store them in the
data fork of a file so they can be viewed by users of other operating systems.

Resources 15

The Preview Resource 15

If your application creates previews, you may want to write them using the
data fork format so they can be used on any platform on which QuickTime is
available.

C H A P T E R 1 5

Preview Components

15-4 Preview Components Reference

The preview display code assumes that the data fork of the file is formatted
using QuickTime atoms. See QuickTime File Format Specification, May 1996 for
information on atom-based storage.

Adding a preview results in at least two atoms being added to the data file. The
first atom has a pnot tag. Its basic structure is the same as the pnotResource
structure.

struct PreviewResourceRecord {
unsigned long modDate;
short version;
OSType resType;
short resID;

};

Field descriptions
modDate Contains the modification time (in the standard Macintosh

format of seconds since midnight, January 1, 1904) of the
file for which the preview was created. This parameter
allows you to find out if the preview is out of date with the
contents of the file.

version Contains the version number of the preview resource. The
low bit of the version is a flag for preview components that
only reference their data. If the bit is set, it indicates that
the resource identified in the preview resource is not
owned by the preview component, but is part of the file. It
is not removed when the preview is updated or removed
(using the Image Compression Manager’s MakeFilePreview
or AddFilePreview function), as it would if the version
number were 0.

resType Identifies the type of the preview component used to
display the preview data and the type of the atom
containing the preview data.

resID Contains the index (1-based) of the atom to be used. For
example, a resType of PICT and a resID of 2 tells
QuickTime to use the second PICT atom in the file for the
preview data.

C H A P T E R 1 6

Contents 16-1

Contents

Figure 16-0
Listing 16-0
Table 16-0

16 Data Handler Components

About Data Handler Components 16-4
Movie Playback 16-4
Movie Capture 16-5
Processing data 16-7
Identifying Containers With Data References 16-7

Using Data Handler Components 16-8
Selecting a Data Handler 16-8

Selecting by Component Type Value 16-9
Interrogating a Data Handler’s Capabilities 16-10

Managing Data References 16-10
Retrieving Movie Data 16-11
Storing Movie Data 16-12
Managing the Data Handler 16-13

Creating a Data Handler Component 16-13
General Information 16-14
A Sample Data Handler Component 16-15

Data Handler Components Reference 16-28
Data Handler Components Functions 16-28

Selecting a Data Handler 16-29
DataHGetVolumeList 16-30
DataHCanUseDataRef 16-33
DataHGetDeviceIndex 16-35

Working With Data References 16-36
DataHSetDataRef 16-36
DataHGetDataRef 16-37
DataHCompareDataRef 16-38
DataHResolveDataRef 16-38

C H A P T E R 1 6

16-2 Contents

DataHSetOSFileRef 16-39
DataHGetOSFileRef 16-40

Reading Movie Data 16-41
DataHOpenForRead 16-42
DataHCloseForRead 16-42
DataHGetData 16-43
DataHScheduleData 16-44
DataHFinishData 16-47
DataHGetScheduleAheadTime 16-49

Writing Movie Data 16-50
DataHOpenForWrite 16-50
DataHCloseForWrite 16-51
DataHPutData 16-52
DataHWrite 16-53
DataHSetFileSize 16-54
DataHGetFileSize 16-55
DataHCreateFile 16-55
DataHGetPreferredBlockSize 16-56
DataHGetFreeSpace 16-57
DataHPreextend 16-57

Managing Data Handler Components 16-58
DataHTask 16-58
DataHFlushCache 16-59
DataHFlushData 16-59
DataHPlaybackHints 16-60

Completion Function 16-61
Data handler Completion Function 16-61

C H A P T E R 1 6

16-3

Data Handler Components 16

This chapter describes data handler components. Data handler components
allow QuickTime to retrieve time-based data from external storage devices and,
in some cases, store time-based data on those devices.

This chapter is divided into the following sections:

■ “About Data Handler Components” provides a general introduction to
components of this type

■ “Using Data Handler Components” describes how QuickTime uses these
components

■ “Creating a Data Handler Component” describes how to create one of these
components

■ “Reference to Data Handler Components” presents detailed information
about the functions that are supported by these components

In most cases you do not need to create a data handler or use one directly,
because QuickTime takes care of data storage and retrieval for you through its
built-in media handlers. However, you may need to create a data handler
component to read or write to a non-Macintosh storage medium.

Data handler components exist both in QuickTime for Macintosh and
QuickTime for Windows. Much of the background information is common to
both platforms. However, there are some important technical differences
between data handler components for these two platforms, such as the
technique you would use to create a component. Therefore, whenever
appropriate, this chapter refers you to specific QuickTime for Windows
documentation for additional information.

Data handler components rely on the facilities of the Component Manager. In
order to create or use any component, your application must also use the
Component Manager. If you are not familiar with the Component Manager, see
Chapter 6 of Inside Macintosh: More Macintosh Toolbox. If you are developing for
QuickTime for Windows, you should also be familiar with Creating Custom
Components: QuickTime for Windows. In addition, you should be familiar with
the Movie Toolbox documentation in this book and in Inside Macintosh:
QuickTime .

C H A P T E R 1 6

Data Handler Components

16-4 About Data Handler Components

Note
This chapter describes the interface provided in QuickTime
and QuickTime for Windows versions 2.0 and later. In
addition, unless noted otherwise, the data handler
components supplied by Apple support the entire interface
described in this note. ◆

About Data Handler Components 16

A data handler component stores and retrieves time-based data on a storage
device, such as a movie file, on behalf of another QuickTime component,
typically a media handler component or a sequence grabber component.
Different QuickTime components are used depending on if you are retrieving
or storing data.

Movie Playback 16

During data retrieval, such as playback of a movie, a media handler component
isolates your application and the Movie Toolbox from the details of how to
retrieve data from a particular storage medium. Therefore, unless you are
writing your own media handler, you do not have to directly use data handler
components in your application, the retrieval of your data will be taken care of
for you by the media handler the Movie Toolbox calls. However, you can call
the data handler directly if you need to explicitly tell the data handler
something, such as to use less memory when caching QuickTime data. If you
are reading from a non-Macintosh storage medium, or multiple storage media,
you might need to write your own data handler.

Figure 16-1 shows the relationships between an application, the Movie Toolbox,
QuickTime media handlers, and data handler components during movie
playback. Notice that the media handlers intercept the data from the data
handlers and plays it, while the Movie Toolbox controls the media handlers for
your application.

C H A P T E R 1 6

Data Handler Components

About Data Handler Components 16-5

Figure 16-1 Playing a movie

Movie Capture 16

During data storage, such as the capture of video and sound into a movie file, a
a sequence grabber component isolates your application from the details of
how to capture the raw data from a particular device. Therefore, during movie
capture you do not have to directly use data handler components in your
application, the storage of your data will be taken care of for you by the
sequence grabber component you call. If, however, you are storing data onto a
non-Macintosh or proprietary storage medium, or multiple storage media, you
might need to write your own data handler.

An application

Movie
toolbox

Video
media handler

Sound
media handler

Video
media handler

Sound
media handler

Movie file

Data flow

Control flow

C H A P T E R 1 6

Data Handler Components

16-6 About Data Handler Components

The sequence grabber component calls the appropriate channel component,
such as a video, sound, or text channel component, to retrieve the raw data
from an input device, such as a microphone.

Figure 9-2 shows the relationships between an application, a sequence grabber
component, two channel components, and a data handler while capturing
movie data. Notice that the sequence grabber component intercepts the data
from the channel components and then passes it on to a data handler, which
writes it to a movie file. The sequence grabber controls the channel components
and the data handler for your application.

Figure 16-2 Capturing movie data

An application

Sequence
grabber

component

Video
channel

component

Data
handler

Movie file

Data flow

Control flow

Sound
channel

component

Video
digitizer

component

Sound
input

device

C H A P T E R 1 6

Data Handler Components

About Data Handler Components 16-7

Processing data 16

Data handlers do not know anything about the content of the data they
process. It is the responsibility of the client (a media handler component or a
channel component) to process the data. In the case of a movie’s video data
during movie playback, for example, the media handler takes the data from a
data handler and uses the facilities of the Image Compression Manager to
display the movie data on the computer screen. See Inside Macintosh: QuickTime
Components for more information about media handlers.

While data handlers do not work with the content of the data they process,
they must be aware of all of the details involved in storing and retrieving data
from the storage medium they support. Apple provides several data handlers
and a selection mechanism for choosing an appropriate handler. For example,
one supports data access from HFS volumes and another supports the
memory-based data handler, which allows QuickTime to retrieve movies from
memory handles. These two data handler components use very different
mechanisms to store and retrieve movie data.

You might need to write your own data handler when you are accessing a
storage medium for which there is no Apple-supplied data handler or when
playing movies from a multimedia server, as you will need to use a data
handler that understands the network protocols and data formats necessary to
communicate with that server.

Identifying Containers With Data References 16

A container is the system element that contains the movie data and can be any
element that can contain data. For example, a container may be an in-memory
data structure, a local disk file, or a file on a networked multimedia server. As
is the case throughout QuickTime, all data handlers identify their movie-data
containers with data references. Data references identify the location of the
container and its type.

Different container types may require different types of references. For
example, files are identified using aliases, while memory-based movies are
identified by handles. The data reference data type is flexible enough to
accommodate all these cases. The data handler component must specify the
type of reference it requires and verify that the references supplied by client
applications are valid. Data handler components use the component subtype
value to specify the reference type they support.

C H A P T E R 1 6

Data Handler Components

16-8 Using Data Handler Components

Whenever an application opens a container, the Movie Toolbox determines the
most appropriate data handler component to use in order to access that
container. The Movie Toolbox makes this determination by querying the
various data handlers installed on the user’s computer. If your application uses
the Movie Toolbox, this selection process is transparent to your program. If you
develop your own data handler, your component must support the selection
functions, see “Data Handler Components Reference” (page 16-28), for more
information).

Using Data Handler Components 16

This section describes how applications use data handler components. You
should read this section if you are writing your own media handler or your
own data handler.

This section is divided into the following topics:

■ “Selecting a Data Handler” describes the facilities that are available to help
your application choose the best data handler for a given context.

■ “Managing Data References” describes how your application gains access to
a container using a data handler component.

■ “Retrieving Movie Data” describes how your application reads movie data.

■ “Storing Movie Data” describes how your application can write movie data
using a data handler component.

■ “Managing the Data Handler” describes your application’s responsibilities
while maintaining its connection with a data handler.

Selecting a Data Handler 16

To help developers choose the best data handler for a specific situation while
still making it easy for an application to find a usable data handler, Apple has
defined two separate and complementary mechanisms for selecting data
handler components. You can use the Component Manager’s selection
mechanisms to find a data handler that meets your needs and you can
interrogate a data handler to determine if it supports a specific data reference.
Both mechanisms rely on characteristics of the current data reference in order
to make the selection.

C H A P T E R 1 6

Data Handler Components

Using Data Handler Components 16-9

Before you can use a data handler component, your application must open a
connection to that component. The easiest way to open a connection to a data
handler component is to call the Movie Toolbox’s GetDataHandler function. You
supply a data reference and the Movie Toolbox selects an appropriate data
handler component for you. This function is preferred for opening a data
handler as it reliably chooses the best data handler. For more information about
this function, see the chapter “Movie Toolbox” in Inside Macintosh: QuickTime.

Alternatively, you may use the Component Manager to open your connection.
Call the Component Manager’s OpenDefaultComponent or OpenComponent
function to do so, but be aware that these functions are often unable to make
the best choice when there are several different data handlers available for a file.

Selecting by Component Type Value 16

At the most basic level, your application can use the Component Manager’s
built-in selection mechanisms to find a data handler component for a data
reference. You may use the Component Manager’s FindNextComponent function
in order to retrieve a list of all data handler components that meet your needs.
You specify your request by supplying the component’s characteristics in a
component description record—in particular, in the componentType,
componentSubtype, componentManufacturer, and componentFlags fields.

All data handler components have a component type value of 'dhlr', which is
defined by the dataHandlerType constant. Data handler components use the
value of the component subtype field to indicate the type of data reference they
support. As a result of this convention, note that all data handlers that share a
component subtype value must be able to recognize and work with data
references of the same type. For example, file system data handlers always
carry a component subtype value of 'alis', which indicates that their data
references are file system aliases (note that this is true for QuickTime on the
Macintosh and under Windows, even though there is not, properly, a file
system alias under Windows). Apple’s memory-based data handler for the
Macintosh has a component subtype value of 'hndl'.

Apple has not defined any special manufacturer field values or component
flags values for data handler components. You may use the manufacturer field
to select data handlers supplied by a specific vendor. To do so, you need to
determine the appropriate manufacturer field value for that vendor.

C H A P T E R 1 6

Data Handler Components

16-10 Using Data Handler Components

Interrogating a Data Handler’s Capabilities 16

While you can use the Component Manager’s selection mechanisms to find a
data handler component that can recognize data references of a specific type,
your application must interact with the data handler in order to determine
whether it can support a specific data reference. Apple has defined two
functions, DataHCanUseDataRef and DataHGetVolumeList, that allow you to query
a data handler component in order to find out whether it can work with a data
reference. By using these two functions, your application can choose a data
handler that is best-suited to its specific needs.

Using the DataHCanUseDataRef function, you supply a data reference to the data
handler component. The component then reports what it can do with that data
reference. The returned value indicates the level and, to some extent, the
quality of service the data handler can provide (for example, whether the
component can read data from or write data to the data reference and whether
the component uses any special support when working with that data
reference).

Because calling the DataHCanUseDataRef function in several data handlers can
get time consuming, Apple has also defined a function that helps narrow the
search. By using the DataHGetVolumeList function, your application can obtain a
list of all the file system volumes that a data handler can support. In response
to your request, the data handler returns the list and flags indicating the level
and quality of service the data handler can provide for containers on that
volume.

For more information on these functions, see “Selecting a Data Handler”
(page 16-29).

Managing Data References 16

Once you have selected a data handler component, you must provide a data
reference to the data handler. Use the DataHSetDataRef function to supply a
data reference to a data handler. Once you have assigned a data reference to the
data handler, your application may start reading and/or writing movie data
from that data reference. The DataHGetDataRef function allows your application
to obtain a data handler’s current data reference.

Data handlers also provide a function that allows your application to
determine whether two data references are equivalent (that is, refer to the same
movie container). Your application provides a data reference to the
DataHCompareDataRef function. The data handler returns a Boolean value

C H A P T E R 1 6

Data Handler Components

Using Data Handler Components 16-11

indicating whether that data reference matches the data handler’s current data
reference.

For more information on these functions, see “Working With Data References”
(page 16-36).

Retrieving Movie Data 16

Before your application can read data using a data handler component, you
must open a read path to the current data reference. Use the DataHOpenForRead
function to request read access to the current data reference. Once you have
gained read access to the data reference, data handlers provide both high- and
low-level read functions.

The high-level function, DataHGetData, provides an easy-to-use, synchronous
read interface. Being a synchronous function, DataHGetData does not return
control to your application until the data handler has read and delivered the
data you request.

If you need more control over the read operation, you can use the low-level
function, DataHScheduleData, to issue asynchronous read requests. When you
call this function, you provide detailed information specifying when you need
the data from the request. The data handler returns control to your application
immediately, and then processes the request when appropriate. When the data
handler completes the request, it calls your data-handler completion function
to report that the request has been satisfied, see “Completion Function”
(page 16-61) for more information on the data-handler completion function.

Besides simply scheduling read requests that must be satisfied during a
movie’s playback, another use of the DataHScheduleData function is to prepare a
movie for playback (commonly referred to as pre-rolling the movie). The
DataHScheduleData function uses several special values to indicate a pre-roll
operation. Your application calls the DataHScheduleData function one or more
times to schedule the pre-roll read requests, and then uses the DataHFinishData
function to tell the data handler to start delivering the requested data.

For more information on these functions and about pre-roll operations, see
“Reading Movie Data” (page 16-41).

C H A P T E R 1 6

Data Handler Components

16-12 Using Data Handler Components

Storing Movie Data 16

Before your application can write data using a data handler component, you
must open a write path to the current data reference. Use the
DataHOpenForWrite function to request write access to the current data
reference. Once you have gained write access to the data reference, data
handler components provide both high- and low-level write functions.

Note
QuickTime for Windows version 2.1.1 or earlier does not
support writing movie data. ◆

The high-level function, DataHPutData, allows you to easily append data to the
end of the container identified by a data reference. Except when capturing
movie data using the sequence grabber component, the Movie Toolbox uses
this call when writing data to movie files. However, this function does not
allow your application to write to any location other than the end of the
container. In addition, this is a synchronous operation, so control is not
returned to your program until the write is complete. As a result, this function
is not well-suited to high-performance write operations, such as would be
required to capture a movie.

If you need a more flexible write facility, or one with higher performance
characteristics, you can use the DataHWrite function. This function is intended
to support high-speed writes, suitable for movie capture operations. For
example, Apple’s sequence grabber component uses this data handler function
to capture movies.

When you call this function, you provide detailed information specifying the
location in the container that is to receive the data. The data handler returns
control to your application immediately, and then processes the request
asynchronously. When the data handler completes the request, it calls your
data-handler completion function to report that the request has been satisfied,
see “Completion Function” (page 16-61) for more information on the
data-handler completion function.

In addition to the DataHWrite function, data handler components provide
several other “helper” functions that allow you to create new movie containers
and prepare them for a movie capture operation.

For more information on all of these functions, see “Writing Movie Data”
(page 16-50).

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-13

Managing the Data Handler 16

Data handler components provide a number of functions that your application
can use to manage its connection to the handler. The most important among
these is DataHTask, which provides processor time to the handler. Your
application should call this function often so that the handler has enough time
to do its work.

Other functions in this category provide playback hints to the data handler and
allow your application to influence how the component handles its cached data.

For more information on these functions, see “Managing Data Handler
Components” (page 16-58).

Creating a Data Handler Component 16

This section describes the details of creating a data handler component and
includes source code for a simple data handler component. After reading this
section, you will understand all of the special requirements of these
components. The functional interface that your component must support is
described in “Data Handler Components Reference” (page 16-28).

You should consider developing your own data handler component if you are
planning to provide a new type of movie container or a container that requires
special data handling techniques. For example, if you are planning to develop a
networked multimedia server, you would most likely need to develop a new
data handler that could support the special protocols required by your server.
By encapsulating that protocol support in a data handler, QuickTime
applications can access the movie data on your server without having to
implement any special support. In this way, your server becomes a seamless
part of the user’s system.

Before reading this section, you should be familiar with how to create
components. See “Component Manager” in Inside Macintosh: More Macintosh
Toolbox for a complete description of components, how to use them, and how to
create them on the Macintosh. For further information about using the
Component Manager with QuickTime for Windows, see Creating Custom
Components: QuickTime for Windows.

C H A P T E R 1 6

Data Handler Components

16-14 Creating a Data Handler Component

General Information 16

All data handler components have a component type value of 'dhlr', which is
defined by the dataHandlerType constant. Data handler components use the
value of the component subtype field to indicate the type of data reference they
support. As a result of this convention, note that all data handlers that share a
component subtype value must be able to recognize and work with data
references of the same type. For example, file system data handlers always
carry a component subtype value of 'alis', which indicates that their data
references are file system aliases (note that this is true for QuickTime on the
Macintosh and under Windows, even though there is not, properly, a file
system alias under Windows). Apple’s memory-based data handler for the
Macintosh has a component subtype value of 'hndl'.

#define dataHandlerType 'dhlr'
#define rAliasType 'alis'

Apple has not defined any special manufacturer field values or component
flags values for data handler components. Developers may use the
manufacturer field value to select your data handler from among all the data
handlers that support a given type of data reference.

Apple has defined a functional interface for data handler components. For
information about the functions that your component must support, see “Data
Handler Components Reference” (page 16-28). You can use the following
constants to refer to the request codes for each of the functions that your
component must support:

enum {

kDataGetDataSelector = 2, /* DataHGetData */
kDataPutDataSelector = 3, /* DataHPutData */
kDataFlushDataSelector= 4, /* DataHFlushData */
kDataOpenForWriteSelector= 5,/* DataHOpenForWrite */
kDataCloseForWriteSelector= 6,/* DataHCloseForWrite */
kDataOpenForReadSelector= 8,/* DataHOpenForRead */
kDataCloseForReadSelector= 9,/* DataHCloseForRead */
kDataSetDatRefSelector= 10, /* DataHSetDataRef */
kDataGetDataRefSelector= 11,/* DataHGetDataRef */
kDataCompareDataRefSelector= 12,/* DataHCompareDataRef */
kDataTaskSelector = 13, /* DataHTask */
kDataScheduleDataSelector= 14,/* DataHScheduleData */

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-15

kDataFinishDataSelector= 15,/* DataHFinishData */
kDataFlushCacheSelector= 16,/* DataHFlushCache */
kDataResolveDataRefSelector= 17,/* DataHResolveDataRef

*/
kDataGetFileSizeSelector= 18,/* DataHGetFileSize */
kDataCanUseDataRefSelector= 19,/* DataHCanUseDataRef */
kDataGetVoumeListSelector= 20,/* DataHGetVolumeList */
kDataWriteSelector = 21, /* DataHWrite */
kDataPreextendSelector= 22, /* DataHPreextend */
kDataSetFileSizeSelector= 23,/* DataHSetFileSize */
kDataGetFreeSpaceSelector= 24,/* DataHGetFreeSpace */
kDataCreateFileSelector= 25,/* DataHCreateFile */
kDataGetPreferredBlockSizeSelector= 26,/* DataHGetPreferredBlockSize

*/
kDataGetDeviceIndexSelector= 27,/* DataHGetDeviceIndex */
/* 28 and 29 unused */
kDataGetScheduleAheadTimeSelector= 30,/*

DataHGetScheduleAheadTime */
kDataSetOSFileRefSelector= 516,/* DataHSetOSFileRef */
kDataGetOSFileRefSelector= 517,/* DataHGetOSFileRef */

kDataPlaybackHintsSelector= 3+0x100/* DataHPlaybackHints */
};

A Sample Data Handler Component 16

This section provides sample code for a Macintosh data handler component.

While data handler components to be used with QuickTime for Windows are
functionally quite similar to Macintosh data handlers, there are some
differences. QuickTime for Windows does not support a write data path.
Therefore, your data handler needs to support only those functions that allow
QuickTime to read movie data. In addition, Windows components are built as
special dynamic link libraries (DLLs). You need to structure your code
appropriately. For more information and a sample Windows data handler, see
Creating Custom Components: QuickTime for Windows.

C H A P T E R 1 6

Data Handler Components

16-16 Creating a Data Handler Component

Listing 16-1 Sample Macintosh Data Handler

#include <Aliases.h>
#include <Files.h>
#include <OSUtils.h>

#include “DataHandlerPrototypes.h”

// these selectors belong in the header file

enum {DataGetDataSelector = 2 };
enum {DataPutDataSelector = 3 };
enum {DataOpenForWriteSelector = 5 };
enum {DataCloseForWriteSelector = 6 };
enum {DataOpenForReadSelector = 8 };
enum {DataCloseForReadSelector = 9 };
enum {DataSetAliasSelector = 10 };
enum {DataGetAliasSelector = 11 };
enum {DataCompareAliasSelector = 12 };
enum {DataTaskSelector = 13 };
enum {DataScheduleDataSelector = 14 };
enum {DataCanUseDataRef = 19 };
enum {DataGetVolumeListSelector = 20 };

// data structures

typedef struct {
ComponentInstance self;

AliasHandle alias;

short readFref;
short writeFref;

} DataHandlerGlobalsRecord, *DataHandlerGlobals;

// function declarations

pascal ComponentResult main(ComponentParameters *params,
Handle storage);

ComponentFunctionUPP DHSelectorLookup(short selector);

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-17

pascal ComponentResult DHOpen(DataHandlerGlobals storage,
ComponentInstance self);

pascal ComponentResult DHClose(DataHandlerGlobals storage,
ComponentInstance self);

pascal ComponentResult DHCanDo(DataHandlerGlobals storage,
short functionSelector);

pascal ComponentResult DHVersion(DataHandlerGlobals storage);

pascal ComponentResult DHGetData(DataHandlerGlobals storage, Handle h,
long offsetIntoHandle, long

offset,
long size);

pascal ComponentResult DHPutData(DataHandlerGlobals storage, Handle h,
long hOffset, long *offset, long

size);

pascal ComponentResult DHSetAlias(DataHandlerGlobals storage,
AliasHandle alias);

pascal ComponentResult DHGetAlias(DataHandlerGlobals storage,
AliasHandle *alias);

pascal ComponentResult DHCompareAlias(DataHandlerGlobals storage,
AliasHandle alias, Boolean

*equal);

pascal ComponentResult DHScheduleData (DataHandlerGlobals storage,
Ptr dataPtr,long fileOffset,
long dataSize, long refCon,
TimeRecord *timeNeededBy,
DataHCompletionUPP

completionRoutine);

pascal ComponentResult DHOpenForRead(DataHandlerGlobals storage);
pascal ComponentResult DHCloseForRead(DataHandlerGlobals storage);
pascal ComponentResult DHOpenForWrite(DataHandlerGlobals storage);
pascal ComponentResult DHCloseForWrite(DataHandlerGlobals storage);

pascal ComponentResult DHGetVolumeList(DataHandlerGlobals storage,
DataHVolumeList *volumeList);

pascal ComponentResult DHCanUseDataRef(DataHandlerGlobals storage,
Handle dataRef, long *useFlags);

C H A P T E R 1 6

Data Handler Components

16-18 Creating a Data Handler Component

// main function

pascal ComponentResult main(ComponentParameters *params, Handle storage)
{

ComponentResult err;
ComponentFunctionUPP componentProc;

componentProc = DHSelectorLookup(params->what);

if (componentProc)
err = CallComponentFunctionWithStorage(storage, params,

componentProc);
else

err = badComponentSelector;

return err;
}

// determine function based on selected request

ComponentFunctionUPP DHSelectorLookup(short selector)
{

ComponentFunctionUPPcomponentProc = 0;

switch (selector) {
case kComponentVersionSelect:

componentProc = (ComponentFunctionUPP)DHVersion;
break;

case kComponentCanDoSelect:
componentProc = (ComponentFunctionUPP)DHCanDo;
break;

case kComponentCloseSelect:
componentProc = (ComponentFunctionUPP)DHClose;
break;

case kComponentOpenSelect:
componentProc = (ComponentFunctionUPP)DHOpen;
break;

case DataGetDataSelector:

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-19

componentProc = (ComponentFunctionUPP)DHGetData;
break;

case DataPutDataSelector:
componentProc = (ComponentFunctionUPP)DHPutData;
break;

case DataOpenForReadSelector:
componentProc = (ComponentFunctionUPP)DHOpenForRead;
break;

case DataCloseForReadSelector:
componentProc = (ComponentFunctionUPP)DHCloseForRead;
break;

case DataOpenForWriteSelector:
componentProc = (ComponentFunctionUPP)DHOpenForWrite;
break;

case DataCloseForWriteSelector:
componentProc = (ComponentFunctionUPP)DHCloseForWrite;
break;

case DataSetAliasSelector:
componentProc = (ComponentFunctionUPP)DHSetAlias;
break;

case DataGetAliasSelector:
componentProc = (ComponentFunctionUPP)DHGetAlias;
break;

case DataCompareAliasSelector:
componentProc = (ComponentFunctionUPP)DHCompareAlias;
break;

case DataScheduleDataSelector:
componentProc = (ComponentFunctionUPP)DHScheduleData;
break;

case DataCanUseDataRef:
componentProc = (ComponentFunctionUPP)DHCanUseDataRef;
break;

case DataGetVolumeListSelector:
componentProc = (ComponentFunctionUPP)DHGetVolumeList;
break;

}

return componentProc;
}

// open data handler connection

C H A P T E R 1 6

Data Handler Components

16-20 Creating a Data Handler Component

pascal ComponentResult DHOpen(DataHandlerGlobals storage,
ComponentInstance self)

{
ComponentResult err;

storage =
(DataHandlerGlobals)NewPtrClear(sizeof(DataHandlerGlobalsRecord));

if (err = MemError())
return err;

storage->self = (ComponentInstance)self;

SetComponentInstanceStorage(storage->self,(Handle)storage);

return noErr;
}

// close component connection

pascal ComponentResult DHClose(DataHandlerGlobals storage,
ComponentInstance self)

{
if (storage != nil) {

DHCloseForRead(storage);
DHCloseForWrite(storage);

if (storage->alias != nil)
DisposeHandle((Handle)storage->alias);

DisposePtr((Ptr)storage);
}

return noErr;
}

// determine whether data handler supports request

pascal ComponentResult DHCanDo(DataHandlerGlobals storage,
short functionSelector)

{

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-21

return DHSelectorLookup(functionSelector) != 0;
}

// return component's version

pascal ComponentResult DHVersion(DataHandlerGlobals storage)
{

return 0x00020001;
}

// read data

pascal ComponentResult DHGetData(DataHandlerGlobals storage, Handle h,
long offsetIntoHandle, long

offset, long size)
{

OSErr err;
SignedBytesaveState;

if (!storage->readFref) {
err = DHOpenForRead(storage);
if (err != noErr)

return err;
}

saveState = HGetState(h);
HLock(h);
err = DHScheduleData(storage, *h + offsetIntoHandle,

offset, size, 0, nil, nil);
HSetState(h, saveState);

return err;
}

// write data

pascal ComponentResult DHPutData(DataHandlerGlobals storage, Handle h,
long hOffset, long *offset,

long size)
{

OSErr err;

C H A P T E R 1 6

Data Handler Components

16-22 Creating a Data Handler Component

if (!storage->writeFref) {
err = DHOpenForWrite(storage);
if (err != noErr)

return err;
}

err = SetFPos(storage->writeFref, fsFromLEOF, 0);
if (err == noErr) {

if (offset)
err = GetFPos(storage->writeFref, offset);

if (err == noErr)
err = FSWrite(storage->writeFref, &size, *h + hOffset);

}

return err;
}

// set alias

pascal ComponentResult DHSetAlias(DataHandlerGlobals storage,
AliasHandle alias)

{
OSErr err = noErr;

// throw away the old one
if (storage->alias) {

DisposeHandle((Handle)storage->alias);
storage->alias = nil;

}

// copy the new one, if there is one
if (alias) {

err = HandToHand((Handle *)&alias);
if (err == noErr)

storage->alias = alias;
}

return err;
}

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-23

// retrieve alias

pascal ComponentResult DHGetAlias(DataHandlerGlobals storage,
AliasHandle *alias)

{
OSErr err = noErr;

*alias = nil;
if (storage->alias) {

*alias = storage->alias;
err = HandToHand((Handle *)alias);

}

return err;
}

// compare two aliases

pascal ComponentResult DHCompareAlias(DataHandlerGlobals storage,
AliasHandle alias,

Boolean *equal)
{

OSErr err = paramErr;
FSSpec fss1, fss2;
Boolean whoCares;

*equal = false;

if (storage->alias && alias) {
err = ResolveAlias(nil, storage->alias, &fss1, &whoCares);
if (err == noErr) {

err = ResolveAlias(nil, alias, &fss2, &whoCares);
if (err == noErr) {

*equal =(fss1.vRefNum == fss2.vRefNum) &&
(fss1.parID == fss2.parID) &&
EqualString(fss1.name, fss2.name, false,

false);
}

}
}

C H A P T E R 1 6

Data Handler Components

16-24 Creating a Data Handler Component

return err;
}

// scheduled read

pascal ComponentResult DHScheduleData(DataHandlerGlobals storage,
Ptr dataPtr,long

fileOffset,
long dataSize, long

refCon,
TimeRecord

*timeNeededBy,
DataHCompletionUPP

completionRoutine)
{

OSErr err;

if (storage->readFref == 0) {
err = DHOpenForRead(storage);
if (err)

return err;
}

err = SetFPos(storage->readFref, fsFromStart, fileOffset);
if (err == noErr)

err = FSRead(storage->readFref, &dataSize, dataPtr);

// Always call completion routine, even on an error.
if (completionRoutine != nil)

(*completionRoutine)(dataPtr, refCon, err);

return err;
}

// open container for read

pascal ComponentResult DHOpenForRead(DataHandlerGlobals storage)
{

OSErr err;
FSSpec fss;
Boolean whoCares;

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-25

if (storage->readFref != 0)
return noErr;

if (storage->alias == nil)
return dataNoDataRef;

err = ResolveAlias(nil, storage->alias, &fss, &whoCares);
if (err) return err;

err = FSpOpenDF(&fss, fsRdPerm, &storage->readFref);

return err;
}

// close container after reading

pascal ComponentResult DHCloseForRead(DataHandlerGlobals storage)
{

if (storage->readFref) {
FSClose(storage->readFref);
storage->readFref = 0;

}

return noErr;
}

// open container for write

pascal ComponentResult DHOpenForWrite(DataHandlerGlobals storage)
{

OSErr err;
FSSpec fss;
Boolean whoCares;

if (storage->writeFref != 0)
return noErr;

if (storage->alias == nil)
return dataNoDataRef;

C H A P T E R 1 6

Data Handler Components

16-26 Creating a Data Handler Component

err = ResolveAlias(nil, storage->alias, &fss, &whoCares);
if (err) return err;

err = FSpOpenDF(&fss, fsRdWrPerm, &storage->writeFref);

return err;
}

// close container after writing

pascal ComponentResult DHCloseForWrite(DataHandlerGlobals storage)
{

if (storage->writeFref) {
FSClose(storage->writeFref);
storage->writeFref = 0;

}

return noErr;
}

//
// This function limits the set of drives this data handler will be
used to
// read from to those with names beginning with the letter Q.
//
Boolean isVRefNumOK(short vRefNum);
Boolean isVRefNumOK(short vRefNum)
{

ParamBlockRec pb;
Str63 name;

name[0] = 0;
pb.volumeParam.ioVolIndex = 0;
pb.volumeParam.ioVRefNum = vRefNum;
pb.volumeParam.ioNamePtr = name;
if (PBGetVInfoSync(&pb) != noErr)

return false;

return (name[1] == 'Q') || (name[1] == 'q');
}

C H A P T E R 1 6

Data Handler Components

Creating a Data Handler Component 16-27

// determine whether we can handle the data reference

pascal ComponentResult DHCanUseDataRef(DataHandlerGlobals storage,
Handle dataRef, long

*useFlags)
{

OSErr err;
FSSpec fss;
Boolean whoCares;

*useFlags = 0;

err = ResolveAlias(nil, (AliasHandle)dataRef, &fss, &whoCares);
if (err) return err;

if (isVRefNumOK(fss.vRefNum))
*useFlags = kDataHCanRead | kDataHSpecialRead | kDataHCanWrite;

return noErr;
}

//
// This call is only required for data handlers with a subtype of
// rAliasType ('alis').
//
pascal ComponentResult DHGetVolumeList(DataHandlerGlobals storage,

DataHVolumeList
*volumeList)
{

OSErr err = noErr;
DataHVolumeList list;
VCB *vq;

list = (DataHVolumeList)NewHandle(0);
if (err = MemError())

goto bail;

vq = (VCB *)GetVCBQHdr()->qHead;
while (vq) {

if (isVRefNumOK(vq->vcbVRefNum)) {
DataHVolumeListRecord vlr;

C H A P T E R 1 6

Data Handler Components

16-28 Data Handler Components Reference

// add it to our list
vlr.vRefNum = vq->vcbVRefNum;
vlr.flags = kDataHCanRead | kDataHSpecialRead |

kDataHCanWrite;
err = PtrAndHand((Ptr)&vlr, (Handle)list, sizeof(vlr));
if (err)

goto bail;
}
vq = (VCB *)vq->qLink;

}

bail:
if (err) {

DisposeHandle((Handle)list);
list = nil;

}
*volumeList = list;
return err;

}

Data Handler Components Reference 16

This section describes the functions your data handler component may
support. Some of these functions are optional—your component should
support only those functions that are appropriate to it.

Data Handler Components Functions 16

This section describes the functions that may be supported by data handler
components and is divided into the following topics:

■ “Selecting a Data Handler” (page 16-29) describes the functions that allow
client programs, such as the Movie Toolbox, to select an appropriate data
handler for a data reference.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-29

■ “Working With Data References” (page 16-36) describes the functions that
allow client programs to manage a data handler’s current data reference.

■ “Reading Movie Data” (page 16-41) describes the functions that allow client
programs to retrieve data from a data handler.

■ “Writing Movie Data” (page 16-50) describes the functions that allow client
programs to store data using a data handler.

■ “Managing Data Handler Components” (page 16-58) describes the functions
that allow client programs to manage their interactions with data handler
components.

■ “Completion Function” (page 16-61) describes the interface that must be
provided by a client program’s data-handler completion function.

Selecting a Data Handler 16

In order for client programs to choose the best data handler component for a
data reference, Apple has defined some functions that allow applications to
interrogate a data handler’s capabilities.

The DataHGetVolumeList function allows an application to obtain a list of the
volumes your data handler can support. The DataHCanUseDataRef function
allows your data handler to examine a specific data reference and indicate its
ability to work with the associated container. The DataHGetDeviceIndex function
allows applications to determine whether different data references identify
containers that reside on the same device.

By way of illustration, the Movie Toolbox uses the DataHGetVolumeList and
DataHCanUseDataRef functions as follows. During startup, and whenever a new
volume is mounted, the Movie Toolbox calls each data handler’s
DataHGetVolumeList function in order to obtain information about each
handler’s general capabilities. Specifically, the Movie Toolbox calls each
component’s GetDataHandler, DataHGetVolumeList, and CloseComponent
functions.

Whenever an application opens a movie, the Movie Toolbox selects the best
data handler for the movie’s container. This may involve calling each
appropriate data handler’s DataHCanUseDataRef function (in some cases, a data
handler may indicate that it does not need to examine a data reference before
accessing it—see the description of the DataHGetVolumeList function for more
information). For each data handler that can support the data reference (that is,
has the correct component subtype value) and needs to be interrogated, the

C H A P T E R 1 6

Data Handler Components

16-30 Data Handler Components Reference

Movie Toolbox calls the component’s GetDataHandler, DataHCanUseDataRef, and
CloseComponent functions. Based on the resulting information, the Movie
Toolbox selects the best data handler for the application.

For more information on selecting a data handler, see “Selecting a Data
Handler” (page 16-8).

DataHGetVolumeList 16

In response to the DataHGetVolumeList function, your data handler component
returns a list of the volumes your component can access, along with flags
indicating your component’s capabilities for each volume.

pascal ComponentResult DataHGetVolumeList (DataHandler dh,
DataHVolumeList *volumeList);

dh Identifies the calling program’s connection to your data handler
component.

volumeList Contains a pointer to a field that your data handler component
uses to return a handle to a volume list. Your component
constructs the volume list by allocating a handle and filling it
with a series of DataHVolumeListRecord structures (one structure
for each volume your component can access). This structure is
described later in this section.

DISCUSSION

In order to reduce the delay that may result from choosing an appropriate data
handler for a volume, the Movie Toolbox maintains a list of data handlers and
the volumes they support. The Movie Toolbox uses the DataHGetVolumeList
function to build that list.

When your component receives this function, it should scan the available
volumes and create a series of DataHVolumeListRecord structures—one structure

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-31

for each volume your component can access. This structure is defined as
follows:

typedef struct DataHVolumeListRecord {
shortvRefNum;/* reference number */
longflags;/* capability flags */
} DataHVolumeListRecord, *DataHVolumeListPtr,
**DataHVolumeList;

vRefNum Contains the volume reference number assigned to the volume.

flags Indicates the level of support your data handler can provide for
this volume. These flags are similar to those defined for the
DataHCanUseDataRef function, though there is one additional
flag. Your component should set every appropriate flag to 1 (set
unused flags to 0).

kDataHCanRead
Indicates that your data handler can read from
the volume.

kDataHSpecialRead
Indicates that your data handler can read from
the volume using a specialized method. For
example, your data handler might support
access to networked multimedia servers using a
special protocol. In that case, your component
would set this flag to 1 whenever the volume
resides on a supported server.

kDataHSpecialReadFile
Reserved for use by Apple.

kDataHCanWrite
Indicates that your data handler can write data
to the volume. In particular, use this flag to
indicate that your data handler’s DataHPutData
function will work with this volume.

kDataHSpecialWrite
Indicates that your data handler can write to the
volume using a specialized method. As with the
kDataHSpecialRead flag, your data handler
would use this flag to indicate that your

C H A P T E R 1 6

Data Handler Components

16-32 Data Handler Components Reference

component can access the volume using
specialized support (for example, special
network protocols).

kDataHCanStreamingWrite
Indicates that your data handler can support the
special write functions for capturing movie data
when writing to this volume. These functions
are described in“Writing Movie Data”
(page 16-50) “ of this chapter.

kDataHMustCheckDataRef
Instructs the calling program that your
component must check each data reference
before it can accurately report its capabilities. If
you set this flag to 1, the Movie Toolbox will call
your component’s DataHCanUseDataRef function
before it assigns a container to your data
handler. Note, however, that this may slow the
data handler selection process somewhat.

Your data handler may use any facilities necessary to determine whether it can
access the volume, including opening a container on the volume. Your
component should set to 1 as many of the capability flags as are appropriate for
each volume. Do not include records for volumes your handler cannot support.

For example, if your component supports networked multimedia servers using
a special set of protocols, your data handler should set the kDataHCanRead and
kDataHCanSpecialRead flags to 1 for any volume that is on that server. In
addition, if your component can write to a volume on the server, set the
kDataHCanWrite and kDataHCanSpecialWrite flags to 1 (perhaps along with
kDataHCanStreamingWrite). However, your component should create entries
only for those volumes that support your protocols.

It is the calling program’s responsibility to dispose of the handle returned by
your component.

The Movie Toolbox tracks mounting and unmounting removable volumes, and
keeps its volume list current. As a result, the Movie Toolbox may call your
component’s DataHGetVolumeList function whenever a removable volume is
mounted.

If your data handler does not process data that is stored in file system volumes,
you need not support this function.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-33

RESULT CODES

Memory Manager errors

DataHCanUseDataRef 16

The DataHCanUseDataRef function allows your data handler to report whether it
can access the data associated with a specified data reference.

pascal ComponentResult DataHCanUseDataRef (DataHandler dh, Handle
dataRef, long *useFlags);

dh Identifies the calling program’s connection to your data handler
component.

dataRef Specifies the data reference. This parameter contains a handle to
the information that identifies the container in question.

useFlags Contains a pointer to a field that your data handler component
uses to indicate its ability to access the container identified by
the dataRef parameter. Your data handler may use the following
flags (set all flags that are appropriate to 1; set unused flags to
0):

kDataHCanRead
Indicates that your data handler can read from
the container.

kDataHSpecialRead
Indicates that your data handler can read from
the container using a specialized method. For
example, your data handler might support
access to networked multimedia servers using a
special protocol. In that case, your component
would set this flag to 1 whenever the data
reference identifies a container on a supported
server.

kDataHSpecialReadFile
Indicates that your data handler can read from
the container using a specialized method that is
particular to the type of container in question.

C H A P T E R 1 6

Data Handler Components

16-34 Data Handler Components Reference

For example, your data handler may use a
different method for some types of containers
(say, a Hypercard stack).

This flag represents a special case of the
kDataHSpecialRead flag. That is, this flag is
appropriate only if you have also set
kDataHSpecialRead to 1.

kDataHCanWrite
Indicates that your data handler can write data
to the container. In particular, use this flag to
indicate that your data handler’s DataHPutData
function will work with this data reference.

kDataHSpecialWrite
Indicates that your data handler can write to the
container using a specialized method. As with
the kDataHSpecialRead flag, your data handler
would use this flag to indicate that the data
reference identifies a container which your
component can access using specialized support
(for example, special network protocols).

kDataHCanStreamingWrite
Indicates that your data handler can support the
special write functions for capturing movie data
when writing to this container. These functions
are described later in this chapter, in “Writing
Movie Data.”

If your data handler cannot access the container, set the field to
0.

DISCUSSION

Apple’s standard data handler sets both the kDataHCanRead and kDataHCanWrite
flags to 1 for any data reference it receives, indicating that it can read from and
write to any volume.

Your component should set to 1 as many of the capability flags as are
appropriate for the specified data reference. Conversely, be sure to set the flags
to 0 if your component cannot support the container. For example, if your
component supports networked multimedia servers using a special set of

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-35

protocols, your data handler should set the kDataHCanRead and
kDataHCanSpecialRead flags to 1 for any container that is on that server. In
addition, if your component can write to the server, set the kDataHCanWrite and
kDataHCanSpecialWrite flags to 1 (perhaps along with
kDataHCanStreamingWrite). However, your component should set the flags field
to 0 for any container that is not on a server that supports your protocols.

Your data handler may use any facilities necessary to determine whether it can
access the container. Bear in mind, though, that your component should try to
be as quick about this determination as possible, in order to minimize the
chance that the delay will be noticed by the user.

SEE ALSO

The Movie Toolbox calls your component’s DataHGetVolumeList function to
retrieve your data handler’s capabilities for an entire volume.

DataHGetDeviceIndex 16

In response to the DataHGetDeviceIndex function, your data handler component
returns a value that identifies the device on which a data reference resides.

pascal ComponentResult DataHGetDeviceIndex (DataHandler dh, long
*deviceIndex);

dh Identifies the calling program’s connection to your data handler
component.

deviceIndex Contains a pointer to a field that your data handler component
uses to return a device identifier value.

DISCUSSION

Some client programs may need to account for the fact that two or more data
references reside on the same device. For instance, this may affect
storage-allocation requirements. This function allows such client programs to
obtain this information from your data handler.

Your component may use any identifier value that is appropriate (as an
example, Apple’s HFS data handler uses the volume reference number). The

C H A P T E R 1 6

Data Handler Components

16-36 Data Handler Components Reference

client program should do nothing with the value other than compare it with
other identifiers returned by your data handler component.

Working With Data References 16

All data handler components use data references to identify and locate a
movie’s container. Different types of containers may require different types of
data references. For example, a reference to a memory-based movie may be a
handle, while a reference to a file-based movie may be an alias.

Client programs can correlate data references with data handlers by matching
the component’s subtype value with the data reference type—the subtype
value indicates the type of data reference the component supports. All data
handlers with the same subtype value must support the same data reference
type. To continue the previous example, Apple’s memory-based data handler
for the Macintosh uses handles (and has a subtype value of 'hndl'), while the
HFS data handler uses Alias Manager aliases (its subtype value is 'alis').

The DataHSetDataRef and DataHGetDataRef functions allow applications to
assign your data handler’s current data reference. The DataHCompareDataRef
function asks your component to compare a data reference against the current
data reference and indicate whether the references are equivalent (that is, refer
to the same container). The DataHResolveDataRef permits your component to
locate a data reference’s container.

The DataHSetOSFileRef and DataHGetOSFileRef functions provide an alternative,
system-specific mechanism for assigning your data handler’s current data
reference.

For more information on data references, see “Managing Data References”
(page 16-10).

DataHSetDataRef 16

The DataHSetDataRef function assigns a data reference to your data handler
component.

pascal ComponentResult DataHSetDataRef (DataHandler dh, Handle dataRef);

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-37

dh Identifies the calling program’s connection to your data handler
component.

dataRef Specifies the data reference. This parameter contains a handle to
the information that identifies the container in question. Your
component must make a copy of this handle.

DISCUSSION

Note that the type of data reference always corresponds to the type that your
component supports, and that you specify in the component subtype value of
your data handler. As a result, the client program does not provide a data
reference type value (unlike the Movie Toolbox’s data reference functions).

The client program is responsible for disposing of the handle. Consequently,
your component must make a copy of the data reference handle.

RESULT CODES

Memory Manager errors

DataHGetDataRef 16

The DataHGetDataRef function retrieves your component’s current data
reference.

pascal ComponentResult DataHGetDataRef (DataHandler dh, Handle *dataRef);

dh Identifies the calling program’s connection to your data handler
component.

dataRef Contains a pointer to a data reference handle. Your component
should make a copy of its current data reference in a handle
and return that handle in this field. The client program is
responsible for disposing of that handle.

RESULT CODES

Memory Manager errors

C H A P T E R 1 6

Data Handler Components

16-38 Data Handler Components Reference

DataHCompareDataRef 16

Your component compares a supplied data reference against its current data
reference and returns a Boolean value indicating whether the data references
are equivalent (that is, the two data references identify the same container).

pascal ComponentResult DataHCompareDataRef (DataHandler dh, Handle
dataRef, Boolean *equal);

dh Identifies the calling program’s connection to your data handler
component.

dataRef Specifies the data reference to be compared to your
component’s current data reference.

equal Contains a pointer to a Boolean. Your component should set
that Boolean to true if the two data references identify the same
container. Otherwise, set the Boolean to false.

DISCUSSION

Note that your component cannot simply compare the bits in the two data
references. For example, two completely different aliases may refer to the same
HFS file. Consequently, you need to completely resolve the data reference in
order to determine the file identified by the reference.

DataHResolveDataRef 16

The DataHResolveDataRef function instructs your data handler component to
locate the container associated with a given data reference.

pascal ComponentResult DataHResolveDataRef (DataHandler dh, Handle
theDataRef, Boolean *wasChanged,
Boolean userInterfaceAllowed);

dh Identifies the calling program’s connection to your data handler
component.

theDataRef Specifies the data reference to be resolved.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-39

wasChanged Contains a pointer to a Boolean. Your component should set
that Boolean to true if, in locating the container, your data
handler updates any information in the data reference.

userInterfaceAllowed
Indicates whether your component may interact with the user
when locating the container. If this parameter is set to true,
your component may ask the user to help locate the container
(for instance, by presenting a Find File dialog box).

DISCUSSION

This function is, essentially, equivalent to the Alias Manager’s ResolveAlias
function. The client program asks your component to locate the container that
is associated with a given data reference. If your component determines that
the data reference needs to be updated with more accurate location
information, it should put the new information in the supplied data reference
(and set the Boolean referred to by the wasChanged parameter to true).

Client programs may call your data handler’s DataHResolveDataRef function at
any time. Typically, however, the Movie Toolbox uses this function as part of its
strategy for opening and reading a movie container. As such, you can expect
that the supplied data reference will identify a container that your component
can support.

DataHSetOSFileRef 16

The DataHSetOSFileRef function assigns a movie container to your data handler
component. Applications may use this function instead of calling the
DataHSetDataRef function in cases where the applications have already opened
the container.

pascal ComponentResult DataHSetOSFileRef (DataHandler dh, long ref, long
flags);

dh Identifies the calling program’s connection to your data handler
component.

C H A P T E R 1 6

Data Handler Components

16-40 Data Handler Components Reference

ref Specifies the container. This parameter contains an operating
system-specific file-access token. For example, on the Macintosh
an application would supply the file reference it obtained by
calling the FSOpenFile function. Under Windows, this
parameter would contain an HFILE value obtained from the
OpenFile function.

flags Specifies access flags for the container. This parameter contains
the access flags the application used when opening the
container. Again, these are operating system-specific.

DISCUSSION

This function provides an alternative mechanism for assigning your data
handler’s current container. In some cases, an application may have created or
opened a movie container prior to assigning the container to your handler. In
such cases, the application may choose to provide its access token to your data
handler, rather than using the DataHSetDataRef function to assign a data
reference. The application must have opened the file before calling this function.

Note that your data handler must implement this function in a system-specific
manner, and must verify that the access token is valid.

Applications must still call your handlers DataHOpenForRead or
DataHOpenForWrite functions, as appropriate, before using your data handler to
access the container.

RESULT CODES

DataHGetOSFileRef 16

The DataHGetOSFileRef function retrieves your component’s container access
token, if it was assigned using the DataHSetOSFileRef function.

pascal ComponentResult DataHGetOSFileRef (DataHandler dh, long *ref,
long *flags);

invalidDataRef –2012 Application already set a data reference
memFullErr –108 Insufficient memory for operation

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-41

dh Identifies the calling program’s connection to your data handler
component.

ref Contains a pointer to a long. Your component should return the
container access token that the application provided when it
called your DataHSetOSFileRef function.

flags Contains a pointer to a long. Your component should return the
access flags that the application provided when it called your
DataHSetOSFileRef function.

RESULT CODES

Reading Movie Data 16

Data handler components provide two basic read facilities. The DataHGetData
function is a fully synchronous read operation, while the DataHScheduleData
function is asynchronous. Applications provide scheduling information when
they call your component’s DataHScheduleData function. When your component
processes the queued request, it calls the application’s data-handler completion
function (for more information, see “Completion Function” (page 16-61) later
in this chapter). By calling your component’s DataHFinishData function,
applications can force your component to process queued read requests.
Applications may call your component’s DataHGetScheduleAheadTime function
in order to determine how far in advance your component prefers to get read
requests.

Before any application can read data from a data reference, it must open read
access to that reference by calling your component’s DataHOpenForRead function.
The DataHCloseForRead function closes that read access path.

For more information on reading movie data, see “Retrieving Movie Data”
(page 16-11).

invalidDataRef –2012 Application already set a data reference
memFullErr –108 Insufficient memory for operation

C H A P T E R 1 6

Data Handler Components

16-42 Data Handler Components Reference

DataHOpenForRead 16

Your component opens its current data reference for read-only access.

pascal ComponentResult DataHOpenForRead (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

After setting your component’s current data reference by calling the
DataHSetDataRef function, client programs call the DataHOpenForRead function in
order to start reading from the data reference. Your component should open the
data reference for read-only access. If the data reference is already open or
cannot be opened, return an appropriate error code.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this happens,
your component should open the data reference for read-only access, respond
to the read request, and then leave the data reference open in anticipation of
later read requests.

DataHCloseForRead 16

Your component closes read-only access to its data reference.

pascal ComponentResult DataHCloseForRead (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

Note that a client program may close its connection to your component (by
calling the Component Manager’s CloseComponent function) without closing the
read path. If this happens, your component should close the data reference
before closing the connection.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-43

RESULT CODES

DataHGetData 16

Your component reads data from its current data reference. This is a
synchronous read operation.

pascal ComponentResult DataHGetData (DataHandler dh, Handle h, long
hOffset, long offset, long size);

dh Identifies the calling program’s connection to your data handler
component.

h Specifies the handle to receive the data.

hOffset Identifies the offset into the handle where your component
should return the data.

offset Specifies the offset in the data reference from which your
component is to read.

size Specifies the number of bytes to read.

DISCUSSION

The DataHGetData function provides a high-level read interface. This is a
synchronous read operation; that is, the client program’s execution is blocked
until your component returns control from this function. As a result, most
time-critical clients use the DataHScheduleData function to read data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this happens,
your component should open the data reference for read-only access, respond
to the read request, and then leave the data reference open in anticipation of
later read requests.

dataNotOpenForRead –2042 Data reference not open for read
dataAlreadyClosed –2045 This reference already closed

C H A P T E R 1 6

Data Handler Components

16-44 Data Handler Components Reference

SEE ALSO

Client programs can force your component to invalidate any cached data by
calling your component’s DataHFlushCache function.

DataHScheduleData 16

Your component reads data from its current data reference. This can be a
synchronous read operation or an asynchronous read operation.

pascal ComponentResult DataHScheduleData (DataHandler dh,
Ptr placeToPutDataPtr, long fileOffset, long
dataSize, long refCon,
DataHSchedulePtr scheduleRec, DHCompleteProc
completionRtn);

dh Identifies the calling program’s connection to your data handler
component.

placeToPutDataPtr
Specifies the location in memory that is to receive the data.

fileOffset Specifies the offset in the data reference from which your
component is to read.

dataSize Specifies the number of bytes to read.

refCon Contains a reference constant that your data handler
component should provide to the data-handler completion
function specified with the completionRtn parameter.

scheduleRec Contains a pointer to a schedule record. If this parameter is set
to nil, then the client program is requesting a synchronous read
operation (that is, your data handler must return the data
before returning control to the client program).

If this parameter is not set to nil, it must contain the location of
a schedule record that has timing information for an
asynchronous read request. Your data handler should return
control to the client program immediately, and then call the
client’s data-handler completion function when the data is
ready. The schedule record is described later in this section.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-45

completionRtn
Contains a pointer to a data-handler completion function.
When your data handler finishes with the client program’s read
request, your component must call this routine. Be sure to call
this routine even if the request fails. Your component should
pass the reference constant that the client program provided
with the refCon parameter.

The client program must provide a completion routine for all
asynchronous read requests (that is, all requests that include a
valid schedule record). For synchronous requests, client
programs should set this parameter to nil. However, if the
function is provided, your handler must call it, even after
synchronous requests.

DISCUSSION

The DataHScheduleData function provides both a synchronous and an
asynchronous read interface. Synchronous read operations work like the
DataHGetData function—the data handler component returns control to the
client program only after it has serviced the read request. Asynchronous read
operations allow client programs to schedule read requests in the context of a
specified QuickTime time base. Your data handler queues the request and
immediately returns control to the calling program. After your component
actually reads the data, it calls the client program’s data-handler completion
function.

If your component cannot satisfy the request (for example, the request requires
data more quickly than you can deliver it), your component should reject the
request immediately, rather than queuing the request and then calling the
client’s data-handler completion function.

The client program provides scheduling information for scheduled reads in a
schedule record. This structure is defined as follows:

typedef struct DataHScheduleRecord {
TimeRecordtimeNeededBy;/* schedule info */
longextendedID;/* type of data */
longextendedVers;/* reserved */
Fixedpriority;/* priority */
} DataHScheduleRecord, *DataHSchedulePtr;

C H A P T E R 1 6

Data Handler Components

16-46 Data Handler Components Reference

timeNeededBy Specifies the time at which your data handler must deliver the
requested data to the calling program. This time value is
relative to the time base that is contained in this time record.

During pre-roll operations, the Movie Toolbox may use special
values in certain time record fields. The time record fields in
question are the scale and value fields. By correctly interpreting
the values of these fields, your data handler can queue up the
pre-roll read requests in the most efficient way for its device.

There are two types of pre-roll read operations. The first type is
a required read; that is, the Movie Toolbox requires that the
read operation be satisfied before the movie starts playing. The
second type is an optional read. If your data handler can satisfy
the read operation as part of the pre-roll operation, it should do
so. Otherwise, your data handler may satisfy the request at a
specified time while the movie is playing.

The Movie Toolbox indicates that a pre-roll read request is
required by setting the scale field of the time record to –1. This
literally means that the request is scheduled for a time that is
infinitely far into the future. Your data handler should collect all
such read requests, order them most efficiently for your device,
and process them when the Movie Toolbox calls your
component’s DataHFinishData function.

For optional pre-roll read requests, the Movie Toolbox sets the
scale field properly, but negates the contents of the value field.
Your data handler has the option of delivering the data for this
request with the required data, if that can be done efficiently.
Otherwise, your data handler may deliver the data at its
schedule time. You determine the scheduled time by negating
the contents of the value field (that is, multiplying by –1).

For more information about pre-roll operations, see “Retrieving
Movie Data,” earlier in this chapter.

extendedID Indicates the type of data that follows in the remainder of the
record. The following values are valid:

kDataHExtendedSchedule
The remainder of the record contains extended
scheduling information.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-47

If the extendedID field is set to kDataHExtendedSchedule, the remainder of the
schedule record is defined as follows:

extendedVers Reserved; this field should always be set to 0.

priority Indicates the relative importance of the data request. Client
programs assign a value of 100.0 to data requests the must be
delivered. Lower values indicate relatively less critical data. If
your data handler must accommodate bandwidth limitations
when delivering data, your component may use this value as an
indication of which requests can be dropped with the least
impact on the client program.

As an example, consider using priorities in a frame-differenced
movie. Key frames might have priority values of 100.0,
indicating that they are essential to proper playback. As you
move through the frames following a key frame, each
successive frame might have a lower priority value. Once you
drop a frame, you must drop all successive frames of equal or
lower priority until you reach another key frame, because each
of these frames would rely on the dropped one for some image
data.

Note that the Movie Toolbox may try to read data from a data reference
without calling your component’s DataHOpenForRead function. If this happens,
your component should open the data reference for read-only access, respond
to the read request, and then leave the data reference open in anticipation of
later read requests.

SEE ALSO

Client programs can force your component to invalidate any cached data by
calling your component’s DataHFlushCache function.

DataHFinishData 16

The DataHFinishData function instructs your data handler component to
complete or cancel one or more queued read requests. The client program

C H A P T E R 1 6

Data Handler Components

16-48 Data Handler Components Reference

would have issued those read requests by calling your component’s
DataHScheduleData function.

pascal ComponentResult DataHFinishData (DataHandler dh,
Ptr placeToPutDataPtr, Boolean cancel);

dh Identifies the calling program’s connection to your data handler
component.

placeToPutDataPtr
Specifies the location in memory that is to receive the data. The
value of this parameter identifies the specific read request to be
completed. If this parameter is set to nil, the call affects all
pending read requests.

cancel Indicates whether the calling program wants to cancel the
outstanding request. If this parameter is set to true, your data
handler should cancel the request (or requests) identified by the
placeToPutDataPtr parameter.

DISCUSSION

Client programs use the DataHFinishData function either to cancel outstanding
read requests or to demand that the requests be serviced immediately. Pre-roll
operations are a special case of the immediate service request. The client
program will have queued one or more read requests with their scheduled time
of delivery set infinitely far into the future. Your data handler queues those
requests until the client program calls the DataHFinishData function demanding
that all outstanding read requests be satisfied immediately.

Note that your component must call the client program’s data-handler
completion function for each queued request, even though the client program
called the DataHFinishData function. Be sure to call the completion function for
both canceled and completed read requests.

SEE ALSO

Client programs queue read requests by calling your component’s
DataHScheduleData function.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-49

DataHGetScheduleAheadTime 16

The DataHGetScheduleAheadTime function allows your data-handler component
to report how far in advance it prefers clients to issue read requests.

pascal ComponentResult DataHGetScheduleAheadTime (DataHandler dh,
long *millisecs);

dh Identifies the calling program’s connection to your data handler
component.

millisecs Contains a pointer to a long. Your component should set this
field with a value indicating the number of milliseconds you
prefer to receive read requests in advance of the time when the
data must be delivered.

DISCUSSION

This function allows your data handler to tell the client program how far in
advance it should schedule its read requests. By default, the Movie Toolbox
issues scheduled read requests between 1 and 2 seconds before it needs the
data from those requests. For some data handlers, however, this may not be
enough time. For example, some data handlers may have to accommodate
network delays when processing read requests. Client programs that call this
function may try to respect your component’s preference.

Note, however, that not all client programs will call this function. Further, some
clients may not be able to accommodate your preferred time in all cases, even if
they have asked for your component’s preference. As a result, your component
should have a strategy for handling requests that do not provide enough
advanced scheduling time. For example, if your component receives a
DataHScheduleData request that it cannot satisfy, it can fail the request with an
appropriate error code.

SEE ALSO

Client programs queue read requests by calling your component’s
DataHScheduleData function.

C H A P T E R 1 6

Data Handler Components

16-50 Data Handler Components Reference

Writing Movie Data 16

As with reading movie data, data handlers provide two distinct write facilities.
The DataHPutData function is a simple synchronous interface that allows
applications to append data to the end of a container.

The DataHWrite function is a more capable, asynchronous write function that is
suitable for movie capture operations. As is the case with the
DataHScheduleData function, your component calls the application’s
data-handler completion function when you are done with the write request.

There are several other helper functions that allow applications to prepare your
data handler for a movie capture operation. The DataHCreateFile function asks
your component to create a new container. The DataHSetFileSize and
DataHGetFileSize functions work with a container’s size, in bytes. The
DataHGetFreeSpace function allows applications to determine when to make a
container larger. The DataHPreextend function asks your component to make a
container larger. Applications may call your component’s
DataHGetPreferredBlockSize function in order to determine how best to interact
with your data handler.

Before writing data to a data reference, applications must call your
component’s DataHOpenForWrite function to open a write path to the container.
The DataHCloseForWrite function closes that write path.

Note that some data handlers may not support write operations. For example,
some shared devices, such as a CD-ROM “jukebox”, may be read-only devices.
As a result, it is very important that your data handler correctly report its write
capabilities to client programs. See “Selecting a Data Handler” (page 16-8) for
information about the functions that client programs use to interrogate your
data handler. For more information on writing movie data, see “Storing Movie
Data” (page 16-12).

DataHOpenForWrite 16

Your component opens its current data reference for write-only access.

pascal ComponentResult DataHOpenForWrite (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-51

DISCUSSION

After setting your component’s current data reference by calling the
DataHSetDataRef function, client programs call the DataHOpenForWrite function
in order to start writing to the data reference. Your component should open the
data reference for write-only access. If the data reference is already open or
cannot be opened, return an appropriate error code.

RESULT CODES

DataHCloseForWrite 16

Your component closes write-only access to its data reference.

pascal ComponentResult DataHCloseForWrite (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

Note that a client program may close its connection to your component (by
calling the Component Manager’s CloseComponent function) without closing the
write path. If this happens, your component should close the data reference
before closing the connection.

dataAlreadyOpenForWrite –2044 Data reference already open for write

C H A P T E R 1 6

Data Handler Components

16-52 Data Handler Components Reference

RESULT CODES

DataHPutData 16

Your component writes data to its current data reference. This is a synchronous
write operation that appends data to the end of the current data reference.

pascal ComponentResult DataHPutData (DataHandler dh, Handle h, long
hOffset, long *offset, long size);

dh Identifies the calling program’s connection to your data handler
component.

h Specifies the handle that contains the data to be written to the
data reference.

hOffset Identifies the offset into the handle h to the data to be written.

offset Contains a pointer to a long. Your component returns the offset
in the data reference at which your component wrote the data.

size Specifies the number of bytes to write.

DISCUSSION

The DataHPutData function provides a high-level write interface. This is a
synchronous write operation that only appends data to the end of the current
data reference. That is, the client program’s execution is blocked until your
component returns control from this function, and the client cannot control
where the data is written. As a result, most movie-capture clients (for example,
Apple’s sequence grabber component) use the DataHWrite function to write
data when creating movies.

dataNotOpenForWrite –2043 Data reference not open for write
dataAlreadyClosed –2045 This reference already closed

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-53

RESULT CODES

SEE ALSO

Client programs can force your component to write any cached data by calling
your component’s DataHFlushData function.

DataHWrite 16

Your component writes data to its current data reference. This can be a
synchronous write operation or an asynchronous operation, and can write data
to any location in the container.

pascal ComponentResult DataHWrite (DataHandler dh, Ptr data, long
offset, long size, DHCompleteProc completion,
long refCon);

dh Identifies the calling program’s connection to your data handler
component.

data Specifies a pointer to the data to be written. Client programs
should lock the memory area holding this data, allowing your
component’s DataHWrite function to move memory.

offset Specifies the offset (in bytes) to the location in the current data
reference at which to write the data.

size Specifies the number of bytes to write.

completion Contains a pointer to a data-handler completion function.
When your data handler finishes with the client program’s
write request, your component must call this routine. Be sure to
call this routine even if the request fails. Your component
should pass the reference constant that the client program
provided with the refCon parameter.

The client program must provide a completion routine for all
asynchronous write requests. For synchronous requests, client
programs should set this parameter to nil.

dataNotOpenForWrite –2043 Data reference not open for write

C H A P T E R 1 6

Data Handler Components

16-54 Data Handler Components Reference

refCon Contains a reference constant that your data handler
component should provide to the data-handler completion
function specified with the completion parameter.

For synchronous operations, client programs should set this
parameter to 0.

DISCUSSION

The DataHWrite function provides both a synchronous and an asynchronous
write interface. Synchronous write operations work like the DataHPutData
function—the data handler component returns control to the client program
only after it has serviced the write request. Asynchronous write operations
allow client programs to queue write requests. Your data handler queues the
request and immediately returns control to the calling program. After your
component actually writes the data, it calls the client program’s data-handler
completion function.

RESULT CODES

SEE ALSO

Client programs can force your component to write any cached data by calling
your component’s DataHFlushData function.

DataHSetFileSize 16

Your component sets the size, in bytes, of the current data reference.

pascal ComponentResult DataHSetFileSize (DataHandler dh, long fileSize);

dh Identifies the calling program’s connection to your data handler
component.

fileSize Specifies the new size of the container corresponding to the
current data reference, in bytes.

dataNotOpenForWrite –2043 Data reference not open for write

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-55

DISCUSSION

The DataHSetFileSize function is functionally equivalent to the File Manager’s
SetEOF function. If the client program specifies a new size that is greater than
the current size, your component should extend the container to accommodate
that new size. If the client program specifies a container size of 0, your
component should free all of the space occupied by the container.

DataHGetFileSize 16

Your component returns the size, in bytes, of the current data reference.

pascal ComponentResult DataHGetFileSize (DataHandler dh, long *fileSize);

dh Identifies the calling program’s connection to your data handler
component.

fileSize Contains a pointer to a long. Your component returns the size of
the container corresponding to the current data reference, in
bytes.

DISCUSSION

The DataHGetFileSize function is functionally equivalent to the File Manager’s
GetEOF function.

DataHCreateFile 16

Your component creates a new container that meets the specifications of the
current data reference.

pascal ComponentResult DataHCreateFile (DataHandler dh, OSType creator,
Boolean deleteExisting);

dh Identifies the calling program’s connection to your data handler
component.

C H A P T E R 1 6

Data Handler Components

16-56 Data Handler Components Reference

creator Specifies the creator type of the new container. If the client
program sets this parameter to 0, your component should
choose a reasonable value (for example, 'TVOD', the creator type
for Apple’s movie player).

deleteExisting
Indicates whether to delete any existing data. If this parameter
is set to true and a container already exists for the current data
reference, your component should delete that data before
creating the new container. If this parameter is set to false,
your component should preserve any data that resides in the
container defined by the current data reference (if there is any).

DataHGetPreferredBlockSize 16

The DataHGetPreferredBlockSize function allows your component to report the
block size that it prefers to use when accessing the current data reference.

pascal ComponentResult DataHGetPreferredBlockSize (DataHandler dh,
long *blockSize);

dh Identifies the calling program’s connection to your data handler
component.

blockSize Contains a pointer to a long. Your component returns the size of
blocks (in bytes) it prefers to use when accessing the current
data reference.

DISCUSSION

Different devices use different file system block sizes. This function allows your
component to report its preferred block size to the client program. Note that
the client program is not required to use this block size when making requests.
Some clients may, however, try to accommodate your component’s preference.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-57

DataHGetFreeSpace 16

Your component reports the number of bytes available on the device that
contains the current data reference.

pascal ComponentResult DataHGetFreeSpace (DataHandler dh, unsigned
long *freeSize);

dh Identifies the calling program’s connection to your data handler
component.

freeSize Contains a pointer to an unsigned long. Your component
returns the number of bytes of free space available on the
device that contains the container referred to by the current
data reference.

DataHPreextend 16

Your component allocates new space for the current data reference, enlarging
the container.

pascal ComponentResult DataHPreextend (DataHandler dh, long maxToAdd,
long *spaceAdded);

dh Identifies the calling program’s connection to your data handler
component.

maxToAdd Specifies the amount of space to add to the current data
reference, in bytes. If the client program sets this parameter to 0,
your component should add as much space as it can.

spaceAdded Contains a pointer to a long. Your component returns the
number of bytes it was able to add to the data reference, in
bytes.

DISCUSSION

This function is essentially analogous to the File Manager’s PBAllocContig
function. Your component should allocate contiguous free space. If there is not

C H A P T E R 1 6

Data Handler Components

16-58 Data Handler Components Reference

sufficient contiguous free space to satisfy the request, your component should
return a dskFulErr error code.

Client programs use this function in order to avoid incurring any
space-allocation delay when capturing movie data.

Managing Data Handler Components 16

Your data handler component provides a number of functions that applications
can use to manage their connections to your handler. The most important
among these is DataHTask, which provides processor time to your handler.
Applications should call this function often so that your handler has enough
time to do its work.

Applications may call your handler’s DataHPlaybackHints function in order to
provide you with some guidelines about how those applications play to use the
current data reference.

The DataHFlushData and DataHFlushCache functions allow applications to
influence how your component manages its stored data.

For more information on managing data handlers, see “Managing the Data
Handler” (page 16-13).

DataHTask 16

Client programs call your component’s DataHTask function in order to cede
processor time to your data handler.

pascal ComponentResult DataHTask (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

This function is essentially analogous to the Movie Toolbox’s MoviesTask
function. Client programs call this function in order to give your data handler
component time to do its work. Your data handler uses this time to do its work.
Because client programs will call this function frequently, and especially so

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-59

during movie playback or capture, your data handler should return control
quickly to the client program.

DataHFlushCache 16

Your component discards the contents of any cached read buffers.

pascal ComponentResult DataHFlushCache (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

Client programs may call this function if they have, in some way, changed the
container associated with the current data reference on their own. Under these
circumstances, data your component may have read and cached in anticipation
of future read requests from the client may be invalid.

Note that this function does not invalidate any queued read requests (made by
calling your component’s DataHScheduleData function).

DataHFlushData 16

Your component forces any data in its write buffers to be written to the device
that contains the current data reference.

pascal ComponentResult DataHFlushData (DataHandler dh);

dh Identifies the calling program’s connection to your data handler
component.

DISCUSSION

This function is essentially analogous to the File Manager’s PBFlushFile
function. The client program may call this function after any write operation

C H A P T E R 1 6

Data Handler Components

16-60 Data Handler Components Reference

(either DataHPutData or DataHWrite). Your component should do what is
necessary to make sure that the data is written to the storage device that
contains the current data reference.

DataHPlaybackHints 16

The DataHPlaybackHints function allows the client program to provide
additional information to your component that you may use to optimize the
operation of your data handler.

pascal ComponentResult DataHPlaybackHints (DataHandler dh, long flags,
unsigned long minFileOffset, unsigned long
maxFileOffset, long bytesPerSecond);

dh Identifies the calling program’s connection to your data handler
component.

flags Reserved for use by Apple Computer, Inc. Client programs
should always set this parameter to 0.

minFileOffset
Together with the maxFileOffset parameter, specifies the range
of data the client program anticipates using from the current
data reference. This parameter specifies the earliest byte the
program expects to use (that is, the minimum container offset
value). If the client expects to access bytes from the beginning of
the container, it should set this parameter to 0.

maxFileOffset
Specifies the latest byte the program expects to use (that is, the
maximum container offset value). If the client expects to use
bytes throughout the container, the client should set this
parameter to –1.

bytesPerSecond
Indicates the rate at which your data handler must read data
from the data reference in order to keep up with the client
program’s anticipated needs.

C H A P T E R 1 6

Data Handler Components

Data Handler Components Reference 16-61

DISCUSSION

Your component should be prepared to have this function called more than
once for a given data reference. For example, the Movie Toolbox calls this
function whenever a movie’s playback rate changes. This is a handy way for
your data handler to track playback rate changes.

Completion Function 16

When client programs schedule asynchronous read or write operations (by
calling your component’s DataHScheduleData or DataHWrite functions), they
furnish your component a data-handler completion function. Your component
must call this function when it completes the read or write operation, whether
the operation was a success or a failure.

Data handler Completion Function 16

The client program’s completion function must present the following interface:

pascal void DHCompleteProc (Ptr request, long refcon, OSErr err);

request Specifies a pointer to the data that was associated with the read
(DataHScheduleData) or write (DataHWrite) request. The client
program uses this pointer to determine which request has
completed.

refcon Contains a reference constant that the client program supplied
to your data handler component when it made the original
request.

err Indicates the success or failure of the operation. If the operation
succeeded, set this parameter to 0. Otherwise, specify an
appropriate error code.

C H A P T E R 1 6

Data Handler Components

16-62 Data Handler Components Reference

C H A P T E R 1 7

Contents 17-1

Contents

Figure 17-0
Listing 17-0
Table 17-0

17 Graphics Importer Components

About Graphics Importer Components 17-3
QuickTime Image File Format 17-4

Graphics Importer Components Reference 17-4
Data Types 17-4
Functions 17-5

Specifying the Data Source 17-5
GraphicsImportSetDataFile 17-5
GraphicsImportGetDataFile 17-6
GraphicsImportSetDataHandle 17-6
GraphicsImportGetDataHandle 17-7
GraphicsImportSetDataReference 17-8
GraphicsImportGetDataReference 17-8
GraphicsImportSetDataReferenceOffsetAndLimit 17-9
GraphicsImportGetDataReferenceOffsetAndLimit 17-10

Validating and Retrieving Image Data 17-11
GraphicsImportValidate 17-11
GraphicsImportReadData 17-12

Getting Image Characteristics 17-13
GraphicsImportGetNaturalBounds 17-13
GraphicsImportGetImageDescription 17-14
GraphicsImportGetDataOffsetAndSize 17-14

Setting Drawing Parameters 17-15
GraphicsImportSetBoundsRect 17-15
GraphicsImportGetBoundsRect 17-16
GraphicsImportSetMatrix 17-17
GraphicsImportGetMatrix 17-18
GraphicsImportSetClip 17-19

C H A P T E R 1 7

17-2 Contents

GraphicsImportGetClip 17-19
GraphicsImportSetGraphicsMode 17-20
GraphicsImportGetGraphicsMode 17-21
GraphicsImportSetQuality 17-22
GraphicsImportGetQuality 17-22
GraphicsImportSetSourceRect 17-23
GraphicsImportGetSourceRect 17-24

Drawing Images 17-25
GraphicsImportSetGWorld 17-25
GraphicsImportGetGWorld 17-26
GraphicsImportDraw 17-26

Saving Image Files 17-27
GraphicsImportSaveAsPicture 17-27
GraphicsImportSaveAsQuickTimeImageFile 17-28

C H A P T E R 1 7

About Graphics Importer Components 17-3

Graphics Importer Components 17

About Graphics Importer Components 17

QuickTime 2.5 introduces a new way to draw still images. Graphics importer
components provide a standard method for applications to open and display
still images contained within graphics documents. Graphics importer
components allow you to work with any type of image data, regardless of the
file format or compression used in the document. You specify the document
that contains the image, and the destination rectangle the image should be
drawn into, and QuickTime handles the rest. More complex interactions are
also supported.

The following example shows the basic functions you use to draw an image file.

void drawFile(const FSSpec *fss, const Rect *boundsRect)
{

GraphicsImportComponent gi;
GetGraphicsImporterForFile(fss, &gi);
GraphicsImportSetBoundsRect(gi, boundsRect);
GraphicsImportDraw(gi);
CloseComponent(gi);

}

The same code can be used to display any image, regardless of the file format.
QuickTime 2.5 supports the following image file formats: QuickDraw PICT,
MacPaint, Photoshop (2.5 and 3.0), Silicon Graphics.rgb, GIF, and JFIF/JPEG.
The new QuickTime image file format is also supported.

To obtain a graphics importer component for a particular file, use the Image
Compression Manager’s GetGraphicsImporterForFile function.

Note
If you expect to draw the same image more than once, you
can improve performance by keeping the graphics
importer component open, rather than creating and
disposing it each time. ◆

C H A P T E R 1 7

Graphics Importer Components

17-4 Graphics Importer Components Reference

QuickTime Image File Format 17

QuickTime’s ability to include any compressed image data in a QuickDraw
picture is a helpful feature from a compatibility perspective. However, it
presents several technical challenges for applications that need to work with
compressed image data contained within pictures. Determining if compressed
data is present, and extracting it, requires special code installed in QuickDraw
bottlenecks to detect and copy compressed data as it processes. Additional
problems are posed by special cases such as multiple compressed images in a
single file. The QuickTime image file (QTIF) format solves this and other issues.

QuickTime image files are intended to provide the most useful container
for QuickTime compressed still images. The format uses the same atom-based
structure as a QuickTime movie. (See chapter “MovieToolBox” for information
on atoms.) There are two defined atom types: 'idsc', which contains an image
description, and 'idat', which contains the image data. For a JPEG image, the
image description atom contains a QuickTime image description describing the
JPEG image’s size, resolution, depth, and so on, and the image data atom
contains the actual JPEG compressed data. (See chapter “xxxx” for additional
information.) A QuickTime image file can also contain other atoms. For
example, it can contain single-fork preview atoms. Because the QuickTime
image file is a single fork format, it works well in cross-platform applications.
On MacOS systems, QuickTime image files are identified by the file type
'qtif'. Apple recommends using the filename extension .QIF to identify
QuickTime image files on other platforms.

Graphics Importer Components Reference 17

Data Types 17

typedef ComponentInstance GraphicsImportComponent;

enum {
GraphicsImporterComponentType = 'grip'

};

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-5

Functions 17

Specifying the Data Source 17

Graphics importer components use QuickTime data handler components to
obtain their data. Applications, however, will use the graphics importer
component functions described in this section, rather than directly calling a
data handler. These functions allow the data source to be a file, a handle, or a
QuickTime data reference.

GraphicsImportSetDataFile 17

Specifies the file that the graphics data resides in.

extern pascal ComponentResult GraphicsImportSetDataFile (
GraphicsImportComponent ci,
const FSSpec *theFile);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

theFile A pointer to the file specification containing the graphics data.

DISCUSSION

The file will be opened for read access.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-6 Graphics Importer Components Reference

GraphicsImportGetDataFile 17

Returns the file that the graphics data resides in.

extern pascal ComponentResult GraphicsImportGetDataFile (
GraphicsImportComponent ci,
FSSpec *theFile);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

theFile A pointer in which to return the file containing the graphics
data.

DISCUSSION

You use this function to get the file system specification record for the file that
the graphics data resides in. If the data source is not a file, the function returns
paramErr.

RESULT CODES

GraphicsImportSetDataHandle 17

Specifies the handle that the graphics data resides in.

extern pascal ComponentResult GraphicsImportSetDataHandle (
GraphicsImportComponent ci,
Handle h);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

h Specifies a handle containing graphics data.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-7

DISCUSSION

The graphics imported component doesn’t make a copy of this data. Therefore
you must not dispose this handle until the graphics importer has been closed.

RESULT CODES

GraphicsImportGetDataHandle 17

Returns the handle that the graphics data resides in.

extern pascal ComponentResult GraphicsImportGetDataHandle (
GraphicsImportComponent ci,
Handle *h);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

h A pointer to a handle to return a handle containing the graphics
data.

DISCUSSION

You use this function to get the handle that the graphics data resides in. If the
data source is not a handle, the function returns paramErr.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-8 Graphics Importer Components Reference

GraphicsImportSetDataReference 17

Specifies the data reference that the graphics data resides in.

extern pascal ComponentResult GraphicsImportSetDataReference (
GraphicsImportComponent ci,
Handle dataRef,
OSType dataReType);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

dataRef A pointer to a handle to return a QuickTime data reference.

dataReType A pointer to the data reference type.

DISCUSSION

Applications typically do not use this function. The GraphicsImportSetDataFile
and GraphicsImportSetDataHandle functions both call this function, with the
appropriate data reference and data reference type.

RESULT CODES

GraphicsImportGetDataReference 17

Returns the data reference that the graphics data resides in.

extern pascal ComponentResult GraphicsImportGetDataReference (
GraphicsImportComponent ci,
Handle *dataRef,
OSType *dataReType);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-9

dataRef A pointer to the handle to return a QuickTime data reference.

dataReType A pointer to the data reference type.

DISCUSSION

You use this function to get the data reference that the graphics data resides in.
Both the dataRef and dataReType parameters may be set to nil if the
corresponding information is not desired. The GraphicsImportGetDataHandle
and GraphicsImportGetDataFile functions call GraphicsImporGetDataReference
and then manipulate the result accordingly.

RESULT CODES

GraphicsImportSetDataReferenceOffsetAndLimit 17

Specifies the data reference starting offset and data size limit.

extern pascal ComponentResult
GraphicsImportSetDataReferenceOffsetAndLimit (
GraphicsImportComponent ci,
unsigned long offset,
unsigned long limit);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

offset The byte offset of the image data from the beginning of the data
reference.

limit The data limit. This value is the maximum offset into the data
reference that data may be read from.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-10 Graphics Importer Components Reference

DISCUSSION

A data reference typically refers to an entire file. However, there are times
when the data being referenced is a part of a larger file. In these cases, it is
necessary to indicate where the data begins in the data reference and where it
ends. This function lets you specify the starting offset and ending offset. All
requests to read data are then relative to the specified offset, and are pinned to
the data size, so you cannot accidentally read off the end (or beginning) of the
segment.

RESULT CODES

GraphicsImportGetDataReferenceOffsetAndLimit 17

Returns the data reference starting offset and data size limit.

extern pascal ComponentResult
GraphicsImportGetDataReferenceOffsetAndLimit (
GraphicsImportComponent ci,
unsigned long *offset,
unsigned long *limit);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

offset A pointer to a value describing the byte offset of the image data
from the beginning of the data reference.

limit A pointer to a value describing the data size limit.

DISCUSSION

This function returns the values set by the
GraphicsImportSetDataReferenceOffsetAndLimit function. By default, offset is 0
and limit is MaxInt (232 – 1).

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-11

RESULT CODES

Validating and Retrieving Image Data 17

GraphicsImportValidate 17

Validates image data for a data reference.

pascal ComponentResult GraphicsImportValidate (
GraphicsImportComponent ci,
Boolean *valid)

ci Specifies the component instance that identifies your
connection to the graphics importer component.

valid Pointer to a Boolean value. On return, this parameter is set to
true if the the graphics importer component can draw the data
reference. If the graphics importer component cannot draw the
data reference, this parameter is set to false.

DISCUSSION

The GraphicsImportValidate functions allows a graphics importer component
to determine if its current data reference contains valid image data. For
example, a JFIF graphics importer component might check for the presence of a
JFIF marker in the data reference. This function is provided for applications to
use to determine what type of image data a particular file may contain.
Sometimes a file may not have the correct file type or file extension. In this case,
the application will not know which graphics importer component to use. By
iterating through all graphics importer components and calling
GraphicsImportValidate for each one, it may be possible to locate a graphics
importer component that can draw the specified file.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-12 Graphics Importer Components Reference

Note
Not all graphics importer components implement this
function. A component that does not implement the
function will return the badComponentSelector result code.
This does not indicate that the file is valid or invalid. ◆

RESULT CODES

GraphicsImportReadData 17

Reads image data.

extern pascal ComponentResult GraphicsImportReadData (
GraphicsImportComponent ci,
void *dataPtr,
unsigned long dataOffset,
unsigned long dataSize);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

dataPtr A pointer to a memory block to receive the data.

dataOffset The offset of the image data within the data reference. The
function begins reading image data from this offset.

dataSize The number of bytes of image data to read.

DISCUSSION

GraphicsImportReadData communicates with the appropriate data handler to
retrieve image data. Typically only developers of graphics importer
components will need to use this function. This function should always be used
to retrieve data from the data source, rather than reading it directly.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available
badComponentSelector 0x80008002 Component does not support the

specified request code

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-13

RESULT CODES

Getting Image Characteristics 17

GraphicsImportGetNaturalBounds 17

Returns the bounding rectangle of an image.

extern pascal ComponentResult GraphicsImportGetNaturalBounds (
GraphicsImportComponent ci,
Rect *naturalBounds);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

naturalBounds
A pointer to a rectangle structure describing the size of the
bounding rectangle for the image.

DISCUSSION

You can use the GraphicsImportGetNaturalBounds function to determine the
native size of the image associated with a graphics importer component. The
natural bounds are always zero-based. This is a convenience function that
simply calls GraphicsImportGetImageDescription and extracts the width and
height fields.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-14 Graphics Importer Components Reference

GraphicsImportGetImageDescription 17

Returns image description information.

extern pascal ComponentResult GraphicsImportGetImageDescription (
GraphicsImportComponent ci,
ImageDescriptionHandle *desc);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

desc A handle to an image description structure.

DISCUSSION

The GraphicsImportGetImageDescription function returns an image description
structure containing information such as the format of the compressed data, its
bit depth, natural bounds, and resolution. The caller is responsible for
disposing of the returned image description handle.

RESULT CODES

GraphicsImportGetDataOffsetAndSize 17

Returns the offset and size of the compressed image data within a file.

extern pascal ComponentResult GraphicsImportGetDataOffsetAndSize (
GraphicsImportComponent ci,
unsigned long *offset,
unsigned long *size);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-15

offset A pointer to a value describing the byte offset of the image data
from the beginning of the data source.

size A pointer to a value describing the size of the image data in
bytes.

DISCUSSION

This function returns the offset and size of the actual image data within the
data source. By default the offset returned is 0 and the size returned is the size
of the file. However, some graphics import components will override this
function to skip over unneeded information at the beginning or end of the file.

RESULT CODES

Setting Drawing Parameters 17

The functions described in this section allow you to specify various parameters
for drawing operations, such as clipping, scaling, graphics mode,
anddecompression quality. All of these functions are based on corresponding
routines in the Image Compression Manager for working with image
decompression sequences.

GraphicsImportSetBoundsRect 17

Defines the rectangle in which to draw an image.

extern pascal ComponentResult GraphicsImportSetBoundsRect (
GraphicsImportComponent ci,
const Rect *bounds);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-16 Graphics Importer Components Reference

bounds A pointer to a rectangle structure describing the bounding
rectangle into which the image will be drawn.

DISCUSSION

You use this function to define the rectangle into which the graphics image
should be drawn. The function creates a transformation matrix to map the
image’s natural bounds to the specified bounds and then calls the
GraphicsImportSetMatrix function.

Note
Because this function affects the transformation matrix,
you should use the GraphicsImportSetMatrix function
(page 17-17) instead of this function when you also need to
specify more complex transformation of the matrix. ◆

RESULT CODES

GraphicsImportGetBoundsRect 17

Returns the bounding rectangle for drawing.

extern pascal ComponentResult GraphicsImportGetBoundsRect (
GraphicsImportComponent ci,
Rect *bounds);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

bounds A pointer to a rectangle structure describing the bounding
rectangle that has been defined for the image.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-17

DISCUSSION

This is a convenience function that is implemented by calling
GraphicsImportGetMatrix (page 17-18) and GraphicsImportGetNaturalBounds
(page 17-13) and using the results to calculate the drawing rectangle.

RESULT CODES

GraphicsImportSetMatrix 17

Defines the transformation matrix to use for drawing an image.

extern pascal ComponentResult GraphicsImportSetMatrix (
GraphicsImportComponent ci,
const MatrixRecord *matrix);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

matrix A pointer to a matrix structure that specifies how to transform
the image during decompression. For example, you can use a
transformation matrix to scale or rotate the image. To set the
matrix to identity, pass nil in this parameter.

DISCUSSION

The GraphicsImportSetMatrix function establishes the transformation matrix to
be applied to an image, which determines where and how it will be drawn.

Note
This function affects the bounding rectangle defined for
the image. You can specify where an image will be drawn
by setting either a transformation matrix or a bounding
rectangle, but it is usually more convenient for
applications to set a bounding rectangle using the
GraphicsImportSetBoundsRect (page 17-15) function. ◆

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-18 Graphics Importer Components Reference

RESULT CODES

SEE ALSO

For more information about transformation matrices and the functions for
working with them, see the Movie Toolbox chapter of Inside Macintosh:
QuickTime.

GraphicsImportGetMatrix 17

Returns the transformation matrix to be used for drawing.

extern pascal ComponentResult GraphicsImportGetMatrix (
GraphicsImportComponent ci,
MatrixRecord *matrix);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

matrix A pointer to the transformation matrix that has been defined for
the image.

DISCUSSION

The transformation matrix is initialized to the identity matrix when the
graphics import component is instantiated.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-19

GraphicsImportSetClip 17

Defines the clipping region for drawing.

extern pascal ComponentResult GraphicsImportSetClip (
GraphicsImportComponent ci,
RgnHandle clipRgn);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

clipRgn A handle to a clipping region in the destination coordinate
system. Set to nil to disable clipping. The graphics import
component makes a copy of this region.

DISCUSSION

Because all drawing operations ignore the port clip, you must use this function
to clip an image. The graphics importer component draws only that portion of
the image that lies within the specified clipping region.

RESULT CODES

GraphicsImportGetClip 17

Returns the current clipping region.

extern pascal ComponentResult GraphicsImportGetClip (
GraphicsImportComponent ci,
RgnHandle *clipRgn);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-20 Graphics Importer Components Reference

clipRgn A handle to the clipping region that has been defined for the
image. Returns nil if there is no clipping region.

DISCUSSION

The caller must dispose of the returned region handle.

RESULT CODES

GraphicsImportSetGraphicsMode 17

Sets the graphics transfer mode for an image.

extern pascal ComponentResult GraphicsImportSetGraphicsMode (
GraphicsImportComponent ci,
long graphicsMode,
const RGBColor *opColor);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

graphicsMode Specifies the graphics transfer mode to use for drawing the
image. QuickTime supports the same graphics modes as Color
QuickDraw’s CopyBits function (described in Inside Macintosh:
Imaging with QuickDraw) as well as any mode defined by the
Image Compression manager, such as alpha modes.

opColor A pointer to an RGB color structure describing the color to use
for blending and transparent operations.

DISCUSSION

You can use this function to specify the graphics transfer mode and color to use
for blending and transparent operations.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-21

RESULT CODES

GraphicsImportGetGraphicsMode 17

Returns the graphics transfer mode for an image.

extern pascal ComponentResult GraphicsImportGetGraphicsMode (
GraphicsImportComponent ci,
long *graphicsMode,
RGBColor *opColor);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

graphicsMode A pointer to a long integer. The function returns the QuickDraw
graphics transfer mode setting for the image.

opColor A pointer to an RGB color structure. The function returns the
color currently specified for blend and transparent operations.

DISCUSSION

Counldn’t read comment.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-22 Graphics Importer Components Reference

GraphicsImportSetQuality 17

Sets the image quality value.

extern pascal ComponentResult GraphicsImportSetQuality (
GraphicsImportComponent ci,
CodecQ quality);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

quality Specifies the desired image quality for decompression. Values
for this parameter are on the same scale as compression quality.
See page 3-57 of Inside Macintosh: QuickTime for a description of
the defined quality constants.

DISCUSSION

The quality parameter controls how precisely the decompressor decompresses
the image data. Some decompressors may choose to ignore some image data to
improve decompression speed.

RESULT CODES

GraphicsImportGetQuality 17

Returns the image quality value.

extern pascal ComponentResult GraphicsImportGetQuality (
GraphicsImportComponent ci,
CodecQ *quality);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-23

quality A pointer to the currently specified quality value.

DISCUSSION

The quality value indicates how precisely the decompressor will decompress
the image data. Some decompressors may choose to ignore some image data to
improve decompression speed.

RESULT CODES

GraphicsImportSetSourceRect 17

Sets the source rectangle to use for an image.

extern pascal ComponentResult GraphicsImportSetSourceRect (
GraphicsImportComponent ci,
const Rect *sourceRect);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

sourceRect A pointer to a rectangle defining the portion of the image to
decompress. This rectangle must lie within the boundary
rectangle of the source image. Set to nil to use the entire image.

DISCUSSION

This function provides a way to use only a portion of the source image. Set the
sourceRect parameter to nil to specify that the entire image source rectangle
should be used.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-24 Graphics Importer Components Reference

RESULT CODES

GraphicsImportGetSourceRect 17

Returns the current source rectangle for an image.

extern pascal ComponentResult GraphicsImportGetSourceRect (
GraphicsImportComponent ci,
Rect *sourceRect);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

sourceRect A pointer to a rectangle structure. The function returns the
source rectangle currently specified for the image.

DISCUSSION

This function returns the current source rectangle, as specified by the
GraphicsImportSetSourceRect function. The default source rectangle is the
image’s natural bounds.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-25

Drawing Images 17

GraphicsImportSetGWorld 17

Sets the graphics port and device for drawing.

extern pascal ComponentResult GraphicsImportSetGWorld (
GraphicsImportComponent ci,
CGrafPtr port,
GDHandle gd);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

port Specifies the destination graphics port or graphics world. Set to
nil to use the current port.

gd Specifies the destination graphics device. Set to nil to use the
current device. If the port parameter specifies a graphics world,
set this parameter to nil to use that graphics world’s device.

DISCUSSION

The graphics world is initialized to the current port and device when the
graphics importer component is opened. You can use this function to select
another port or device.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-26 Graphics Importer Components Reference

GraphicsImportGetGWorld 17

Returns the current graphics port and device for drawing.

extern pascal ComponentResult GraphicsImportGetGWorld (
GraphicsImportComponent ci,
CGrafPtr *port,
GDHandle *gd);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

port Returns the current destination graphics port. Set to nil if you
are not interested in this information.

gd Returns the destination graphics device. Set to nil if you are not
interested in this information.

DISCUSSION

This function returns the graphics port and device that will be used to draw the
image. The graphics world is initialized to the current port and device when
the graphics importer component is opened.

RESULT CODES

GraphicsImportDraw 17

Draws an image.

extern pascal ComponentResult GraphicsImportDraw
(GraphicsImportComponent ci);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-27

DISCUSSION

This function draws the image currently in use by the graphics import
component to the graphics port and device specified by the
GraphicsImportSetGWorld function. The GraphicsImportDraw function takes into
account all settings you have specified for the image, such as the source
rectangle, clipping region, graphics mode, and image quality.

RESULT CODES

Saving Image Files 17

Graphics import components can save data in two formats: QuickDraw
pictures and QuickTime image files. This capability is only needed by
applications that perform file format translation. Applications that only wish to
draw the image can use the GraphicsImportDraw function.

GraphicsImportSaveAsPicture 17

Creates a QuickDraw picture file.

extern pascal ComponentResult GraphicsImportSaveAsPicture (
GraphicsImportComponent ci,
const FSSpec *fss,
ScriptCode scriptTag);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

fss A pointer to the file that is to receive the image.

scriptTag Specifies the script system in which the file name is to be
displayed. If you have established the name and location of the
file using one of the Standard File Package functions, use the
script code returned in the reply record (reply.sfScript).

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-28 Graphics Importer Components Reference

Otherwise, specify the system script by setting the scriptTag
parameter to the value smSystemScript. See Inside Macintosh:
Files for more information about script specification.

DISCUSSION

This function creates a new QuickDraw picture file containing the image
currently in use by the graphics import component. If possible, the image will
remain in the compressed format. For example, if the image is from a JFIF file,
the picture will contain compressed JPEG data.

RESULT CODES

GraphicsImportSaveAsQuickTimeImageFile 17

Creates a QuickTime image file.

extern pascal ComponentResult GraphicsImportSaveAsQuickTimeImageFile (
GraphicsImportComponent ci,
const FSSpec *fss,
ScriptCode scriptTag);

ci Specifies the component instance that identifies your
connection to the graphics importer component.

fss A pointer to the file that is to receive the image.

scriptTag Specifies the script system in which the file name is to be
displayed. If you have established the name and location of the
file using one of the Standard File Package functions, use the
script code returned in the reply record (reply.sfScript).
Otherwise, specify the system script by setting the scriptTag
parameter to the value smSystemScript. See Inside Macintosh:
Files for more information about script specification.

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

Graphics Importer Components Reference 17-29

DISCUSSION

This function creates a new QuickTime image file containing the image
currently in use by the graphics import component. If possible, the image will
remain in the compressed format. For example, if the image is from a JFIF file,
the QuickTime image file will contain compressed JPEG data.

RESULT CODES

noErr 0 No error
paramErr –50 Invalid parameter specified
memFullErr –108 Not enough memory available

C H A P T E R 1 7

Graphics Importer Components

17-30 Graphics Importer Components Reference

C H A P T E R 1 8

Contents 18-1

Contents

Figure 18-0
Listing 18-0
Table 18-0

18 QuickTime Settings Control Panel

New Features of the Control Panel 18-3
CD-ROM AutoStart 18-3
AutoPlay for Audio CDs 18-3
QuickTime Music Synthesizer 18-4

C H A P T E R 1 8

18-2 Contents

C H A P T E R 1 8

New Features of the Control Panel 18-3

QuickTime Settings Control Panel 18

This chapter discusses new features that have been added to the QuickTime
Settings control panel.

New Features of the Control Panel 18

CD-ROM AutoStart 18

The CD-ROM AutoStart feature introduced with QuickTime 2.0 allows you to
create CD-ROMs that automatically launch an application when the disc is
inserted. This is useful for entertainment and educational titles because it
makes it easier for users to begin using the software. QuickTime provides the
low-level support necessary to recognize and launch AutoStart-enabled discs.

To create an AutoStart-enabled disc, you specify a document or application file
as the AutoStart file. If the file you specified is an application, you may set it to
invisible. Documents may not be invisible. If the AutoStart file is a document,
QuickTime asks the Finder to launch the document. If an application is not
available, the Finder will issue its normal warning, just as if the file had been
double-clicked.

AutoStart works only with HFS discs. All information about AutoStart is
contained in sector 0. The first two bytes in the sector must be either 0 or 'LK'.
The actual name of the AutoStart file is stored in the area allocated for the
clipboard name. This area begins at offset 106. The first four bytes of the
clipboard name field must contain the following value to indicate that the
AutoStart file name follows: 0x006A 7068. After this 4-byte tag, 12 bytes of
space remain, starting at offset 110. In these 12 bytes, the name of the AutoStart
file is stored as a Pascal string, leaving up to 11 characters for the filename. The
AutoStart file must reside in the root directory of the CD-ROM.

Because the AutoStart feature is based on the structure of an HFS disc, it is
available only for the Macintosh. You can enable or disable AutoStart using the
QuickTime Settings Control Panel.

AutoPlay for Audio CDs 18

QuickTime 2.5 allows you enable or disable the AutoPlay feature for audio
CDs, and provides control over when you want a CD to play. If you want to
use the Apple Audio CD Player or a similar application to control audio CD

C H A P T E R 1 8

QuickTime Settings Control Panel

18-4 New Features of the Control Panel

playback, launch that application before inserting the CD. If the Apple Audio
CD Player or a similar application is not running, the CD begins playing from
track 1 automatically when you insert the disc. Otherwise, you control when to
start and stop the audio using your application software.

QuickTime Music Synthesizer 18

Use this feature to select the default synthesizer for QuickTime to use.

C H A P T E R 1 9

Contents 19-1

Contents

Figure 19-0
Listing 19-0
Table 19-0

19 QuickTime Music Architecture

About QuickTime Music Architecture 19-7
QuickTime Music Architecture Components 19-8

Note Allocator Component 19-9
Tune Player Component 19-10
Music Components 19-11
Instrument Components and Atomic Instruments 19-12

QuickTime Music Events 19-15
General Event 19-17
Note Event and Extended Note Event 19-20
Rest Event 19-22
Marker Event 19-23
Controller Event and Extended Controller Event 19-24
Knob Event 19-26

QuickTime Synthesizer Model 19-27
QuickTime Music Architecture Reference 19-28

Constants 19-29
Atom Types for Atomic Instruments 19-29
Instrument Knob Flags 19-30
Loop Type Constants 19-31
Music Component Type 19-31
Synthesizer Type Constants 19-31
Synthesizer Description Flags 19-32
Controller Numbers 19-33
Controller Range 19-36
Drum Kit Numbers 19-36
Tone Fit Flags 19-36
Knob Flags 19-37

C H A P T E R 1 9

19-2 Contents

Knob Value Constants 19-39
Music Packet Status 19-39
Atomic Instrument Information Flags 19-40
Setting Atomic Instruments 19-41
Instrument Info Flags 19-41
Synthesizer Connection Type Flags 19-42
Instrument Match Flags 19-42
Note Request Constants 19-43
Pick Instrument Flags 19-44
Note Allocator Type 19-44
Tune Queue Depth 19-45
Tune Player Type 19-45
Tune Queue Flags 19-45

Data Structures 19-46
Instrument Knob Record 19-46
Instrument Knob List 19-47
Atomic Instrument Sample Description Record 19-47
Synthesizer Description Structure 19-48
Tone Description Structure 19-50
Knob Description Record 19-51
Instrument About Information 19-52
MIDI Packet 19-52
Instrument Information Record 19-53
Instrument Information List 19-53
General MIDI Instrument Information Structure 19-54
Non-General MIDI Instrument Information Record 19-55
Non–General MIDI Instrument Information List 19-55
Complete Instrument Information List 19-56
Synthesizer Connections for MIDI Devices 19-57
QuickTime MIDI Port 19-58
Note Request Information Structure 19-58
Note Request Structure 19-59
Tune Status 19-59

Functions 19-60
Tune Player Functions 19-60

TuneSetHeader 19-60
TuneSetHeaderWithSize 19-61
TuneSetNoteChannels 19-62

C H A P T E R 1 9

Contents 19-3

TuneQueue 19-63
TuneStop 19-64
TuneGetVolume 19-65
TuneSetVolume 19-65
TuneSetSoundLocalization 19-66
TuneGetTimeBase 19-66
TuneGetTimeScale 19-67
TuneSetTimeScale 19-68
TuneInstant 19-68
TunePreroll 19-69
TuneUnroll 19-69
TuneGetIndexedNoteChannel 19-70
TuneGetStatus 19-70
TuneSetPartTranspose 19-71
TuneGetNoteAllocator 19-72
TuneSetSofter 19-72
TuneSetBalance 19-73
TuneTask 19-73

Note Allocator Functions: Note Channel Allocation and Use 19-74
NANewNoteChannel 19-74
NANewNoteChannelFromAtomicInstrument 19-75
NADisposeNoteChannel 19-76
NAGetNoteChannelInfo 19-76
NAGetIndNoteChannel 19-77
NAUseDefaultMIDIInput 19-78
NALoseDefaultMIDIInput 19-79
NAPrerollNoteChannel 19-79
NAUnrollNoteChannel 19-80
NAResetNoteChannel 19-80
NASetNoteChannelVolume 19-81
NASetNoteChannelBalance 19-82
NASetNoteChannelSoundLocalization 19-82
NAPlayNote 19-83
NASetController 19-84
NAGetKnob 19-85
NASetKnob 19-86
NAFindNoteChannelTone 19-87
NASetInstrumentNumber 19-87

C H A P T E R 1 9

19-4 Contents

NASetInstrumentNumberInterruptSafe 19-88
NASetAtomicInstrument 19-89
NASendMIDI 19-90
NAGetNoteRequest 19-90

Note Allocator Functions: Miscellaneous Interface Tools 19-91
NAPickInstrument 19-91
NAPickEditInstrument 19-93
NAStuffToneDescription 19-94
NAPickArrangement 19-95
NACopyrightDialog 19-95

Note Allocator Functions: System Configuration and Utility 19-96
NARegisterMusicDevice 19-97
NAUnregisterMusicDevice 19-98
NAGetRegisteredMusicDevice 19-98
NAGetDefaultMIDIInput 19-100
NASetDefaultMIDIInput 19-100
NAGetMIDIPorts 19-101
NASaveMusicConfiguration 19-102
NATask 19-102

Music Component Functions: Synthesizer 19-103
MusicGetDescription 19-103
MusicFindTone 19-104
MusicPlayNote 19-105
MusicGetKnob 19-106
MusicSetKnob 19-106
MusicGetKnobDescription 19-107
MusicGetInstrumentKnobDescription 19-107
MusicGetDrumKnobDescription 19-108
MusicGetKnobSettingStrings 19-109
MusicSetMIDIProc 19-110
MusicGetMIDIProc 19-110
MusicGetMIDIPorts 19-111
MusicSendMIDI 19-112
MusicGetDeviceConnection 19-113
MusicUseDeviceConnection 19-114

Music Component Functions: Instruments and Parts 19-114
MusicGetPartInstrumentNumber 19-115
MusicSetPartInstrumentNumber 19-115

C H A P T E R 1 9

Contents 19-5

MusicGetPartAtomicInstrument 19-116
MusicSetPartAtomicInstrument 19-116
MusicStorePartInstrument 19-117
MusicGetInstrumentAboutInfo 19-118
MusicGetInstrumentInfo 19-118
MusicGetPart 19-119
MusicSetPart 19-120
MusicGetPartName 19-120
MusicSetPartName 19-121
MusicGetPartKnob 19-122
MusicSetPartKnob 19-122
MusicResetPart 19-123
MusicGetPartController 19-123
MusicSetPartController 19-124
MusicSetPartSoundLocalization 19-124

Music Component Functions: Miscellaneous 19-125
MusicGetMasterTune 19-125
MusicSetMasterTune 19-125
MusicStartOffline 19-126
MusicSetOfflineTimeTo 19-127
MusicTask 19-127

Instrument Component Functions 19-128
InstrumentGetInfo 19-128
InstrumentGetInst 19-128
InstrumentInitialize 19-129
InstrumentOpenComponentResFile 19-130
InstrumentCloseComponentResFile 19-130
InstrumentGetComponentRefCon 19-131
InstrumentSetComponentRefCon 19-131

Result Codes 19-132

C H A P T E R 1 9

19-6 Contents

C H A P T E R 1 9

About QuickTime Music Architecture 19-7

QuickTime Music Architecture 19

This chapter describes QuickTime Music Architecture, which your applications
and QuickTime movies can use to play sounds through a General MIDI
synthesizer, through the Macintosh’s built-in speaker, or through a hardware
synthesizer. It also introduces atomic instruments. In previous versions of
QuickTime Music Architecture, sounds were limited to the set of built-in
sampled instruments. QuickTime 2.5 removes that limitation by introducing a
public API and format for creating new atomic instruments and adding them to
a QuickTime Music Architecture instrument component, increasing the number
of available sounds.

In addition to other features, the QuickTime Music Architecture offers
generalized access to synthesizers, which eliminates the requirements for an
application to support a range of specific devices. It also has no limitation on
the number of timbres (parts) available to an application or music track and
offers a natural implementation of microtonal pitch scales, with 256 microtones
in each semitone step.

Before reading about QuickTime Music Architecture, you should be familiar
with QuickTime and QuickTime components. If you intend to create new
instruments, you should be familiar with QT atoms.

This chapter first describes the basic capabilities of QuickTime Music
Architecture and then provides a complete reference to its data structures,
constants, functions, and result codes.

Note
The MoviePlayer and SimpleText applications allows you
to open a standard MIDI file and convert it into a
QuickTime music track. After the file is converted, the
application prompts you to save the converted file as a
QuickTime movie. Once saved, a movie controller is
displayed and you can play the music. ◆

About QuickTime Music Architecture 19

QuickTime Music Architecture (qtma) is composed of four software
components—the note allocator, tune player, music component, and
instrument component—and a set of music events.

C H A P T E R 1 9

QuickTime Music Architecture

19-8 About QuickTime Music Architecture

This section describes the note allocator, tune player, and music components,
and gives general guidelines for their use. In addition, this section introduces
atomic instruments and the new instrument component, illustrates the format
of the eight types of music events, and gives an overview of MIDI synthesizers.

QuickTime Music Architecture Components 19

You can use the QuickTime Music Architecture components to play individual
notes, play tunes, control MIDI devices, and include atomic instruments to
increase the number of sounds available. Figure 19-1 illustrates the
relationships among the QuickTime Music Architecture components.

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-9

Figure 19-1 How QuickTime Music Architecture components work together

Note Allocator Component 19

You use the note allocator component to play individual notes. The calling
application can specify which musical instrument sound to use and exactly
which music synthesizer to play the notes on. The note allocator component
also includes a default user interface utility that allows the user to choose
instruments. The note allocator, unlike the tune player, provides no
timing-related features to manage a sequence of notes. It’s features are similar
to a music component, although more generalized. Typically, an application

Application QuickTime
Music Track

Tune
player

Music media
handler

Instrument
component

Instrument
component

Note
allocator

"Music
preferences"

Music
component

QuickTime Music
Synthesizer

Music
component

General MIDI

Music
component

Brand X MIDI

Music
component

NuBus
Synthesizer

C H A P T E R 1 9

QuickTime Music Architecture

19-10 About QuickTime Music Architecture

gains access to music components through the note allocator rather than
directly.

To play a single note, an application must open an instance of the note allocator
component and call NANewNoteChannel with a note request —typically to request
a standard instrument within the General MIDI instrument set. A note channel
is similar in some ways to a Sound Manager sound channel; it needs to be
created and disposed, and can receive various commands. The note allocator
provides an application-level interface for requesting note channels with
particular attributes. The client specifies the desired polyphony and the desired
tone. The note allocator returns a note channel that best satisfies the request.

With an open note channel, the application can call NAPlayNote while
specifying the note's pitch and velocity. The note is played and remains playing
until a second call to NAPlayNote is made specifying the same pitch, but with a
velocity of zero. The velocity of zero causes the note to stop. The note allocator
functions let you play individual notes, apply a controller change, apply a knob
change, select an instrument based on a required tone, and modify or change
the instrument type on an existing note channel.

There are calls for registering and unregistering a music component. During
registration, the connections for that device are specified (typically, the
connections are the MIDI Manager port and client IDs). There is also a call for
querying the note allocator for registered devices, so that an application can
offer a selection of the existing devices to the user. You can save configuration
information in a preferences file.

Other note allocator functions offer a user interface and display copyright
information.

Tune Player Component 19

The tune player component can accept entire sequences of musical notes and
play them start to finish, asynchronously, with no further need for application
intervention. It can also play portions of a sequence. An additional sequence or
sequence section may be queued-up while one is currently being played.
Queuing sequences provides a seamless way to transition between sections.

To use the tune player, an application need only open an instance of the tune
player component, call TuneSetHeader with the appropriate header data, and
call TuneQueue with the desired sequence data.

The tune player negotiates with the note allocator to determine which music
component to use and allocates the necessary note channels. Any number of

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-11

sequences may be played simultaneously as long as there is sufficient
polyphony (voices) within the music component. The tune player handles all
aspects of timing, as defined by the sequence of music events. In addition, the
tune player provides services to set the volume, and to stop and restart an
active sequence.

Note
Using the QuickTime Movie Toolbox to play a movie that
contains music data is often easier rather using the tune
player directly. ◆

Music Components 19

Individual music components act as device drivers for each type of synthesizer
attached to a particular computer. Two music components are provided with
QuickTime 2.5: the QuickTime Music Synthesizer component, to play music
out of the built-in speaker, and the General MIDI component, to play music on
a General MIDI device attached to a serial port. To better understand the role of
a music component, it helps to be familiar with QuickTime’s model of a
synthesizer. See “QuickTime Synthesizer Model” (page 19-27).

Applications do not usually call music components directly. Instead the note
allocator or tune player handle music component interactions. Music
components are mainly of interest to application developers who want to
access low-level functionality of synthesizers and for developers of
synthesizers (internal cards, MIDI devices, or software algorithms) who want
to make the capabilities of their synthesizers available to QuickTime.

In order for an application to call a music component directly, you must first
allocate a note channel and then use NAGetNoteChannelInfo and
NAGetRegisteredMusicDevice to get the specific music component and part
number.

You can use music component functions to obtain specific information about
the current synthesizer, to find an instrument that best fits a requested type of
sound, to play a note with a specified pitch, volume, and duration, and to get
information about and work with MIDI entry points.

Other functions are for handling instruments and synthesizer parts. You can
use these functions to initialize a part to a specified instrument and to get lists
of available synthesizer instrument and drum kit names. You can also store
modified instruments from a part into the modifiable instrument store, get

C H A P T E R 1 9

QuickTime Music Architecture

19-12 About QuickTime Music Architecture

detailed information about each instrument from the synthesizer, and get
information about and set knobs and controllers.

Instrument Components and Atomic Instruments 19

QuickTime 2.5 provides a public format for atomic instruments. These sounds
may be embedded in a QuickTime movie, passed via a call to QuickTime, or
dropped into the System Folder.

When initialized, the software synthesizer searches for components of type
‘inst’. These components may report a list of atomic instruments available to
the software synthesizer. At present, ‘inst’ components are only used by the
QuickTime music synthesizer.

Atomic Instrument Format 19

The sounds are called atomic instruments, because you create them with QT
atoms. (QT atoms are described in Chapter 1, “Movie Toolbox.”) Using the
QuickTime calls for manipulating atoms, you construct in memory a
hierarchical tree of atoms with the data that describes the instrument (see
Figure 19-2). The tree of atoms lives inside an atom container. There is one and
only one root atom per container. Each atom has a four-character (32-bit) type,
and a 32-bit ID. Each atom may be either an internal node, or a leaf atom with
data.

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-13

Figure 19-2 An atomic instrument atom container.

You use the following types of atoms to construct an atomic instrument.

■ Tone description atom (type 'tone'). Every atomic instrument must have a
tone description atom. The tone description atom contains the name of the
instrument and a tone description structure. See “Tone Description
Structure” on page 50.

■ Knob list atom (type 'knbl'). A knob list atom contains an instrument knob
list. You can use knob list atoms to completely describe a custom instrument
or to modify an instrument referred to by an instrument reference atom. See
“Instrument Knob List” on page 47.

■ Instrument reference atom (type 'iref'). You can use an instrument
reference atom to create a new atomic instrument based on an existing

Atomic Instrument

kaiKeyRangeInfoType1 n

kaiSampleInfoType1..m

kaiToneDescType1

kaiNoteRequestIntoType1

kaiKnobListType1

kaiSampleDescType1

kaiKnobListType1

kaiKnobListType1

kaiInstInfoTyped

kaiPictType1

kaiWriterType1

kaiCopyrightType1

kaiOtherStrType1

kaiInstrumentRefType1

kaiToneDescType1

C H A P T E R 1 9

QuickTime Music Architecture

19-14 About QuickTime Music Architecture

instrument. An instrument reference atom contains a tone description that is
to be modified by the knob list in the knob list atom.

■ Note request atom (type 'ntrq'). Note request atoms contain a note request
information structure with information about the tone that’s not included in
the tone description. See “Note Request Information Structure” on page 58.

■ Key range information atom (type 'sinf'). To include your own sampled
sounds in an atomic instrument, you must include one or more key range
information atoms. Key range information atoms give instructions regarding
which sample to play for a given range of pitches. For example, a piano may
have a sample for the bass keys, one for the middle range, and one for the
treble. Each key range information atom contains one or more sample
description atoms. It may also include knob list atoms with knob settings for
the sample (these settings override the instrument knob settings when the
sample is played).

■ Sample description atom (type 'sdsc'). The sample description atom
contains a sample description record with a description of the audio data. It
refers via an ID number to the one or more sample data ('sdat') atoms,
which must also be present at the same level as the sample information
atom. See “Atomic Instrument Sample Description Record” on page 47.

■ Sample data atom (type 'sdat'). The sample data atom contains the actual
audio data. A sample data atom may be referred to by more than one sample
description data.

■ Instrument information type (type 'iinf'). This optional atom contains
atoms with information for the instrument About box.

Software Synthesizer Knobs 19

Knobs provide a way to modify the instrument sound, for example, by
applying a tremolo. Atomic instruments for the software synthesizer are
defined by some waveform data and a set of knob values. Typically, the
instrument has a full list of knobs, and if the instrument contains more than a
single sample, each sample contains values for several knobs that are tuned for
that particular sample.

Knobs can be specified either by index or by ID. A nonzero value in the high
byte of the 24-bit number field of an instrument knob record (page 19-46) or
knobID field of a knob description record (page 19-51) indicates that it is an ID.
The knob index ranges from 1 to the number of knobs; the ID is an arbitrary
number. You should generally access knobs by ID, because knob IDs do not

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-15

change over different versions of the QuickTime software whereas knob index
values might.

QuickTime Music Events 19

Music events specify the instruments and notes of a musical composition. A
group of music events is called a sequence. A sequence of events may define a
range of instruments and their characteristics and the notes and rests that,
when interpreted, produce the musical composition.

The sequence of events required to produce music is usually contained in a
QuickTime movie track, which uses a media handler to provide access to the
tune player, or an application, which passes them directly to the tune player.
QuickTime interprets and plays the music from the sequence data.

The events described in this section initialize and modify sound-producing
music devices and define the notes and rests to be played.

Events are constructed as a group of long words. The uppermost four bits
(nibble) of an event’s long word defines its type.

Durations of notes and rests are specified in units of the tune player’s time
scale (default 1/600 second). For example, consider the musical fragment
shown in Figure 19-3.

First nibble Long words Event type

000x 1 Rest

001x 1 Note

010x 1 Controller

011x 1 Marker

1000 2 (reserved)

1001 2 Extended Note

1010 2 Extended Controller

1011 2 Knob

1100 2 (reserved)

1101 2 (reserved)

1110 2 (reserved)

1111 n General

C H A P T E R 1 9

QuickTime Music Architecture

19-16 About QuickTime Music Architecture

Figure 19-3 A music fragment

Assuming 120 beats-per-minute, and a tune player’s scale of 600, each quarter
note’s duration is 300. Table 19-1 shows music track data for the music
fragment in Figure 19-3. Figure 19-4 provides a graphical representation of that
data.

Table 19-1 Music track data

Track data What it does

NOTE Part 0, pitch 60, duration 1200 plays for four beats

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 72, duration 300 plays for one beat

REST duration 300 delays start of next note

NOTE Part 0, pitch 74, duration 300 plays for one beat

REST duration 300 delays start of next note

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-17

Figure 19-4 Duration of notes and rests

The General event specifies the types of instruments or sounds used for the
subsequent Note events. The Note event causes a specific instrument,
previously defined by a General event, to play a note at a particular pitch and
velocity for a specified duration of time.

Additional event types allow sequences to apply controller effects to
instruments, define rests, and modify instrument knob values. The entire
sequence is closed with a Marker event.

In most cases, the standard Note and Controller events (two long words) are
sufficient for an application’s requirements. The Extended Note event provides
wider pitch range and fractional pitch values. The Extended Controller event
expands the number of instruments and controller values over that allowed by
a Controller event.

The following sections describe the event types in detail.

General Event 19

You use the General event to inform QuickTime Music Architecture of a
synthesizer to be used by subsequent events. The tune player call,
TuneSetHeader, receives the General event shown in Figure 19-5.

Notes

Rests

60

0

72

74

Pitch

t
300

t
600

t
900

t
1200

t

C H A P T E R 1 9

QuickTime Music Architecture

19-18 About QuickTime Music Architecture

Figure 19-5 A note request General event

The part number bit field contains a unique identifier that is later used to
match Note, Knob, and Controller events to a specific part. For example, to
play a note the application uses the part number to specify which instrument
will play the note. The General event allows part numbers of up to 12 bits. The
standard Note and Controller events allow part numbers of up to 5 bits; the
Extended Note and Extended Controller events allow 12-bit part numbers.

The event length bit fields contained in the first and last words of the message
are identical and are used as a message format check and to move back and
forth through the message.

The data words field is a variable length field containing information unique to
the subtype of the General event. The subtype bit field indicates the subtype of
General event. There are nine subtypes:

■ A note request General event (kGeneralEventNoteRequest) has a subtype of 1.
It encapsulates the note request data structure used to define the instrument
or part.

General event type first nibble value = 1111

Part number unique part identifier

Event length head: number of words in event

Data words depends on subtype

Subtype 8-bit unsigned subtype

Event length tail: must be identical to head

Event tail first nibble of last word = 11XX

General event (Variable length)

part.12 event length.16 (head & tail identical)
x x

up to 2^16-3 (65533) longwords of data
x x

subtype.14 event length.16 (head & tail identical)
x x

type.4
1 1 1 1

1 1

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-19

■ A part key General event (KGeneralEventPartKey) has a subtype of 4. It sets a
pitch offset for the entire part so that every subsequent note played on that
part will be altered in pitch by the specified amount.

■ A tune difference General event (kGeneralEventTuneDifference) has a
subtype of 5. It contains a standard sequence, with end marker, for the tune
difference of a sequence piece. Using a tune difference event is similar to
using key frames with compressed video sequences. (This subtype halts
QuickTime 2.0 music).

■ An atomic instrument General event (kGeneralEventAtomicInstrument) has a
subtype of 6. It encapsulates an atomic instrument.

■ A knob General event (kGeneralEventKnob) has a subtype of 7. It contains
knob ID/knob value pairs. The smallest event is four long words.

■ A MIDI channel General event (kGeneralEventMIDIChannel) has a subtype of
8. It is used in a tune header. One long word identifies the MIDI channel it
originally came from.

■ A part change General event (kGeneralEventPartChange) has a subtype of 9. It
is used in a tune sequence where one long word identifies the tune part that
can now take over the part’s note channel. (This subtype halts QuickTime 2.0
music.)

■ A no-op General event (kGeneralEventNoOp) has a subtype of 10. It does
nothing in QuickTime 2.5 but it halts QuickTime 2.0 music.

■ A notes-used General event (kGeneralEventUsedNotes) has a subtype of 11. It
is four long words specifying which MIDI notes are actually used.

Macro calls are used to stuff the General event’s head and tail long words, but
not the structures described above:

_StuffGeneralEvent(w1, w2, instrument, subType, length)

Macros are used to extract field values from the event’s head and tail long
words.

qtma_XInstrument(m, l)
qtma_GeneralSubtype(m, l)
qtma_GeneralLength(m, l)

C H A P T E R 1 9

QuickTime Music Architecture

19-20 About QuickTime Music Architecture

Note Event and Extended Note Event 19

The standard Note event (Figure 19-6) supports most music requirements. The
Note event allows up to 32 instruments and supports the traditional equal
tempered scale. The Extended Note event (Figure 19-7) provides a wider range
of pitch values, microtonal values to define any pitch, and extended note
duration. The Extended Note event requires two long words; the standard
Note event requires only one.

Figure 19-6 Note event

The part number field contains the unique part identifier initially used during
the TuneSetHeader call.

The pitch bit field allows a range from 0-63, which is mapped to the values
32–95 representing the traditional equal tempered scale. For example, the
value 28 (mapped to 60) is middle C.

The velocity bit field allows a range from 0–127. A velocity value of 0 produces
silence.

The duration bit field defines the number of units of time during which the
part will play the note. The units of time are defined by the media time scale or
tune player time scale.

Macro call used to stuff the Note event’s long word:

Note event type first nibble value = 001X

Part number unique part identifier

Pitch numeric value of 0–63, mapped to 32–95

Velocity 0–127, 0 = no audible response (but used to indicate a
NOTE OFF)

Duration specifies how long to play the note in units defined by the
media time scale or tune player time scale

Note

pitch.6 (32-95)part.5 velocity.7 duration.11
x x

type.3
0 0 1

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-21

_StuffNoteEvent(x, instrument, pitch, volume, duration)

Macro calls used to extract fields from the Note event’s long word:

qtma_Instrument(x)
qtma_NotePitch(x)
qtma_NoteVelocity(x)
qtma_NoteVolume(x)
qtma_NoteDuration(x)

Figure 19-7 Extended Note event

The part number bit field contains the unique part identifier initially used
during the TuneSetHeader call.

If the pitch field is less than 128, it is interpreted as an integer pitch where 60 is
middle C. If the pitch is 128 or greater, it is treated as a fixed pitch.

Extended Note event type first nibble value = 1001

Part number unique part identifier

Pitch 0–127 standard pitch, 60 = middle C 0x01.00 …
0x7F.00 allowing 256 microtonal divisions
between each notes in the traditional equal
tempered scale

Duration specifies how long to play the note in units
defined by media time scale or tune player time
scale

Velocity 0–127 where 0 = no audible response (but used
to indicate a NOTE OFF)

Event tail first nibble of last word = 10XX

Extended note

part.12 pitch.15
x x

velocity.7 duration.22
x x

type.4
1 0 0 1

1 0

0 x x x

0 x x x x x

C H A P T E R 1 9

QuickTime Music Architecture

19-22 About QuickTime Music Architecture

Microtonal pitch values are produced when the 15 bits of the pitch field are
split. The upper 7 bits defines the standard equal tempered note and the lower
8 bits defines 256 microtonal divisions between the standard notes.

Macro call used to stuff the extended Note event’s long words:

_StuffXNoteEvent(w1, w2, instrument, pitch, volume, duration)

Macro calls used to extract fields from the extended Note event’s long words:

qtma_XInstrument(m, l)
qtma_XNotePitch(m, l)
qtma_XNoteVelocity(m, 1)
qtma_XNoteVolume(m, l)
qtma_XNoteDuration(m, l)

Rest Event 19

The Rest event (Figure 19-8) specifies the period of time, defined by either the
media time scale or the tune player time scale, until the next Note event in the
sequence will be played.

Figure 19-8 Rest event

Macro call used to stuff the Rest event’s long word:

_StuffRestEvent(x, duration)

Macro call used to extract the Rest event’s duration value:

Rest event type first nibble value = 000X

Duration specifies the number of units of time until the next Note
event is played in units defined by media time scale or
tune player time scale

Rest

duration.24
x x

type.3
0 0 0 0 0 0 0 0

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-23

qtma_RestDuration(x)

Note
Rest events are not used to cause silence in a sequence, but
to define the start of subsequent Note events. ◆

Marker Event 19

The Marker event has three subtypes. The end Marker event (Figure 19-9)
marks the end of a series of events. The beat Marker event marks the beat and
the tempo Marker event indicates the tempo.

Figure 19-9 Marker event of subtype End

The Marker subtype bit field contains zero for an end marker
(kMarkerEventEnd), 1 for a beat marker (kMarkerEventBeat), or 2 for a tempo
marker (kMarkerEventTempo).

The value bit field varies according to the subtype:

■ For an end Marker event, a value of 0 means stop; any other value is
reserved.

■ For a beat Marker event, a value of 0 is a single beat (a quarter note); any
other value indicates the number of fractions of a beat in 1/65536 beat.

■ For a tempo Marker event, the value is the same as a beat marker, but
indicates that a tempo event should be computed (based on where the next
beat or tempo marker is) and emitted upon export.

Macro calls used to extract fields from the Marker events long word:

Marker event type first nibble value = 011X

Subtype 8-bit unsigned subtype

Value 16-bit signed value

End Marker

value.16subtype.8
0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

type.3
0 1 1 0 0 0 0 0

C H A P T E R 1 9

QuickTime Music Architecture

19-24 About QuickTime Music Architecture

qtma_MarkerSubtype(x)
qtma_MarkerValue(x)

Controller Event and Extended Controller Event 19

The Controller event (Figure 19-10) changes the value of a controller on a
specified part. The Extended Controller event (Figure 19-11) allows parts and
controllers beyond the range of the standard controller event.

Figure 19-10 Controller event

For a list of currently supported controller types see “Controller Numbers”
(page 19-33).

The part field contains the unique part identifier initially used during the
TuneSetHeader call.

The controller bit field is a value that describes the type of controller used by
the part.

The value bit field is specific to the selected controller.

Macro call used to stuff the controller event’s long word:

_StuffControlEvent(x, instrument, control, value)

Macro calls used to extract fields from the controller event’s long word:

Controller event type first nibble value = 010X

Part unique part identifier

Controller controller to be applied to instrument

Value 8.8 bit fixed point signed controller specific value

Controller

value.16controller.8
x x

type.3
0 1 0 x x x x x

part.5

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-25

qtma_Instrument(x)
qtma_ControlController(x)
qtma_ControlValue(x)

Figure 19-11 Extended Controller event

The part field contains the unique part identifier initially used during the
TuneSetHeader call.

The controller bit field contains a value that describes the type of controller to
be used by the part.

The value bit field is specific to the selected controller.

Macro call used to stuff the Extended Controller event’s long words:

_StuffXControlEvent(w1, w2, instrument, control, value)

Macro calls used to extract fields from the Extended Controller event’s long
words:

qtma_XInstrument(m, l)
qtma_XControlController(m, l)
qtma_XControlValue(m, l)

Extended Controller type first nibble value = 1010

Part instrument index for controller

Controller controller for instrument

Value signed controller specific value

Event tail first nibble of last word = 10XX

Extended controller event

part.12 pitch.15
x x x x x x x x x x x x

controller.14 value.16

x x

type.4
1 0 1 0

1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x x x x x x

C H A P T E R 1 9

QuickTime Music Architecture

19-26 About QuickTime Music Architecture

Knob Event 19

The Knob event is used to modify a particular knob within a specified part.

Figure 19-12 Knob event

The part field contains the unique part identifier initially used during the
TuneSetHeader call.

The knob number bit field identifies the knob to be changed.

The 32-bit value composed of the lower 16- and upper 16-bit field values is
used to alter the specified knob.

Macro call used to stuff the Knob event’s long words:

_StuffKnobEvent(w1, w2, instrument, knob, value)

Macro calls used to extract fields from the Knob event’s long words:

qtma_XInstrument(m, l)
qtma_KnobValue(m, l)

Knob event type first nibble value = 1011

Part unique part identifier

Knob number knob number within specified part

Knob value (LSW (0–15)) lower 16 bits of knob value

Knob value (MSW (16–31)) upper 16 bits of knob value

Event tail first nibble of last word = 10XX

Knob

part.12 value MSB.16

value LSB.16

x x x x x x x x x x x x

knob.14

x x

x x x x x x x x x x x x x x x x
type.4

1 0 1 1

1 0 x x x x x x

C H A P T E R 1 9

QuickTime Music Architecture

About QuickTime Music Architecture 19-27

QuickTime Synthesizer Model 19

Although many kinds of synthesizers have been built, QuickTime Music
Architecture uses one specific model. The QuickTime Music Architecture music
synthesizer model is described in this section.

A synthesizer contains a number of parts and instruments. An instrument is a
very specific description of the type of sound produced. Parts can be thought of
as slots in which the user installs particular instruments.

An instrument is accessible only after it is loaded into one of the synthesizer’s
parts. A synthesizer has parts for fixed and user-modifiable instruments. An
instrument loaded into a part can be modified by changing the value of one of
its knobs and saving it in one of the modifiable instrument slots under a new
name.

The diagram below illustrates a typical synthesizer. The illustration shows the
total number of parts available from the synthesizer, a group of fixed
instruments, 1 through n, and a group of user modifiable instruments, n+1
through n+m.

C H A P T E R 1 9

QuickTime Music Architecture

19-28 QuickTime Music Architecture Reference

Figure 19-13 Typical synthesizer

In the illustration above, part 6 contains a user-modifiable instrument. It uses
the same instrument as part 1. One instrument can be used by two separate
parts. After an instrument is loaded into multiple parts, either part can be
modified through its knobs. Knobs allow you to produce a unique variation
from the original instrument. Knobs apply to the entire synthesizer and not to a
particular instrument. Knobs typically control audio effects such as reverb that
are built into a synthesizer.

In the illustration, part 6 is saved to the user modifiable instrument n+1.
Modified parts cannot be saved to a fixed instrument slot.

QuickTime Music Architecture Reference 19

This section describes the constants, data structures, functions, and result codes
provided by QuickTime Music Architecture.

Part 1 Instrument 1

Fixed
instruments

User
modifiable
instruments

Instruments
(Fixed & user modifiable)

Instrument 2

Instrument 3

Instrument 4

Instrument ...

Instrument n

Instrument n +1

Instrument n +2

Instrument ...

Instrument n + m

Note
allocator

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Part 8

Part ...

Part q

Synthesizer parts

Part knobs and controllers q = Synthesizer parts

m = ModifiableInstrumentCount

n = InstrumentCount

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-29

Constants 19

This section describes the constants provided by QuickTime Music Architecture.

Atom Types for Atomic Instruments 19

These constants specify the types of atoms used to build atomic instruments.
Atomic instruments are described in “Instrument Components and Atomic
Instruments” (page 19-12).

enum {
kaiToneDescType = 'tone',
kaiNoteRequestInfoType = 'ntrq',
kaiKnobListType = 'knbl',
kaiKeyRangeInfoType = 'sinf',
kaiSampleDescType = 'sdsc',
kaiSampleDataType = 'sdat',
kaiInstRefType = 'iref',
kaiInstInfoType = 'iinf',
kaiPictType = 'pict',
kaiWriterType = '©wrt',
kaiCopyrightType = '©cpy',
kaiOtherStrType = 'str '

};

Constant descriptions

kaiToneDescType A tone atom, which describes the tone. It contains a tone
description structure (page 19-50).

kaiNoteRequestInfoType
A note request information atom, which contains a note
request information structure (page 19-58). The note
request information structure includes information about a
tone that is not in the tone description. Use a note request
information atom when embedding an instrument in a
sample description of a QuickTime movie. If this atom is
absent, QuickTime assumes “reasonable” values for
polyphony.

kaiKnobListType A knob list atom, which specifies values for one or more
knobs. It contains an instrument knob list structure

C H A P T E R 1 9

QuickTime Music Architecture

19-30 QuickTime Music Architecture Reference

(page 19-47). Use it with a custom instrument, a modified
built-in instrument, or as part of a sample.

kaiKeyRangeInfoType
Use a key range information atom to include a sampled
sound in an atomic instrument. A key range information
atom contains several other atoms. It also refers, via an ID,
to one or more sibling sample info (kaiSampleInfoType)
atoms.

kaiSampleDescType A sample description atom, which contains an atomic
instrument sample description record (page 19-47).

kaiSampleDataType A sample data atom, which contains the actual audio data.
kaiInstRefType An instrument reference atom, which contains a tone

description to be modified by a knob list atom.
kaiInstInfoType An instrument information atom, which contains four

optional atoms with information for the instrument About
box.

kaiPictType A picture atom that includes the graphic used in the
instrument About box.

kaiWriterType A text atom that has the author information used in
instrument the About box.

kaiCopyrightType A text atom that has the copyright information used in the
instrument About box.

kaiOtherStrType A text atom that has additional information for the
instrument About box.

kaiSampleInfoType A text atom that contains a sample data
(kiaSampleDataType) atom.

Instrument Knob Flags 19

These flags are used in the flags field of an instrument knob list structure
(page 19-47) to indicate what to do if a requested knob is not in the list.

enum {
kInstKnobMissingUnknown = 0,
kInstKnobMissingDefault = 1 << 0

};

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-31

Constant descriptions

kInstKnobMissingUnknown
If the requested knob is not in the list, do not set its value.

kInstKnobMissingDefault
If the requested knob is not in the list, use its default value.

Loop Type Constants 19

You can use these constants in the loopType field of an atomic instrument
sample description record (page 19-47) to indicate the type of loop you want.

enum {
kMusicLoopTypeNormal = 0,
kMusicLoopTypePalindrome = 1

};

Constant descriptions

loopTypeNormal Use a regular loop.
loopTypeAlternating

Take the wave form and reverse its sin waves and its
timing. This produces a wave form with odd harmonics.

Music Component Type 19

Use this constant to specify a QuickTime music component.

enum {
kMusicComponentType = 'musi'

};

Constant description

kMusicComponentType
The QuickTime Music Architecture music component type.

Synthesizer Type Constants 19

You can use these constants in a tone description structure (page 19-50) to
specify the type of synthesizer you want to produce the tone.

C H A P T E R 1 9

QuickTime Music Architecture

19-32 QuickTime Music Architecture Reference

enum {
kSoftSynthComponentSubType = 'ss ',
kGMSynthComponentSubType = 'gm '

};

Constant descriptions

kSoftSynthComponentSubType
Use the QuickTime music synthesizer. This is the built-in
synthesizer

kGMSynthComponentSubType
Use the General MIDI synthesizer.

Synthesizer Description Flags 19

These flags describe various characteristics of a synthesizer. They are used in
the flags field of the synthesizer description structure (page 19-48).

enum {
kSynthesizerDynamicVoice = 1,
kSynthesizerUsesMIDIPort = 2,
kSynthesizerMicrotone = 4,
kSynthesizerHasSamples = 8,
kSynthesizerMixedDrums = 6,
kSynthesizerSoftware = 32,
kSynthesizerHardware = 64,
kSynthesizerDynamicChannel = 128,
kSynthesizerHogsSystemChannel = 256,
kSynthesizerSlowSetPart = 1024,
kSynthesizerOffline = 4096,
kSynthesizerGM = 16384

};

Constant descriptions

kSynthesizerDynamicVoice
Voices can be assigned to parts on the fly with this
synthesizer (otherwise, polyphony is very important).

kSynthesizerUsesMIDIPort
This synthesizer must be patched through a MIDI system,
such as the MIDI Manager or OMS.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-33

kSynthesizerMicrotone
This synthesizer can play microtonal scales.

kSynthesizerHasSamples
This synthesizer has some use for sampled audio data.

kSynthesizerMixedDrums
Any part of this synthesizer can play drum parts.

kSynthesizerSoftware
This synthesizer is implemented in main CPU software
and uses CPU cycles.

kSynthesizerHardware
This synthesizer is a hardware device, not a software
synthesizer or MIDI device.

kSynthesizerDynamicChannel
This synthesizer can move any part to any channel or
disable each part. For MIDI devices only.

kSynthesizerHogsSystemChannel
Even if the kSynthesizerDynamicChannel bit is set, this
synthesizer always responds on its system channel. For
MIDI devices only.

kSynthesizerSlowSetPart
This synthesizer does not respond rapidly to the various
set part and set part instrument calls.

kSynthesizerOffline
This synthesizer can enter an off-line synthesis mode.

kSynthesizerGM This synthesizer is a General MIDI device.

Controller Numbers 19

The controller numbers used by QuickTime are mostly identical to the standard
MIDI controller numbers. These are signed 8.8 values. The full range, therefore,
is -128.00 to 127+127/128 (or 0x8000 to 7FFF).

All controls default to zero except for volume and pan.

Pitch bend is specified in fractional semitones, which eliminates the restrictions
of a pitch bend range. You can bend as far as you want, any time you want.

The last 16 controllers (113–128) are global controllers. Global controllers
respond when the part number is given as 0, indicating the entire synthesizer.

C H A P T E R 1 9

QuickTime Music Architecture

19-34 QuickTime Music Architecture Reference

enum {
kControllerModulationWheel = 1,
kControllerBreath = 2,
kControllerFoot = 4,
kControllerPortamentoTime = 5,
kControllerVolume = 7,
kControllerBalance = 8,
kControllerPan = 10,
kControllerExpression = 11,
kControllerLever1 = 16,
kControllerLever2 = 17,
kControllerLever3 = 18,
kControllerLever4 = 19,
kControllerLever5 = 80,
kControllerLever6 = 81,
kControllerLever7 = 82,
kControllerLever8 = 83,
kControllerPitchBend = 32,
kControllerAfterTouch = 33,
kControllerSustain = 64,
kControllerSostenuto = 66,
kControllerSoftPedal = 67,
kControllerReverb = 91,
kControllerTremolo = 92,
kControllerChorus = 93,
kControllerCeleste = 94,
kControllerPhaser = 95,
kControllerEditPart = 113,
kControllerMasterTune = 114

};

Constant descriptions

kControllerModulationWheel
This controller controls the modulation wheel. A
modulation wheel adds a warble.

kControllerBreath This controller controls breath.
kControllerFoot This controller controls the foot pedal.
kControllerPortamentoTime

This controller adjusts the slur between notes. Set the time

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-35

to 0 to turn off portamento; there is no separate control to
turn portamento on and off.

kControllerVolume This controller controls volume.
kControllerBalance This controller controls balance between channels.
kControllerPan This controller controls balance on the QuickTime music

synthesizer and some others. Values are 256– 512,
corresponding to left to right.

kControllerExpression
This controller provides a second volume control.

kControllerLever1 through kControllerLever8
These are all general purpose controllers.

kControllerPitchBend
This controller bends the pitch. Pitch bend is specified in
positive and negative semitones, with 7 bits per fraction.

kControllerAfterTouch
 This controller controls channel pressure.

kControllerSustain This controller controls the sustain effect. The value is a
Boolean—positive for on, 0 or negative for off.

kControllerSostenuto
This controller controls sostenuto.

kControllerSoftPedal
This controller controls the soft pedal.

kControllerReverb This controller controls reverb.
kControllerTremolo This controller controls tremolo.
kControllerChorus This controller controls the amount of signal to feed to the

chorus special effect unit.
kControllerCeleste This controller controls the amount of signal to feed to the

celeste special effect unit.
kControllerPhaser This controller controls the amount of signal to feed to the

phaser special effect unit.
kControllerEditPart

This controller sets the part number for which editing is
occurring. For synthesizers that can edit only one part.

kControllerMasterTune
This controller offsets the entire synthesizer in pitch.

C H A P T E R 1 9

QuickTime Music Architecture

19-36 QuickTime Music Architecture Reference

Controller Range 19

These constants specify the maximum and minimum values for controllers.

enum {
kControllerMaximum = 0x7FFF,
kControllerMinimum = 0x8000

};

Constant descriptions

kControllerMaximum
The maximum value a controller can be set to.

kControllerMinimum
The minimum value a controller can be set to.

Drum Kit Numbers 19

These constants specify the first and last drum kit numbers available to
General MIDI drum kits.

enum {
kFirstDrumkit = 16384,
kLastDrumkit = (kFirstDrumkit + 128)

};

Constant description

kFirstDrumkit The first number in the range of drum kit numbers, which
corresponds to “no drum kit.” The standard drum kit is
kFirstDrumKit+1=16385.

kLastDrumkit The last number in the range of drum kit numbers.

Tone Fit Flags 19

These flags are returned by the MusicFindTone function (page 19-104) to indicate
how well an instrument matches the tone description.

enum {
kInstrumentMatchSynthesizerType = 1,
kInstrumentMatchSynthesizerName = 2,

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-37

kInstrumentMatchName = 4,
kInstrumentMatchNumber = 8,
kInstrumentMatchGMNumber = 16

};

Constant descriptions

kInstrumentMatchSynthesizerType
The requested synthesizer type was found.

kInstrumentMatchSynthesizerName
The particular instance of the synthesizer requested was
found.

kInstrumentMatchName
The instrument name in the tone description matched an
appropriate instrument on the synthesizer.

kInstrumentMatchNumber
The instrument number in the tone description matched an
appropriate instrument on the synthesizer.

kInstrumentMatchGMNumber
The General MIDI equivalent was used to find an
appropriate instrument on the synthesizer.

Knob Flags 19

Knob flags specify characteristics of a knob. They are used in the flags field of
a knob description record. Some flags describe the type of values a knob takes
and others describe the user interface. Knob type flags are mutually exclusive,
so only one should be set (all knob type flag constants begin “kKnobType”).

enum {
kKnobReadOnly = 16,
kKnobInterruptUnsafe = 32,
kKnobKeyrangeOverride = 64,
kKnobGroupStart = 128,
kKnobFixedPoint8 = 1024,
kKnobFixedPoint16 = 2048,
kKnobTypeNumber = 0 << 12,
kKnobTypeGroupName = 1 << 12,
kKnobTypeBoolean = 2 << 12,
kKnobTypeNote = 3 << 12,

C H A P T E R 1 9

QuickTime Music Architecture

19-38 QuickTime Music Architecture Reference

kKnobTypePan = 4 << 12,
kKnobTypeInstrument = 5 << 12,
kKnobTypeSetting = 6 << 12,
kKnobTypeMilliseconds = 7 << 12,
kKnobTypePercentage = 8 << 12,
kKnobTypeHertz = 9 << 12,
kKnobTypeButton = 10 << 12

};

Constant descriptions

kKnobReadOnly The knob value cannot be changed by the user or with a
set knob call.

kKnobInterruptUnsafe
Alter this knob only from foreground task time.

kKnobKeyrangeOverride
The knob can be overridden within a single key range
(software synthesizer only).

kKnobGroupStart The knob is first in some logical group of knobs.
kKnobFixedPoint8 Interpret knob numbers as fixed-point 8-bit.
kKnobFixedPoint16 Interpret knob numbers as fixed-point 16-bit.
kKnobTypeNumber The knob value is a numerical value.
kKnobTypeGroupName The name of the knob is really a group name for display

purposes.
kKnobTypeBoolean The knob is an on/off knob. If the range of the knob (as

specified by the low value and high value in the knob
description record) is greater than one, the knob is a
multi-checkbox field.

kKnobTypeNote The knob value range is equivalent to MIDI keys.
kKnobTypePan T knob value is the pan setting and is within a range (as

specified by the low value and high value in the knob
description record) that goes from left to right.

kKnobTypeInstrument
The knob value is a reference to another instrument
number.

kKnobTypeSetting The knob value is one of n different discrete settings—for
example, items on a pop-up menu.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-39

kKnobTypeMilliseconds
The knob value is in milliseconds.

kKnobTypePercentage
The knob value is a percentage of the range.

kKnobTypeHertz The knob value represents frequency.
kKnobTypeButton The knob is a momentary trigger push button.

Knob Value Constants 19

These constants specify unknown or default knob values and are used in
various get knob and set knob calls.

enum {
kUnknownKnobValue = 0x7FFFFFFF,
kDefaultKnobValue = 0x7FFFFFFE

};

Constant descriptions

kUnknownKnobValue Couldn’t find the specified knob value.
kDefaultKnobValue Set this knob to its default value.

Music Packet Status 19

These constants are used in the reserved field of the MIDI packet structure
(page 19-52).

enum {
kMusicPacketPortLost = 1,
kMusicPacketPortFound = 2,
kMusicPacketTimeGap = 3

};

Constant descriptions

kMusicPacketPortLost
The application has lost the default input port.

kMusicPacketPortFound
The application has retrieved the input port from the
previous owner.

C H A P T E R 1 9

QuickTime Music Architecture

19-40 QuickTime Music Architecture Reference

kMusicPacketTimeGap
The last byte of the packet specifies how long to keep the
MIDI line silent in milliseconds, after sending the packet.

Atomic Instrument Information Flags 19

These constants specify what pieces of information about an atomic instrument
the caller is interested in and are passed to the MusicGetPartAtomicInstrument
function.

enum {
kGetAtomicInstNoExpandedSamples = 1 << 0,
kGetAtomicInstNoOriginalSamples = 1 << 1,
kGetAtomicInstNoSamples = kGetAtomicInstNoExpandedSamples |

kGetAtomicInstNoOriginalSamples,
kGetAtomicInstNoKnobList = 1 << 2,
kGetAtomicInstNoInstrumentInfo = 1 << 3,
kGetAtomicInstOriginalKnobList = 1 << 4,
kGetAtomicInstAllKnobs = 1 << 5

};

Constant descriptions

kGetAtomicInstNoExpandedSamples
Eliminate the expanded samples.

kGetAtomicInstNoOriginalSamples
Eliminate the original samples.

kGetAtomicInstNoSamples
Eliminate both the original and expanded samples.

kGetAtomicInstNoKnobList
Eliminate the knob list.

kGetAtomicInstNoInstrumentInfo
Eliminate the About box information.

kGetAtomicInstOriginalKnobList
Include the original knob list.

kGetAtomicInstAllKnobs
Include the current knob list.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-41

Setting Atomic Instruments 19

These flags specify details of initializing a part with an atomic instrument and
are passed to the MusicSetPartAtomicInstrument function.

enum {
kSetAtomicInstKeepOriginalInstrument = 1 << 0,
kSetAtomicInstShareAcrossParts = 1 << 1,
kSetAtomicInstCallerTosses = 1 << 2,
kSetAtomicInstDontPreprocess = 1 << 7

};

Constant descriptions

kSetAtomicInstKeepOriginalInstrument
Keep original sample after expansion.

kSetAtomicInstShareAcrossParts
Remove the instrument when the application quits.

kSetAtomicInstCallerTosses
The caller isn’t keeping a copy of the atomic instrument for
later calls to NASetAtomicInstrument.

kSetAtomicInstDontPreprocess
Don’t expand the sample. You would only set this bit if
you know the instrument is digitally clean or you got it
from a MusicGetPartAtomicInstrument call.

Instrument Info Flags 19

Use these flags in the MusicGetInstrumentInfo function (page 19-118) to indicate
which instruments and instrument names you are interested in.

enum {
kGetInstrumentInfoNoBuiltIn = 1 << 0,
kGetInstrumentInfoMidiUserInst = 1 << 1,
kGetInstrumentInfoNoIText = 1 << 2

};

Constant descriptions

kGetInstrumentInfoNoBuiltIn
Don’t return built-in instruments.

C H A P T E R 1 9

QuickTime Music Architecture

19-42 QuickTime Music Architecture Reference

kGetInstrumentInfoMidiUserInst
Do return user instruments for a MIDI device.

kGetInstrumentInfoNoIText
Don’t return international text strings.

Synthesizer Connection Type Flags 19

These flags provide information about a MIDI device’s connection and are used
in the synthesizer connections structure (page 19-57).

enum {
kSynthesizerConnectionMono = 1,
kSynthesizerConnectionMMgr = 2,
kSynthesizerConnectionOMS = 4,
kSynthesizerConnectionQT = 8,
kSynthesizerConnectionFMS = 16

};

Constant descriptions

kSynthesizerConnectionMono
If set, and the synthesizer can be both monophonic and
polyphonic, the synthesizer is instructed to take up its
channels sequentially from the system channel in
monophonic mode.

kSynthesizerConnectionMMgr
This connection is imported from the MIDI Manager.

kSynthesizerConnectionOMS
This connection is imported from OMS.

kSynthesizerConnectionQT
This connection is a QuickTime-only port.

kSynthesizerConnectionFMS
This connection is imported from FMS.

Instrument Match Flags 19

These flags are returned in the instMatch field of the General MIDI
information structure (page 19-54) to specify how QuickTime Music
Architecture matched an instrument request to an instrument.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-43

enum {
kInstrumentExactMatch = 0x00020000,
kRecommendedSubstitute = 0x00010000,
kQualityField = 0xFF000000,
kRoland8BitQuality = 0x05000000

};
typedef InstrumentAboutInfo *InstrumentAboutInfoPtr;
typedef InstrumentAboutInfoPtr *InstrumentAboutInfoHandle;

Constant descriptions

kInstrumentExactMatch
The instrument exactly matches the request.

kInstrumentRecommendedSubstitute
The instrument is the approved substitute.

kInstrumentQualityField
The quality of the selected instrument.

kInstrumentRoland8BitQuality
The quality of a built-in instrument. Built-in instrument
quality is 5 on a scale of 0–255.

Note Request Constants 19

These flags specify what to do if the exact instrument requested is not found.
They are used in the flags field of the note request information structure
(page 19-58).

enum {
kNoteRequestNoGM = 1,
kNoteRequestNoSynthType = 2

};

Constant descriptions

kNoteRequestNoGM Don’t use a General MIDI synthesizer.
kNoteRequestNoSynthType

Don’t use another synthesizer of the same type but with a
different name.

C H A P T E R 1 9

QuickTime Music Architecture

19-44 QuickTime Music Architecture Reference

Pick Instrument Flags 19

The pick instrument flags provide information to the NAPickInstrument
(page 19-91) and NAPickEditInstrument (page 19-93) functions on which
instruments to present for the user to choose from.

enum {
kPickDontMix = 1,
kPickSameSynth = 2,
kPickUserInsts = 4,
kPickEditAllowPick = 16

};

Constant descriptions

kPickDontMix Show either all drum kits or all instruments depending on
the current instrument. For example, if it’s a drum kit,
show only drum kits.

kPickSameSynth Show only instruments from the current synthesizer.
kPickUserInsts Show modifiable instruments in addition to ROM

instruments.
kPickEditAllowPick

Present the instrument picker dialog. Used only with the
NAPickEditInstrument function.

Note Allocator Type 19

Use this constant to specify the QuickTime note allocator component.

enum {
kNoteAllocatorType = 'nota'
kNoteAllocatorComponentType = 'not2'

};

Constant description

kNoteAllocatorType
The QuickTime Music Architecture note allocator type.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-45

Tune Queue Depth 19

This constant represents the maximum number of segments that can be queued
with the TuneQueue function.

enum {
kTuneQueueDepth = 8

};

Constant description

kTuneQueueDepth Deepest you can queue tune segments.

Tune Player Type 19

Use this constant to specify the QuickTime tune player component.

enum {
kTunePlayerType = 'tune'

};

Constant descriptions

kTunePlayerType The QuickTime Music architecture tune player component
type.

Tune Queue Flags 19

Use these flags in the TuneQueue function (page 19-63) to give detail about how
to handle the queued tune.

enum {
kTuneStartNow = 1,
kTuneDontClipNotes = 2,
kTuneExcludeEdgeNotes = 4,
kTuneQuickStart = 8,
kTuneLoopUntil = 16,
kTuneStartNewMaster = 16384

};

C H A P T E R 1 9

QuickTime Music Architecture

19-46 QuickTime Music Architecture Reference

Constant descriptions

kTuneStartNow Play even if another tune is playing.
kTuneDontClipNotes

Allow notes to finish their durations outside sample.
kTuneExcludeEdgeNotes

Don’t play notes that start at end of tune.
kTuneQuickStart Leave all the controllers where they are and ignore start

time.
kTuneLoopUntil Loop a queued tune if there is nothing else in the queue.
kTuneStartNewMaster

Start a new master reference timer.

Data Structures 19

This section describes the data structures provided by QuickTime Music
Architecture.

Instrument Knob Record 19

An instrument knob record contains information about an instrument knob. It
is defined by the InstKnobRec data type.

struct InstKnobRec {
long number;
long value;

};
typedef struct InstKnobRec InstKnobRec;

Field descriptions
number A knob ID or index. A nonzero value in the high byte

indicates that it is an ID. The knob index ranges from 1 to
the number of knobs; the ID is an arbitrary number.

value The value the knob is set to.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-47

Instrument Knob List 19

An instrument knob list contains a list of sound parameters. It is defined by the
InstKnobList data type.

struct InstKnobList {
long knobCount;
long knobFlags;
InstKnobRec knob[1];

};
typedef struct InstKnobList InstKnobList;

Field descriptions
knobCount The number of instrument knob records in the list.
knobFlags Instructions on what to do if a requested knob is not in the

list. See “Instrument Knob Flags” on page 30.
InstKnobRec An array of instrument knob records.

Atomic Instrument Sample Description Record 19

A sample description record contains a description of an audio sample,
including sample rate, loop points, and lowest and highest key to play on. It is
defined by the InstSampleDescRec data type.

struct InstSampleDescRec {
OSType dataFormat;
short numChannels;
short sampleSize;
UnsignedFixed sampleRate;
short sampleDataID;
long offset;
long numSamples;
long loopType;
long loopStart;
long loopEnd;
long pitchNormal;
long pitchLow;
long pitchHigh;

};
typedef struct InstSampleDescRec InstSampleDescRec;

C H A P T E R 1 9

QuickTime Music Architecture

19-48 QuickTime Music Architecture Reference

Field descriptions
dataFormat The data format type. This is either 'twos', for signed data,

or 'raw ', for unsigned data.
numChannels The number of channels of data present in the sample.
sampleSize The size of the sample— 8-bit or 16-bit.
sampleRate The rate at which to play the sample in unsigned

fixed-point 16.16.
sampleDataID The ID number of a sample data atom that contains the

sample audio data.
offset Set to 0.
numSamples The number of data samples in the sound.
loopType The type of loop. See “Loop Type Constants” on page 31.
loopStart Indicates the beginning of the portion of the sample that is

looped if the sound is sustained. The position is given in
the number of data samples from the start of the sound.

loopEnd Indicates the end of the portion of the sample that is
looped if the sound is sustained. The position is given in
the number of data samples from the start of the sound.

pitchNormal The number of the MIDI note produced if the sample is
played at the rate specified in sampleRate.

pitchLow The lowest pitch at which to play the sample. Use for
instruments, such as pianos, that have different samples to
use for different pitch ranges.

pitchHigh The highest pitch at which to play the sample. Use for
instruments, such as pianos, that have different samples to
use for different pitch ranges.

Synthesizer Description Structure 19

A synthesizer description structure contains information about a synthesizer. It
is defined by the SynthesizerDescription data type.

struct SynthesizerDescription {
OSType synthesizerType;
Str31 name;
unsigned long flags;
unsigned long voiceCount;

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-49

unsigned long partCount;
unsigned long instrumentCount;
unsigned long modifiableInstrumentCount;
unsigned long channelMask;
unsigned long drumPartCount;
unsigned long drumCount;
unsigned long modifiableDrumCount;
unsigned long drumChannelMask;
unsigned long outputCount;
unsigned long latency;
unsigned long controllers[4];
unsigned long gmInstruments[4];
unsigned long gmDrums[4];

};
typedef struct SynthesizerDescription SynthesizerDescription;

Field descriptions
synthesizerType The synthesizer type. This is the same as the music

component subtype.
name Text name of the synthesizer type.
flags Various information about how the synthesizer works. See

“Synthesizer Description Flags” on page 32.
voiceCount Maximum polyphony.
partCount Maximum multi-timbrality (and MIDI channels).
instrumentCount The number of built-in ROM instruments. This does not

include General MIDI instruments.
modifiableInstrumentCount

The number of slots available for saving user-modified
instruments.

channelMask Which channels a MIDI device always uses for
instruments. Set to FFFF for all channels.

drumPartCount The maximum multi-timbrality of drum parts. For
synthesizers where drum kits are separated from
instruments.

drumCount The number of built-in ROM drum kits. This does not
include General MIDI drum kits. For synthesizers where
drum kits are separated from instruments

C H A P T E R 1 9

QuickTime Music Architecture

19-50 QuickTime Music Architecture Reference

modifiableDrumCount
The number of slots available for saving user-modified
drum kits. For MIDI synthesizers where drum kits are
separated from instruments

drumChannelMask Which channels a MIDI device always uses for drum kits.
Set to FFFF for all channels

outputCount The number of audio outputs. This is usually two.
latency Response time in µSec.
controllers[4] An array of 128 bits identifying the available controllers.

See “Controller Numbers” on page 33. Bits are numbered
from 1 to 128, starting with the most significant bit of the
longword, and continuing to the least significant of the last
bit.

gmInstruments[4] An array of 128 bits giving the available General MIDI
instruments.

gmDrums[4] An array of 128 bits giving the available General MIDI
drum kits.

Tone Description Structure 19

A tone description structure provides the information needed to produce a
specific musical sound. The tune header has a tone description for each
instrument used. Tone descriptions are also used in the tone description atoms
of atomic instruments. The tone description structure is defined by the
ToneDescription data type.

struct ToneDescription {
OSType synthesizerType;
Str31 synthesizerName;
Str31 instrumentName;
long instrumentNumber;
long gmNumber;

};
typedef struct ToneDescription ToneDescription;

Field descriptions
synthesizerType The synthesizer type. See “Synthesizer Type Constants”

(page 19-31) for two possible types. Set to zero if any type
of synthesizer is acceptable.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-51

synthesizerName Name of this instantiation of the synthesizer. Set to zero if
the name is unimportant.

instrumentName The name of the instrument.
instrumentNumber The instrument number for non–General MIDI

instruments.
gmNumber Best matching General MIDI number to use if the

instrumentNumber number in is not found. If you don’t
provide a General MIDI number and neither the
instrument name nor the instrument number is found, the
tone plays nothing.

Knob Description Record 19

A knob description record contains sound parameter values for a single knob.
It is defined by the KnobDescription data type.

struct KnobDescription {
Str63 name;
long lowValue;
long highValue;
long defaultValue;
long flags;
long knobID;

};
typedef struct KnobDescription KnobDescription;

Field descriptions
name The name of the knob.
lowValue The lowest number you can set the knob to.
highValue The highest number you can set the knob to.
defaultValue A value to use for the default.
flags Various information about the knob. See “Knob Flags” on

page 37.
knobID A knob ID or index. A nonzero value in the high byte

indicates that it is an ID. The knob index ranges from 1 to
the number of knobs; the ID is an arbitrary number. Use
the knob ID to refer to the knob in preference over the
knob index, which may change.

C H A P T E R 1 9

QuickTime Music Architecture

19-52 QuickTime Music Architecture Reference

Instrument About Information 19

The instrument About information structure contains the information that
appears in the instrument’s About box and is returned by the
MusicGetInstrumentAboutInfo function (page 19-118). It is defined by the
InstrumentAboutInfo data type.

struct InstrumentAboutInfo {
PicHandle p;
Str255 author;
Str255 copyright;
Str255 other;

};
typedef struct InstrumentAboutInfo InstrumentAboutInfo;

Field descriptions
p A handle to a graphic for the About box.
author The author’s name.
copyright The copyright information.
other Any other textual information.

MIDI Packet 19

The MIDI packet structure describes the data passed by note allocation calls. It
is defined by the MusicMIDIPacket data type.

struct MusicMIDIPacket {
unsigned short length;
unsigned long reserved;
UInt8 data[249];

};
typedef struct MusicMIDIPacket MusicMIDIPacket;

Field descriptions
length The length of the data in the packet.
reserved This field contains zero or one of the music packet status

constants. See “Music Packet Status” on page 39.
data[249] The MIDI data.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-53

Note
This is the count of data bytes only, unlike MIDI Manager
or OMS packets.

Instrument Information Record 19

The instrument information record provides identifiers for instruments and is
part of the instrument information list. It is defined by the
InstrumentInfoRecord data type.

struct InstrumentInfoRecord {
long instrumentNumber;
long flags;
long toneNameIndex;
long itxtNameAtomID;

};
typedef struct InstrumentInfoRecord InstrumentInfoRecord;

Field descriptions
instrumentNumber The instrument number. If the number is 0, the name is an

instrument category.
flags Unused. Must be zero
toneNameIndex The instrument’s position in the toneNames index stored in

the instrument information list this record is a part of. The
index is a one-based index.

itxtNameAtomID The instrument’s position in the itxtNames index stored in
the instrument information list this record is a part of.

Instrument Information List 19

An instrument information list contains the list of instruments available on a
synthesizer. It is defined by the InstrumentInfoList data type.

struct InstrumentInfoList {
long recordCount;
Handle toneNames;
QTAtomContainer itxtNames;
InstrumentInfoRecord info[1];

};

C H A P T E R 1 9

QuickTime Music Architecture

19-54 QuickTime Music Architecture Reference

typedef struct InstrumentInfoList InstrumentInfoList;
typedef InstrumentInfoList *InstrumentInfoListPtr;
typedef InstrumentInfoListPtr *InstrumentInfoListHandle;

Field descriptions
recordCount The number of records in the list.
toneNames A string list of the instrument names as specified in their

tone descriptions.
itxtNames A list of international text names, taken from the name

atoms.
info[1] An array of instrument information records.

General MIDI Instrument Information Structure 19

The General MIDI information structure provides information about a General
MIDI instrument within an instrument component. It is defined by the
GMInstrumentInfo data type.

struct GMInstrumentInfo {
long cmpInstID;
long gmInstNum;
long instMatch;

};
typedef struct GMInstrumentInfo GMInstrumentInfo;
typedef GMInstrumentInfo *GMInstrumentInfoPtr;
typedef GMInstrumentInfoPtr *GMInstrumentInfoHandle;

Field descriptions
cmpInstID The number of the instrument within the instrument

component.
gmInstNum The General MIDI, or standard, instrument number.
instMatch A flag indicating how the instrument matches the

requested instrument. See “Instrument Match Flags” on
page 42.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-55

Non-General MIDI Instrument Information Record 19

The non–General MIDI information record provides information about
non-General MIDI instruments within an instrument component. It is defined
by the nonGMInstrumentInfoRecord data type.

struct nonGMInstrumentInfoRecord {
long cmpInstID;
long flags;
long toneNameIndex;
long itxtNameAtomID;

};
typedef struct nonGMInstrumentInfoRecord nonGMInstrumentInfoRecord;

Field descriptions
cmpInstID The number of the instrument within the instrument

component. If the ID is 0, the name is a category name.
flags Not used.
toneNameIndex The instrument’s position in the toneNames index stored in

the instrument information list this record is a part of. The
index is a one-based index.

itxtNameAtomID The instrument’s position in the itxtNames index stored in
the instrument information list this record is a part of.

Non–General MIDI Instrument Information List 19

A non–General MIDI instrument information list contains the list of
non–General MIDI instruments supported by an instrument component. It is
defined by the nonGMInstrumentInfo data type.

struct nonGMInstrumentInfo {
long recordCount;
Handle toneNames;
QTAtomContainer itxtNames;
nonGMInstrumentInfoRecord instInfo[1];

};
typedef struct nonGMInstrumentInfo nonGMInstrumentInfo;
typedef nonGMInstrumentInfo *nonGMInstrumentInfoPtr;
typedef nonGMInstrumentInfoPtr *nonGMInstrumentInfoHandle;

C H A P T E R 1 9

QuickTime Music Architecture

19-56 QuickTime Music Architecture Reference

Field descriptions
recordCount Number of records in the list.
toneNames A short string list of the instrument names as specified in

their tone descriptions.
itxtNames A list of international text names, taken from the name

atoms.
instInfo[1] An array of non–General MIDI instrument information

records.

Complete Instrument Information List 19

The complete instrument information list contains a list of all atomic
instruments supported by an instrument component. It is defined by the
InstCompInfo data type.

struct InstCompInfo {
long infoSize;
long GMinstrumentCount;
GMInstrumentInfoHandle GMinstrumentInfo;
long GMdrumCount;
GMInstrumentInfoHandle GMdrumInfo;
long nonGMinstrumentCount;
nonGMInstrumentInfoHandle nonGMinstrumentInfo;
long nonGMdrumCount;
nonGMInstrumentInfoHandle nonGMdrumInfo;

};
typedef struct InstCompInfo InstCompInfo;
typedef InstCompInfo *InstCompInfoPtr;
typedef InstCompInfoPtr *InstCompInfoHandle;

Field descriptions
infoSize The size of this record in bytes.
GMinstrumentCount The number of General MIDI instruments.
GMinstrumentInfo A handle to a list of General MIDI instrument information

records.
GMdrumCount The number of General MIDI drum kits.
GMdrumInfo A handle to a list of General MIDI instrument information

records.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-57

nonGMinstrumentCount
The number of non–General MIDI instruments.

nonGMinstrumentInfo
A handle to the list of non–General MIDI instruments.

nonGMdrumCount The number of non–General MIDI drum kits.
nonGMdrumInfo A handle to the list of non–General MIDI drum kits.

Synthesizer Connections for MIDI Devices 19

The synthesizer connection structure describes how a MIDI device is connected
to the computer. It is defined by the SynthesizerConnections data type.

struct SynthesizerConnections {
OSType clientID;
OSType inputPortID;
OSType outputPortID;
long midiChannel;
long flags;
long unique;
long reserved1;
long reserved2;

};
typedef struct SynthesizerConnections SynthesizerConnections;

Field descriptions
clientID The client ID provided by the MIDI Manager or ‘OMS ‘ for

an OMS port.
inputPortID The ID provided by the MIDI Manager or OMS for the

port used to send to the MIDI synthesizer.
outputPortID The ID provided by the MIDI Manager or OMS for the

port that receives from a keyboard or other control device.
midiChannel The system MIDI channel or, for a hardware device, the

slot number.
flags Information about the type of connection. See “Synthesizer

Connection Type Flags” on page 42.
unique A unique ID you can use instead of an index to identify the

synthesizer to the note allocator.
reserved1 Reserved. Set to 0.

C H A P T E R 1 9

QuickTime Music Architecture

19-58 QuickTime Music Architecture Reference

reserved2 Reserved. Set to 0.

QuickTime MIDI Port 19

This structure provides information about the port used by the QuickTime
Music Synthesizer. The QuickTime MIDI port structure is defined by the
QTMIDIPort data type.

struct QTMIDIPort {
SynthesizerConnections portConnections;
Str63 portName;

};
typedef struct QTMIDIPort QTMIDIPort;

Field descriptions
portConnections A synthesizer connections structure (page 19-57).
portName The name of the output port.

Note Request Information Structure 19

The note request information structure contains information for allocating a
note channel that’s additional to that included in a tone description structure. It
is defined by the NoteRequestInfo data type.

struct NoteRequestInfo {
UInt8 flags;
UInt8 reserved;
short polyphony;
Fixed typicalPolyphony;

};
typedef struct NoteRequestInfo NoteRequestInfo;

Field descriptions
flags Specifies what to do if the exact instrument requested in a

tone description structure is not found. See “Note Request
Constants” on page 43.

reserved Reserved. Set to 0.
polyphony Maximum number of voices.
typicalPolyphony Hint for level mixing.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-59

Note Request Structure 19

A note request structure combines a tone description structure and a note
request information structure to provide all the information available for
allocating a note channel. It is defined by the NoteRequest data type.

struct NoteRequest {
NoteRequestInfo info;
ToneDescription tone;

};
typedef struct NoteRequest NoteRequest;

Field descriptions
info A note request information structure (page 19-58).
tone A tone description structure (page 19-50).

Tune Status 19

The tune status structure provides information on the currently playing tune.

struct TuneStatus {
unsigned long *tune;
unsigned long *tunePtr;
TimeValue time;
short queueCount;
short queueSpots;
TimeValue queueTime;
long reserved[3];

};
typedef struct TuneStatus TuneStatus;

Field descriptions
tune The currently playing tune.
tunePtr Current position within the playing tune.
time Current tune time.
queueCount Number of tunes queued up.
queueSpots Number of tunes that can be added to the queue.
queueTime Total amount of playing time represented by tunes in the

queue. This value can be very inaccurate.

C H A P T E R 1 9

QuickTime Music Architecture

19-60 QuickTime Music Architecture Reference

reserved[3] Reserved. Set to 0.

Functions 19

The functions provided by the note allocator component, the tune player
component, music components, and instrument components are described in
the following sections.

Tune Player Functions 19

This section describes the functions the tune player provides for setting,
queueing, and manipulating music sequences. It also describes tune player
utility functions.

TuneSetHeader 19

The TuneSetHeader function prepares the tune player to accept subsequent
music event sequences by defining one or more parts to be used by sequence
Note events.

pascal ComponentResult TuneSetHeader(
TunePlayer tp,
unsigned long *header);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

header A pointer to a list of instruments that will be used in
subsequent calls to the TuneQueue function. The list can include
note request General events with subtypes of
kGeneralEventNoteRequest, kGeneralEventPartKey,
kGeneralEventAtomicInstrument, kGeneralEventMIDIChannel, and
kGeneralEventUsedNotes. It can also include atomic instruments.
The list is terminated by a Marker event of subtype End.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-61

DISCUSSION

The TuneSetHeader function is the first QuickTime Music Architecture call to
play a music sequence. The header parameter points to one or more initialized
General events and atomic instruments. The event list pointed to by the header
parameter must conclude with a Marker event of subtype End.

Only one call to TuneSetHeader is required. Each TuneSetHeader call resets the
tune player.

SEE ALSO

The TuneSetHeaderWithSize function (page 19-61) and the TuneSetNoteChannels
function (page 19-62).

TuneSetHeaderWithSize 19

The TuneSetHeaderWithSize function is like the TuneSetHeader function in that it
prepares the tune player to accept subsequent music event sequences by
defining one or more parts to be used by sequence Note events. But unlike the
TuneSetHeader function, TuneSetHeaderWithSize allows you to specify the
header length in bytes. This prevents the call from parsing off the end if the
music event sequence is missing an end marker.

extern pascal ComponentResult TuneSetHeaderWithSize(
TunePlayer tp,
unsigned long *header,
unsigned long size)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

header A pointer to a list of instruments that will be used in
subsequent calls to the TuneQueue function. The list can include
General events with subtypes of kGeneralEventNoteRequest,
kGeneralEventPartKey, kGeneralEventAtomicInstrument,

C H A P T E R 1 9

QuickTime Music Architecture

19-62 QuickTime Music Architecture Reference

kGeneralEventMIDIChannel, and kGeneralEventUsedNotes. It can
also include atomic instruments. The list is terminated by a
Marker event of subtype End.

size The size of the header in bytes.

function result A result code.

SEE ALSO

The TuneSetHeader function (page 19-60) and the TuneSetNoteChannels
function (page 19-62).

TuneSetNoteChannels 19

The TuneSetNoteChannels function prepares the tune player to accept music
event sequences by allocating specified note channels for them. It is an
alternative to the TuneSetHeader function.

extern pascal ComponentResult TuneSetNoteChannels(
TunePlayer tp,
unsigned long count,
NoteChannel* noteChannelList,
TunePlayCallBackUPP playCallBackProc,
long refCon)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

count The number of note channels to be set.

noteChannelList
A pointer to a list of note channel identifiers. You obtain the
note channel identifiers from the NANewNoteChannel and the
NANewNoteChannelFromAtomicInstrument functions.

playCallBackProc
A function that is called back for each event that is played.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-63

refCon A reference constant passed to the callback function.

function result A result code.

SEE ALSO

The TuneSetHeader function (page 19-60) and the TuneSetHeaderWithSize
function (page 19-61).

TuneQueue 19

The TuneQueue function places a sequence of music events into a queue to be
played.

pascal ComponentResult TuneQueue(
TunePlayer tp,
unsigned long *tune,
Fixed tuneRate,
unsigned long tuneStartPosition,
unsigned long tuneStopPosition,
unsigned long queueFlags,
TuneCallBackUPP callBackProc,
long refCon)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*tune Pointer to an array of events, terminated by a Marker event of
subtype End.

tuneRate Fixed-point speed at which to play the sequence. “Normal”
speed is 0x00010000.

tuneStartPosition
Sequence starting time.

tuneStopPosition
Sequence ending time.

C H A P T E R 1 9

QuickTime Music Architecture

19-64 QuickTime Music Architecture Reference

queueFlags Flags with details about how to play the queued tunes. For
valid values see “Tune Queue Flags” (page 19-45).

callBackProc Points to your callback function.
Your callback function must have the following form:

pascal void MyCallBackProc
(QTCallBack cb, long refcon);

refcon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

function result A result code. In addition to QuickTime Music Architecture
result codes, this function may return TimeBase result codes.

DISCUSSION

The tuneStartPosition and tuneStopPosition specify, in time units numbered
from zero for the beginning of the sequence, which part of the queued
sequence to play. To play all of it, pass 0 and 0xFFFFFFFF respectively.

If there is a sequence currently playing, the newly queued sequence will begin
as soon as the active sequence ends unless the queueFlags parameter is
kTuneStartNow, in which case the currently playing sequence will be
immediately terminated and the new one started.

TuneStop 19

The TuneStop function stops a currently playing sequence.

pascal ComponentResult TuneStop(
TunePlayer tp,
long stopFlags);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

stopFlags Must be zero.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-65

function result A result code.

TuneGetVolume 19

The TuneGetVolume function returns the volume associated with the entire
sequence.

pascal ComponentResult TuneGetVolume(
TunePlayer tp);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result The volume as a value from 0.0 to 1.0 or a negative result code.

TuneSetVolume 19

The TuneSetVolume function sets the volume for the entire sequence.

pascal ComponentResult TuneSetVolume(
TunePlayer tp,
Fixed volume);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

volume The volume to use for the sequence. The value is a fixed 16.16
number.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-66 QuickTime Music Architecture Reference

DISCUSSION

The TuneSetVolume function sets the volume level of the active sequence to the
value of the volume parameter ranging from 0.0 to 1.0.

Note
Individual instruments within the sequence can maintain
independent volume levels. ◆

TuneSetSoundLocalization 19

The TuneSetSoundLocalization function passes sound localization data to a
tune player.

extern pascal ComponentResult TuneSetSoundLocalization(
TunePlayer tp,
Handle data)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

data The sound localization data to be passed.

function result A result code.

TuneGetTimeBase 19

The TuneGetTimeBase function returns the time base of the tune player.

pascal ComponentResult TuneGetTimeBase(
TunePlayer tp,
TimeBase *tb);

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-67

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*tb An initialized TimeBase object.

function result A result code.

DISCUSSION

The TuneGetTimeBase function returns, in the TimeBase parameter, the time base
used to control the sequence timing. The sequence may be controlled in several
ways through its time base. The rate of playback may be changed, or the
TimeBase object may be slaved to a clock or time base different than real time.

TuneGetTimeScale 19

The TuneGetTimeScale function returns the current time scale, in
units-per-second, for the specified tune player instance.

pascal ComponentResult TuneGetTimeScale(
TunePlayer tp,
TimeScale *scale);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*scale An initialized TimeScale object.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-68 QuickTime Music Architecture Reference

TuneSetTimeScale 19

The TuneSetTimeScale function sets the time scale used by the specified tune
player instance.

pascal ComponentResult TuneSetTimeScale(
TunePlayer tp,
TimeScale scale);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

scale The time scale value to be used, in units-per-second.

function result A result code.

DISCUSSION

The TuneSetTimeScale function sets the time scale data used by the tune
player’s sequence data when interpreting time based events.

TuneInstant 19

You can use the TuneInstant function to play the particular sequence events
active at a specified position.

pascal ComponentResult TuneInstant(
TunePlayer tp,
unsigned long *tune,
long tunePosition)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*tune Pointer to tune sequence data.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-69

tunePosition Position within tune sequence data in time units.

function result A result code.

DISCUSSION

The TuneInstant function plays the notes that are “on” at the point specified by
the tunePosition parameter. The notes are started and then left playing on
return. The notes may be silenced by calling the TuneStop function. This call is
useful for enabling user “scrubbing” on a sequence.

TunePreroll 19

The TunePreroll function prepares for playing tune player sequence data by
attempting to reserve note channels for each part in the sequence.

pascal ComponentResult TunePreroll (TunePlayer tp);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A result code.

TuneUnroll 19

The TuneUnroll function releases any note channel resources that may have
been locked down by previous calls to TunePreroll for this tune player.

pascal ComponentResult TuneUnroll (TunePlayer tp);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-70 QuickTime Music Architecture Reference

TuneGetIndexedNoteChannel 19

You can use the TuneGetIndexedNoteChannel function to determine how many
parts the tune is playing and which instrument is assigned to those parts.

pascal ComponentResult TuneGetIndexedNoteChannel(
TunePlayer tp,
short i,
NoteChannel *nc);

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

i Note channel index or 0 to get the number of parts.

*nc Allocated initialized note channel.

function result A positive value is the number of note channels used by the
tune player; a negative value is a result code.

DISCUSSION

The tune player allocates note channels that best satisfy the requested
instrument in the tune header. The application may use this call to determine
which instrument was actually used for each note channel. The
TuneGetIndexedNoteChannel function takes a tune player in the tp parameter
and returns the number of parts (1...n) allocated to the tune player. You can
then pass the function a part index and it returns, in the nc parameter, the note
channel allocated for that part.

TuneGetStatus 19

The TuneGetStatus function returns an initialized structure describing the state
of the tune player instance.

pascal ComponentResult TuneGetStatus(
TunePlayer tp,
TuneStatus *status);

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-71

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*status A pointer to an initialized tune status structure (page 19-59).

function result A result code.

TuneSetPartTranspose 19

The TuneSetPartTranspose function modifies the pitch and volume of every
note of a tune.

extern pascal ComponentResult TuneSetPartTranspose(
TunePlayer tp,
unsigned long part,
long transpose,
long velocityShift)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

part The part for which you want to change pitch and volume.

transpose A value by which to modify the pitch of the note. The value is a
small integer for semitones or an 8.8 fixed-point number for
microtones.

velocityShift
A value to add to the velocity parameter passed to the
NAPlayNote function.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-72 QuickTime Music Architecture Reference

TuneGetNoteAllocator 19

The TuneGetNoteAllocator function returns the instance of the note allocator
that the tune player is using.

extern pascal NoteAllocator TuneGetNoteAllocator (TunePlayer tp)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A note allocator or a result code.

TuneSetSofter 19

The TuneSetSofter function adjusts the volume a tune is played at to the softer
volume produced by QuickTime 2.1. Files imported with QuickTime 2.1
automatically played softer. Files imported with QuickTime 2.5 play at the new,
louder volume.

extern pascal ComponentResult TuneSetSofter(
TunePlayer tp,
long softer)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

softer A value of 1 means play at the QuickTime 2.1 volume; a value
of 0 means don’t make the volume softer.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-73

TuneSetBalance 19

Use the TuneSetBalance function to modify the pan controller setting for a tune
player.

extern pascal ComponentResult TuneSetBalance(
TunePlayer tp,
long balance)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

balance Modifies the pan controller setting. Valid values are between
–128 to 128 for left to right balance.

function result A result code.

TuneTask 19

Call the TuneTask function periodically to allow a tune player to perform tasks
it must perform at foreground task time.

extern pascal ComponentResult TuneTask (TunePlayer tp)

tp You obtain the tune player identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A result code.

DISCUSSION

Certain operations can be performed only at foreground application task time.
Specifically, the QuickTime Music Synthesizer cannot load instruments from
disk at interrupt time. As a result, embedded program changes are not
performed until TuneTask is called.

C H A P T E R 1 9

QuickTime Music Architecture

19-74 QuickTime Music Architecture Reference

Note Allocator Functions: Note Channel Allocation and Use 19

The functions described in this section create, manipulate, and get information
about note channels.

NANewNoteChannel 19

The NANewNoteChannel function requests a new note channel with the qualities
described in the noteRequest structure.

pascal ComponentResult NANewNoteChannel(
NoteAllocator ci,
NoteRequest *noteRequest,
NoteChannel *outChannel);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteRequest A pointer to a note request structure.

outChannel On exit, a pointer to an identifier for a new note channel or NIL
if the function fails to create a note channel.

function result A result code.

DISCUSSION

The caller may request an instrument that is not currently allocated to a part. In
that case, the NANewNoteChannel function may return a value in outChannel, even
though the request cannot initially be satisfied. The note channel may become
valid at a later time, as other note channels are released or other music
components are registered.

If an error occurs the note noteChannel will be initialized to NIL.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-75

NANewNoteChannelFromAtomicInstrument 19

You can use the NANewNoteChannelFromAtomicInstrument function to request a
new note channel for an atomic instrument.

extern pascal ComponentResult NANewNoteChannelFromAtomicInstrument(
NoteAllocator ci,
AtomicInstrumentPtr instrument,
long flags,
NoteChannel *outChannel)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

instrument A pointer to the atomic instrument. This may be a dereferenced
locked QT atom container.

flags These flags specify details of initializing a part with an atomic
instrument. See “Setting Atomic Instruments” on page 41.

outChannel On exit, a pointer to an identifier for a new note channel or NIL
if the function fails to create a note channel.

function result A result code.

DISCUSSION

The NANewNoteChannelFromAtomicInstrument function takes a note allocator
identifier in the ci parameter and a pointer to the atomic instrument you are
requesting a new channel for in the instrument parameter. Among other things,
you can specify how to handle the expanded sample with the flags parameter.

The function returns the note channel allocated for the instrument in the
outChannel parameter or NIL if an error occurs.

C H A P T E R 1 9

QuickTime Music Architecture

19-76 QuickTime Music Architecture Reference

NADisposeNoteChannel 19

The NADisposeNoteChannel function deletes the specified note channel.

pascal ComponentResult NADisposeNoteChannel(
NoteAllocator ci,
NoteChannel noteChannel);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to be disposed. You obtain the note channel
identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

NAGetNoteChannelInfo 19

The NAGetNoteChannelInfo function returns the index of the music component
for the allocated channel and its part number on that music component.

pascal ComponentResult NAGetNoteChannelInfo(
NoteAllocator ci,
NoteChannel noteChannel,
long *index,
long *part)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to get information about. You obtain the note
channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

*index Music component index.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-77

*part Music component part pointer.

function result A result code.

DISCUSSION

The NAGetNoteChannelInfo function allows direct access to the music
component allocated to the note channel by the note allocator. The index
returned will be invalid if music components are subsequently registered or
unregistered.

NAGetIndNoteChannel 19

The NAGetIndNoteChannel function returns the number of note channels
handled by the specified note allocator instance. It can also return a requested
note channel.

extern pascal ComponentResult NAGetIndNoteChannel(
NoteAllocator ci,
long index,
NoteChannel *nc,
long *seed)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

index The index of the note channel to get or 0 to get the total number
of note channels handled by the note allocator.

nc The note channel requested.

seed A number that changes on successive calls if anything
significant changes about a note channel—for example, if the
note channel has been reallocated or released.

function result Positive results are the index count; negative results are error
codes.

C H A P T E R 1 9

QuickTime Music Architecture

19-78 QuickTime Music Architecture Reference

DISCUSSION

To get a count of the note channels pass the NAGetIndNoteChannel function 0 in
the index parameter. To get a specific note channel, pass the index value
returned by a previous call to NAGetIndNoteChannel.

NAUseDefaultMIDIInput 19

The NAUseDefaultMIDIInput function defines an entry point to service external
MIDI device events.

pascal ComponentResult NAUseDefaultMIDIInput (
NoteAllocator ci,
MusicMIDIReadHookUPP readHook,
long refCon,
unsigned long flags)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

readHook Process pointer for MIDI service.

refcon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

flags Must contain zero.

function result A result code.

DISCUSSION

The NAUseDefaultMIDIInput function specifies an application’s procedure to
service external MIDI events. The specified application's procedure call,
defined by readHook, will be called when the external default MIDI device has
incoming MIDI data for the application.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-79

NALoseDefaultMIDIInput 19

The NALoseDefaultMIDIInput function removes the external default MIDI
service procedure call, if previously defined by NAUseDefaultMIDIInput.

pascal ComponentResult NALoseDefaultMIDIInput (NoteAllocator ci);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A result code or –1 if a default MIDI device was not in use.

NAPrerollNoteChannel 19

The NAPrerollNoteChannel function attempts to reallocate the note channel, if it
was invalid previously.

pascal ComponentResult NAPrerollNoteChannel(
NoteAllocator ci,
NoteChannel noteChannel);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to be re-allocated. You obtain the note channel
identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

DISCUSSION

The NAPrerollNoteChannel function attempts to reallocate the note channel, if it
was invalid previously. It could have been invalid if there were no available
voices on any registered music components when the note channel was created.

C H A P T E R 1 9

QuickTime Music Architecture

19-80 QuickTime Music Architecture Reference

NAUnrollNoteChannel 19

The NAUnrollNoteChannel function marks a note channel as available to be
stolen.

pascal ComponentResult NAUnrollNoteChannel(
NoteAllocator ci,
NoteChannel noteChannel);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to be unrolled. You obtain the note channel
identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

NAResetNoteChannel 19

The NAResetNoteChannel function turns off all currently “on” notes on the note
channel, and resets all controllers to their default values.

pascal ComponentResult NAResetNoteChannel(
NoteAllocator ci,
NoteChannel noteChannel);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel to reset. You obtain the note channel identifier
from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-81

DISCUSSION

The NAResetNoteChannel function resets the specified note channel by turning
“off” any note currently playing. All controllers are reset to their default state.
The effects of the NAResetNoteChannel call are propagated down to the allocated
part within the appropriate music component.

NASetNoteChannelVolume 19

The NASetNoteChannelVolume function sets the volume on the specified note
channel.

pascal ComponentResult NASetNoteChannelVolume(
NoteAllocator ci,
NoteChannel noteChannel,
Fixed volume);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel to reset. You obtain the note channel identifier
from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

volume The volume to set the channel to. The value is a fixed 16.16
number.

DISCUSSION

The NASetNoteChannelVolume function sets the volume for the note channel,
which is different than a controller 7 (volume controller) setting.

Both volume settings allow fractional values of 0.0 to 1.0. Each value will
modify the other. For example, a controller value of 0.5 and a
NASetNoteChannelVolume value of 0.5 result in a 0.25 volume level.

C H A P T E R 1 9

QuickTime Music Architecture

19-82 QuickTime Music Architecture Reference

NASetNoteChannelBalance 19

The NASetNoteChannelBalance function modifies the pan controller setting for a
note channel.

extern pascal ComponentResult NASetNoteChannelBalance(
NoteAllocator ci,
NoteChannel noteChannel,
long balance)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel to be balanced. You obtain the note channel
identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

balance Specifies how to modify the pan controller setting. Valid values
are between –128 to 128 for left to right balance.

function result A result code.

NASetNoteChannelSoundLocalization 19

The NASetNoteChannelSoundLocalization function passes sound localization
data to a note channel.

extern pascal ComponentResult NASetNoteChannelSoundLocalization(
NoteAllocator ci,
NoteChannel noteChannel,
Handle data)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-83

noteChannel The note channel to pass the data to. You obtain the note
channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

data Sound localization data.

function result A result code.

NAPlayNote 19

The NAPlayNote function plays a note with a specified pitch and velocity on the
specified note channel.

pascal ComponentResult NAPlayNote(
NoteAllocator ci,
NoteChannel noteChannel,
long pitch,
long velocity);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel to play the note. You obtain the note channel
identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

pitch The pitch at which to play the note. You can specify values as
integer pitch values (0–127 where 60 is middle C) or fractional
pitch values (256 (0x1.00) through 32767 (0x7F.FF)).

velocity The velocity with which the key is struck. A value of 0 is
silence; a value of 127 is maximum force.

function result A result code.

DISCUSSION

The NAPlayNote function plays a specific note. If the pitch is a number from 0 to
127, then it is the MIDI pitch, where 60 is middle C. If the pitch is a positive

C H A P T E R 1 9

QuickTime Music Architecture

19-84 QuickTime Music Architecture Reference

number above 65535, then the value is a fixed-point pitch value. Thus,
microtonal values may be specified. The range 256 (0x01.00) through 32767
(0x7F.FF), and all negative values, are not defined, and should not be used.

The velocity refers to how hard the key was struck (if performed on a
keyboard-instrument). Typically, this translates directly to volume, but on
many synthesizers this also subtly alters the timbre of the tone.

NASetController 19

The NASetController function changes the controller setting on a note channel
to a specified value.

pascal ComponentResult NASetController
(NoteAllocator ci,
NoteChannel noteChannel,
long controllerNumber,
long controllerValue);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel on which to change controller. You obtain the note
channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

controllerNumber
The controller to set. For valid values, see “Controller
Numbers” (page 19-33).

controllerValue
Value for controller setting, typically 0 (0x00.00) to 32767
(0x7F.FF)

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-85

NAGetKnob 19

Use the NAGetKnob function to get the value of a knob for a given note channel.

extern pascal ComponentResult NAGetKnob(
NoteAllocator ci,
NoteChannel noteChannel,
long knobNumber,
long *knobValue)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel whose knob value you want to get. You obtain
the note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

knobNumber The index or ID of the knob whose value you want to get.

knobValue On exit, the value of the knob.

function result A result code.

DISCUSSION

The NAGetKnob function takes a note allocator component identifier in the ci
parameter, a note channel identifier in the noteChannel parameter, and the knob
index or ID in the knobNumber parameter. It returns, in the knobValue parameter,
a pointer to the current value of the knob.

C H A P T E R 1 9

QuickTime Music Architecture

19-86 QuickTime Music Architecture Reference

NASetKnob 19

The NASetKnob function sets a note channel knob to a particular value.

pascal ComponentResult NASetKnob(
NoteAllocator ci,
NoteChannel noteChannel,
long knobNumber,
long knobValue)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel on which to set the knob value. You obtain the
note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

knobNumber Index or ID of the knob to be set.

knobValue Value to set knob to.

function result A result code.

DISCUSSION

The NASetKnob function takes a note allocator component identifier in the ci
parameter, a note channel identifier in the noteChannel parameter, the knob ID
or index in the knobNumber parameter, and a knob value in the knobValue
parameter. It sets the specified knob to the given value.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-87

NAFindNoteChannelTone 19

The NAFindNoteChannelTone function locates the instrument that best fits a
requested tone description for a specific channel.

pascal ComponentResult NAFindNoteChannelTone(
NoteAllocator ci,
NoteChannel noteChannel,
ToneDescription *td,
long *instrumentNumber);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel for which you want an instrument. You obtain
the note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

*td Description for instrument fit.

*instrumentNumber
On exit, the number of the instrument that best fits the tone
description.

function result A result code.

NASetInstrumentNumber 19

The NASetInstrumentNumber function initializes a synthesizer part with the
specified instrument.

pascal ComponentResult NASetInstrumentNumber(
NoteAllocator ci,
NoteChannel noteChannel,
short instrumentNumber);

C H A P T E R 1 9

QuickTime Music Architecture

19-88 QuickTime Music Architecture Reference

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to initialize with the instrument. You obtain the
note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

instrumentNumber
Number of the instrument to initialize the part with. This
number is unique to each synthesizer. General MIDI
synthesizers all share the range 1–128 and 16365 to
kLastDrumKit.

function result A result code.

NASetInstrumentNumberInterruptSafe 19

You can use the NASetInstrumentNumberInterruptSafe function to initialize a
synthesizer part with the specified instrument during interrupt time.

extern pascal ComponentResult NASetInstrumentNumberInterruptSafe(
NoteAllocator ci,
NoteChannel noteChannel,
long instrumentNumber);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel Note channel to initialize with the instrument. You obtain the
note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

instrumentNumber
Number of the instrument to initialize the part with.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-89

DISCUSSION

If the instrument is not already loaded when you call the
NASetInstrumentNumberInterruptSafe function, you have to wait for the next
call to the NATask function for the instrument to become available.

NASetAtomicInstrument 19

The NASetAtomicInstrument function initializes a synthesizer part with an
atomic instrument.

extern pascal ComponentResult NASetAtomicInstrument(
NoteAllocator ci,
NoteChannel noteChannel,
AtomicInstrumentPtr instrument,
long flags)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel to apply the atomic instrument to. You obtain
the note channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

instrument A pointer to the atomic instrument. This can be a locked,
dereferenced atomic instrument.

flags Details about how to initialize the part. For a description of the
flags, see “Setting Atomic Instruments” (page 19-41).

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-90 QuickTime Music Architecture Reference

NASendMIDI 19

Use the NASendMIDI function to send a MIDI music packet to a synthesizer that
contains a specific note channel.

extern pascal ComponentResult NASendMIDI(
NoteAllocator ci,
NoteChannel noteChannel,
MusicMIDIPacket *mp)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The function sends the packet to the synthesizer that contains
this note channel. You obtain the note channel identifier from
the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

mp The music packet to be sent.

function result A result code.

DISCUSSION

The NASendMIDI function sends the MIDI music packet pointed to by the mp
parameter to the synthesizer that contains the note channel identified by the
noteChannel parameter. The ci parameter specifies the note allocator instance to
use.

NAGetNoteRequest 19

The NAGetNoteRequest function gets the note request passed to a note channel.

extern pascal ComponentResult NAGetNoteRequest(
NoteAllocator ci,
NoteChannel noteChannel,
NoteRequest *nrOut)

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-91

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

noteChannel The note channel whose note request you want to get. You
obtain the note channel identifier from the NANewNoteChannel or
the NANewNoteChannelFromAtomicInstrument function.

nrOut On exit, a note request structure (page 19-59).

function result A result code.

DISCUSSION

The NAGetNoteRequest function takes a note allocator instance in the ci
parameter and a note channel identifier in the noteChannel parameter. It
returns, in the *nrOut parameter, the note request that was used to allocate the
specified note channel.

Note Allocator Functions: Miscellaneous Interface Tools 19

The functions in this section provide a user interface for instrument selection
and presenting copyright information.

NAPickInstrument 19

The NAPickInstrument function presents a user interface for picking an
instrument.

pascal ComponentResult NAPickInstrument(
NoteAllocator ci,
ModalFilterUPP filterProc,
StringPtr prompt,
ToneDescription *sd,
unsigned long flags,
long refCon,
long reserved1,
long reserved2)

C H A P T E R 1 9

QuickTime Music Architecture

19-92 QuickTime Music Architecture Reference

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

filterProc Standard modal filter UPP*.

prompt Dialog box prompt “New Instrument”.

*sd On entry, the tone description of the instrument that appears in
the picker dialog. On exit, a tone description of the instrument
the user selected.

flags Determines whether to display the picker dialog and what
instruments appear for selection. See “Pick Instrument Flags”
(page 19-44).

refcon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

reserved1 Must contain zero.

reserved2 Must contain zero.

function result A result code or –1 if there is a problem opening the dialog box.

DISCUSSION

The flags values limit which instruments appear within the dialog box. If the
kPickDontMix flag is set, the dialog does not display a mix of synthesizer part
types. For example, if the current instrument is a drum, only available drums
appear in the dialog. The kPickSameSynth flag allows selections only within the
current synthesizer. The kPickUserInsts flag allows user modifiable
instruments to appear.

SEE ALSO

NAPickEditInstrument function

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-93

NAPickEditInstrument 19

The NAPickEditInstrument function presents a user interface for changing the
instrument in a live note channel or modifying an atomic instrument.

extern pascal ComponentResult NAPickEditInstrument(
NoteAllocator ci,
ModalFilterUPP filterProc,
StringPtr prompt,
long refCon,
NoteChannel nc,
AtomicInstrument ai,
long flags)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

filterProc Standard modal filter UPP*.

prompt Dialog box prompt “New Instrument”.

refCon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

nc The live note channel that appears in the dialog. If you specify a
note channel, set the ai parameter to 0. You obtain the note
channel identifier from the NANewNoteChannel or the
NANewNoteChannelFromAtomicInstrument function.

ai The atomic instrument that appears in the dialog. If you specify
an atomic instrument, set the nc parameter to 0. You obtain the
atomic instrument from the InstrumentGetInst function.

flags Flags limiting the instruments presented. See “Pick Instrument
Flags” (page 19-44)

function result A result code or –1 if there is a problem opening the dialog.

C H A P T E R 1 9

QuickTime Music Architecture

19-94 QuickTime Music Architecture Reference

DISCUSSION

The flags values limit which instruments appear within the dialog box. If the
kPickDontMix flag is set, the dialog does not display a mix of synthesizer part
types. For example, if the current instrument is a drum, only available drums
appear in the dialog. The kPickSameSynth flag allows selections only within the
current synthesizer. The kPickUserInsts flag allows user modifiable
instruments to appear. If the kPickEditAllowPick flag is not set, no dialog
appears.

SEE ALSO

NAPickInstrument function

NAStuffToneDescription 19

The NAStuffToneDescription function initializes a tone description structure
with the details of a General MIDI note channel.

pascal ComponentResult NAStuffToneDescription(
NoteAllocator ci,
long gmNumber,
ToneDescription *td)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

gmNumber A General MIDI instrument number.

*td On exit, an initialized tone description. The instrument name
field will be filled in with the string name for the instrument.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-95

NAPickArrangement 19

The NAPickArrangement function displays a dialog to allow instrument selection.

pascal ComponentResult NAPickArrangement(
NoteAllocator ci,
ModalFilterUPP filterProc,
StringPtr prompt,
long zero1,
long zero2,
Track t,
StringPtr songName)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

filterProc Standard modal filter upp*.

prompt Dialog box prompt.

zero1 Must be 0.

zero2 Must be 0.

t Arrangement movie track number.

songName Name of song to display in dialog.

function result A result code or –1 if there is a problem opening the dialog.

NACopyrightDialog 19

The NACopyrightDialog function displays a copyright dialog with information
specific to a music device.

pascal ComponentResult NACopyrightDialog(
NoteAllocator ci,
PicHandle p,
StringPtr author,
StringPtr copyright,

C H A P T E R 1 9

QuickTime Music Architecture

19-96 QuickTime Music Architecture Reference

StringPtr other,
StringPtr title,
ModalFilterUPP filterProc,
long refCon)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

p Picture image resource handle for dialog.

author Author information.

copyright Copyright information.

other Any additional information.

title Title information.

filterProc Standard modal filter UPP*.

refcon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

function result A result code or –1 if there is a problem opening the dialog.

Note Allocator Functions: System Configuration and Utility 19

Use the functions in this section to create and maintain a database of music
components, to save configuration information in the QuickTime Preferences
file, to establish connections to external MIDI devices, and to allow the note
allocator to perform necessary tasks at task foreground time.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-97

NARegisterMusicDevice 19

The NARegisterMusicDevice function registers a music component with the note
allocator.

pascal ComponentResult NARegisterMusicDevice(
NoteAllocator ci,
OSType synthType,
Str31 name,
SynthesizerConnections *connections);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

synthType Subtype of the music component.

name The synthesizer name.

*connections A synthesizer connections for MIDI devices structure
(page 19-57).

function result A result code.

DISCUSSION

The value of the synthType parameter is the music component’s subtype. The
name parameter provides a means of distinguishing multiple instances of the
same type of device and is a string that can be displayed to the user. If no value
is passed in the name parameter, the name defaults to the name of the music
component type. The name appears in the instrument picker dialog.

The connections parameter specifies the hardware connections to the device.

C H A P T E R 1 9

QuickTime Music Architecture

19-98 QuickTime Music Architecture Reference

RESULT CODES

NAUnregisterMusicDevice 19

The NAUnregisterMusicDevice function removes a previously registered music
component from the note allocator.

pascal ComponentResult NAUnregisterMusicDevice(
NoteAllocator ci,
long index;

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

index Synthesizer to unregister. The value is 1 through the registered
music component count returned by the
NAGetRegisteredMusicDevice function (page 19-98).

function result A result code. In addition to quickTime Music Architecture
result codes, this function may return a result code from the
CloseComponent function.

NAGetRegisteredMusicDevice 19

The NAGetRegisteredMusicDevice function returns specifics about music
components registered to the specified note allocator instance.

pascal ComponentResult NAGetRegisteredMusicDevice(
NoteAllocator ci,
long index,
OSType *synthType,

SynthesizerErr If too many synthesizers registered.
midiManagerAbsentErr If MIDI not available.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-99

Str31 name,
SynthesizerConnections *connections,
MusicComponent *mc);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

index The index of the music component to get information about or 0
to get the total number of music components registered with
the note allocator.

*synthType Synthesizer type.

name Synthesizer name as a text string.

*connections A synthesizer connections for MIDI devices structure
(page 19-57).

*mc Music component instance identifier.

function result Positive values are the number of music components registered
with the note allocator; negative values are result codes.

DISCUSSION

To get a count of the registered music components pass the
NAGetRegisteredMusicDevice function 0 in the index parameter. The return
value is the count of components. To get information about one of the music
components registered with the note allocator, pass the music component index
in the index parameter. The index value can be 1 through the number of
registered components returned by a previous call to
NAGetRegisteredMusicDevice.

If you request information about a specific registered music component, the
NAGetRegisteredMusicDevice function returns the type of synthesizer the
component supports in the synthType parameter, the name of the synthesizer in
the name parameter, and the music component identifier in the mc parameter.
For MIDI devices, it returns a pointer to a MIDI devices structure with
information about the synthesizer connections.

C H A P T E R 1 9

QuickTime Music Architecture

19-100 QuickTime Music Architecture Reference

NAGetDefaultMIDIInput 19

The NASGetDefaultMIDIInput function is used to obtain external MIDI
connection information.

pascal ComponentResult NAGetDefaultMIDIInput(
NoteAllocator ci,
SynthesizerConnections *sc);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*sc On exit, a synthesizer connections for MIDI devices structure
(page 19-57).

DISCUSSION

The NASGetDefaultMIDIInput function returns an initialized
SynthesizerConnections structure containing information about the external
MIDI device attached to the system that has been selected as the default MIDI
input device. The external MIDI device provides note input directly to the note
allocator.

function result A result code.

NASetDefaultMIDIInput 19

The NASetDefaultMIDIInput function initializes an external MIDI device used to
receive external note input.

pascal ComponentResult NASetDefaultMIDIInput(
NoteAllocator ci,
SynthesizerConnections *sc);

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-101

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

*sc A synthesizer connections for MIDI devices structure
(page 19-57).

DISCUSSION

The SynthesizerConnections structure fields clientID, inputPortID, and
outputPortID are MIDI Manager identifiers. The MIDIChannel field is the MIDI
system channel value.

function result A result code.

NAGetMIDIPorts 19

The NAGetMIDIPorts function gets the MIDI input and output ports available to
a note allocator.

extern pascal ComponentResult NAGetMIDIPorts(
NoteAllocator ci,
Handle *inputPorts,
Handle *outputPorts)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

inputPorts On exit, a handle giving the number of input ports (the first two
bytes) followed by a list of QuickTime MIDI port structures
(page 19-58).

outputPorts On exit, a handle giving the number of output ports (the first
two bytes) followed by a list of QuickTime MIDI port structures
(page 19-58).

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-102 QuickTime Music Architecture Reference

NASaveMusicConfiguration 19

The NASaveMusicConfiguration saves the current list of registered devices to a
file.

pascal ComponentResult NASaveMusicConfiguration (NoteAllocator ci);

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

DISCUSSION

The NASaveMusicConfiguration saves the current list of registered devices to a
file. This file is read whenever a note allocator connection is opened, restoring
the previously configured list of devices. The list is saved in the QuickTime
Preferences file.

function result A result code or –1 if there is a problem opening or creating the
QuickTime Preferences file.

NATask 19

Call the NATask function periodically to allow the note allocator to perform
tasks in foreground task time.

extern pascal ComponentResult NATask (NoteAllocator ci)

ci You obtain the note allocator identifier from the Component
Manager’s OpenComponent function. See the chapter
“Component Manager” in Inside Macintosh: More Macintosh
Toolbox for details.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-103

DISCUSSION

The NATask function calls each registered music component’s MusicTask
function.

Music Component Functions: Synthesizer 19

The functions in this section obtain specific information about a synthesizer
and obtain a best instrument fit for a requested tone from the available
instruments within the synthesizer; play a note with a specified pitch, volume,
and duration; get and set a particular synthesizer knob; obtain synthesizer
knob information; and get and set external MIDI procedure name entry points.

MusicGetDescription 19

The MusicGetDescription function returns a structure describing the
synthesizer controlled by the music component device.

pascal ComponentResult MusicGetDescription(
MusicComponent mc,
SynthesizerDescription *sd);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

*sd Pointer to synthesizer description structure (page 19-48).

function result A result code.

DISCUSSION

The MusicGetDescription function returns a structure describing the specified
music component device. The SynthesizerDescription record is filled out by
the particular music component.

C H A P T E R 1 9

QuickTime Music Architecture

19-104 QuickTime Music Architecture Reference

MusicFindTone 19

The MusicFindTone function returns an instrument number based on a tone
description.

pascal ComponentResult MusicFindTone(
MusicComponent mc,
ToneDescription *td,
long *instrumentNumber,
long *fit);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

*td Pointer to a tone description structure (page 19-50).

*instrumentNumber
On exit, contains the number of the best-matching instrument.
Only General MIDI numbers are guaranteed to be the same for
later instantiations of the component.

*fit On exit, indicates how well an instrument matches the tone
description. For valid values, see “Tone Fit Flags” (page 19-36).

function result A result code.

DISCUSSION

The MusicFindTone function returns the best-matching instrument number for
this device. How close a match was attained is returned in “fit”.

The music component should search in the following order:

1. If the synthesizer is a General MIDI device, use the gmNumber.

2. If synthesizerType matches, first try to match instrumentName, else try
instrumentNumber. Failing that, try the gmNumber.

3. If synthesizerType doesn’t match, try the instrumentName, then the
instrument number.

If none of these rules apply, or the fields are “blank” (zero for the type or
numeric fields, or zero-length for the strings) then the call returns instrument 1
and a fit value of zero. The synthesizerName field may be ignored by the

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-105

component; it is used by the note allocator when deciding which music device
to use.

MusicPlayNote 19

The MusicPlayNote function plays a note on a specified part at a specified pitch
and velocity.

pascal ComponentResult MusicPlayNote(
MusicComponent mc,
long part,
long pitch,
long velocity);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The part to play the note on.

pitch The pitch at which to play the note. Values are 0–127 for MIDI
pitch or greater than 65535 for microtonal values.

velocity How hard to strike the key. Values are 0–127 where 0 is silence.

function result A result code.

DISCUSSION

The MusicPlayNote function is used to play notes by their pitch. If the pitch is
specified by a number from 0 to 127, it is a MIDI pitch, where 60 is middle-C. If
the pitch is a positive number above 65535, the value is a fixed-point pitch
value. Thus, microtonal values may be specified.

Velocity refers to how hard the key is struck (if performed on a
keyboard-instrument), typically this translates directly to volume, but on many
synthesizers this also subtly alters the timbre of the tone.

The current note continues to play until a MusicPlayNote with the same pitch
and velocity of 0 turns the note off.

C H A P T E R 1 9

QuickTime Music Architecture

19-106 QuickTime Music Architecture Reference

MusicGetKnob 19

The MusicGetKnob function returns the value of the specified global synthesizer
knob. A global knob controls an aspect of the entire synthesizer. It is not
specific to a part within the synthesizer.

pascal ComponentResult MusicGetKnob(
MusicComponent mc,
long knobNumber);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

knobNumber Knob index or ID.

function result A result code.

MusicSetKnob 19

The MusicSetKnob function modifies the value of the specified global
synthesizer knob. A global knob controls an aspect of the entire synthesizer. It
is not limited to a part within the synthesizer.

pascal ComponentResult MusicSetKnob(
MusicComponent mc,
long knobNumber,
long knobValue);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

knobNumber Knob index or ID.

knobValue Value for specified knob.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-107

MusicGetKnobDescription 19

The MusicGetKnobDescription function returns a pointer to an initialized knob
description structure describing a global synthesizer knob. A global knob
controls an aspect of the entire synthesizer; it is not limited to a part within the
synthesizer.

 pascal ComponentResult MusicGetKnobDescription(
MusicComponent mc,
long knobNumber,
KnobDescription *mkd);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

knobNumber Knob index or ID.

*mkd Pointer to a knob description structure (page 19-51).

function result A result code.

DISCUSSION

The initialized KnobDescription structure provides the application default
values associated with the particular knob. You can use the information
returned by a call to the MusicGetKnobDescription function to reset a knob to
some known, usable value.

MusicGetInstrumentKnobDescription 19

The MusicGetInstrumentKnobDescription function gets the description of an
instrument knob.

extern pascal ComponentResult MusicGetInstrumentKnobDescription(
MusicComponent mc,
long knobIndex,
KnobDescription *mkd)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

C H A P T E R 1 9

QuickTime Music Architecture

19-108 QuickTime Music Architecture Reference

knobIndex A knob index or knob ID.

mkd On exit, a knob description record (page 19-51).

function result A result code.

DISCUSSION

The MusicGetInstrumentKnobDescription function takes a music component
instance identifier in the mc parameter and a knob index or knob ID in the
knobIndex parameter. It returns a knob description record in the *mkd parameter.

MusicGetDrumKnobDescription 19

The MusicGetDrumKnobDescription function returns a description of a drum kit
knob.

extern pascal ComponentResult MusicGetDrumKnobDescription(
MusicComponent mc,
long knobIndex,
KnobDescription *mkd)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

knobIndex A knob index or knob ID.

*mkd A pointer to a knob description record (page 19-51).

function result A result code.

DISCUSSION

The MusicGetDrumKnobDescription function takes a music component in the mc
parameter and a knob index or knob ID in the knobIndex parameter. It returns a
knob description record in the *mkd parameter.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-109

MusicGetKnobSettingStrings 19

The MusicGetKnobSettingStrings function returns a list of knob setting names
known by the specified music component.

extern pascal ComponentResult MusicGetKnobSettingStrings(
MusicComponent mc,
long knobIndex,
long isGlobal,
Handle *settingsNames,
Handle *settingsCategoryLasts,
Handle *settingsCategoryNames)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

knobIndex The knob index or knob ID.

isGlobal If a knob index is used, indicates whether the specified knob is
a global knob.

settingsNames
The requested list of knob setting strings formatted as a short
followed by packed strings.

settingsCategoryLasts
A handle containing a group of short integers, the first of which
contains the number of shorts to follow.

settingsCategoryNames
Knob setting category names formatted as a short followed by a
list of names.

function result A result code.

Note
All handles must be disposed of by the caller.

C H A P T E R 1 9

QuickTime Music Architecture

19-110 QuickTime Music Architecture Reference

MusicSetMIDIProc 19

The MusicSetMIDIProc function tells the music component what procedure to
call when it needs to send MIDI data. This call is implemented only by a music
component for a MIDI synthesizer.

pascal ComponentResult MusicSetMIDIProc(
MusicComponent mc,
MusicMIDISendProcPtr MIDISendProc,
long refCon);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

MIDISendProc A pointer to the procedure to use when sending MIDI data.

refcon Contains a reference constant value. The Movie Toolbox passes
this reference constant to your error-notification function each
time it calls your function.

function result A result code.

MusicGetMIDIProc 19

The MusicGetMIDIProc function returns a pointer to the procedure a music
component is using to process external MIDI notes.

pascal ComponentResult MusicGetMIDIProc(
MusicComponent mc,
MusicMIDISendProcPtr *MIDISendProc,
long *refCon);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

*MIDISendProc
Pointer to a MIDI serial port call.

*refcon Contains a reference constant. The Movie Toolbox passes this
reference constant to your error-notification function each time
it calls your function.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-111

function result A result code.

DISCUSSION

The MusicGetMIDIProc function returns, in the *MIDISendProc parameter, a
pointer to the function that processes external MIDI notes. This function was
set by a previous call to the MusicSetMIDIProc function. If no function has been
set with the MusicSetMIDIProc function, MusicGetMIDIProc returns zero in the
*MIDISendProc parameter.

MusicGetMIDIPorts 19

The MusicGetMIDIPorts function returns the number of input and output ports a
MIDI device has.

extern pascal ComponentResult MusicGetMIDIPorts(
MusicComponent mc,
long *inputPortCount,
long *outputPortCount)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

inputPortCount
On exit, the number of input MIDI ports available to the music
component.

outputPortCount
On exit, the number of output MIDI ports available to the music
component.

function result A result code.

DISCUSSION

The function takes a music component identifier in the mc parameter and
returns, in the inputPortCount and outputPortCount parameters, the number of
MIDI input and output ports available to the music component.

C H A P T E R 1 9

QuickTime Music Architecture

19-112 QuickTime Music Architecture Reference

This call is implemented only for a hardware synthesizer, such as a NuBus or
PCI card device.

MusicSendMIDI 19

Use the MusicSendMIDI function to send a MIDI packet to a specified port.

extern pascal ComponentResult MusicSendMIDI(
MusicComponent mc,
long portIndex,
MusicMIDIPacket *mp)

mc Music component instance returned by
NAGetRegisteredMusicDevice.

portIndex The index of the port to send the MIDI packet to. The index
value is 1 through the port count returned by the
MusicGetMIDIPorts function.

mp The music MIDI packet to be sent.

function result A result code.

DISCUSSION

The MusicSendMIDI function takes a music component in the mc parameter and a
port index in the portIndex parameter. It sends the MIDI music packet specified
by the *mp parameter to the specified port.

This call is implemented only for a hardware synthesizer, such as a NuBus or
PCI card device.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-113

MusicGetDeviceConnection 19

You can use the MusicGetDeviceConnection function to find out how many
hardware synthesizers are available to a music component and to get the IDs
for those devices.

extern pascal ComponentResult MusicGetDeviceConnection(
MusicComponent mc,
long index,
long *id1,
long *id2)

mc Music component returned by NAGetRegisteredMusicDevice.

index Index of the device for which you want to find out the IDs. Set
to 0 if you are calling to get the number of hardware devices.

id1 On exit, a hardware synthesizer ID.

id2 On exit, another hardware synthesizer ID.

function result A result code.

DISCUSSION

To get the number of hardware synthesizers available to the music component
specified in the mc parameter and an index you can use to request ID numbers
for a specific device, call the MusicGetDeviceConnection function with a value of
0 for the index parameter. You can then pass an index value in the index
parameter, and the function returns hardware synthesizer IDs in the *id1 and
*id2 parameters.

This call is implemented only for a hardware synthesizer, such as a NuBus or
PCI card device.

C H A P T E R 1 9

QuickTime Music Architecture

19-114 QuickTime Music Architecture Reference

MusicUseDeviceConnection 19

The MusicUseDeviceConnection function tells a music component which
hardware synthesizer to talk to.

extern pascal ComponentResult MusicUseDeviceConnection(
MusicComponent mc,
long id1,
long id2)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

id1 The ID of the device returned in the *id1 parameter of the
MusicGetDeviceConnection function.

id2 The ID of the device returned in the *id2 parameter of the
MusicGetDeviceConnection function.

function result A result code.

DISCUSSION

This call is implemented only for a hardware synthesizer, such as a NuBus or
PCI card device.

Music Component Functions: Instruments and Parts 19

The functions described in this section initialize a part with an instrument,
store instruments, list available instruments, manipulate parts, and get
information about parts.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-115

MusicGetPartInstrumentNumber 19

The MusicGetPartInstrumentNumber function returns the instrument number
currently assigned to that part.

pascal ComponentResult MusicGetPartInstrumentNumber(
MusicComponent mc,
long part);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part number containing instrument.

function result A positive return value is the instrument number; a negative
value is a result code.

MusicSetPartInstrumentNumber 19

The MusicSetPartInstrumentNumber function initializes a part with a particular
instrument.

pascal ComponentResult MusicSetPartInstrumentNumber(
MusicComponent mc,
long part,
long instrumentNumber);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part to be initialized.

instrumentNumber
Number of instrument to initialize part with.

function result A result code.

DISCUSSION

You can use the MusicFindTone function (page 19-104) to find out an instrument
number.

C H A P T E R 1 9

QuickTime Music Architecture

19-116 QuickTime Music Architecture Reference

MusicGetPartAtomicInstrument 19

The MusicGetPartAtomicInstrument function returns the atomic instrument
currently in a part.

extern pascal ComponentResult MusicGetPartAtomicInstrument(
MusicComponent mc,
long part,
AtomicInstrument *ai,
long flags)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The part with the atomic instrument.

ai On exit, an atomic instrument.

flags Specify what pieces of information about an atomic instrument
the caller is interested in. See “Atomic Instrument Information
Flags” on page 40.

function result A result code.

MusicSetPartAtomicInstrument 19

The MusicSetPartAtomicInstrument function initializes a part with an atomic
instrument.

extern pascal ComponentResult MusicSetPartAtomicInstrument(
MusicComponent mc,
long part,
AtomicInstrumentPtr aiP,
long flags)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The part to initialize with the atomic instrument to.

aiP The atomic instrument.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-117

flags These flags specify details of initializing a part with an atomic
instrument. See “Setting Atomic Instruments” on page 41.

function result A result code.

MusicStorePartInstrument 19

The MusicStorePartInstrument function puts whatever instrument is on the
specified part into the synthesizer’s instrument store. This enables you to store
modified instruments.

pascal ComponentResult MusicStorePartInstrument(
MusicComponent mc,
long part,
long instrumentNumber);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part containing the instrument to be stored.

instrumentNumber
Instrument number at which to store the part.

function result A result code.

DISCUSSION

The value of the InstrumentNumber parameter must be between 1 and the
synthesizer’s modifiable instrument count, as defined by the
modifiableInstrumentCount field of the synthesizer’s description record.

C H A P T E R 1 9

QuickTime Music Architecture

19-118 QuickTime Music Architecture Reference

MusicGetInstrumentAboutInfo 19

The MusicGetInstrumentAboutInfo function gets the information about an
instrument that appears in its About box.

pascal ComponentResult MusicGetInstrumentAboutInfo(
MusicComponent mc,long part,
InstrumentAboutInfo *iai);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Number of the part containing the instrument for which you
want information.

*iai On exit, a pointer to an instrument About information structure
(page 19-52) for the instrument currently on the specified
synthesizer part.

MusicGetInstrumentInfo 19

The MusicGetInstrumentInfo function gets a list of instruments supported by a
synthesizer. It also gets the names of the instruments.

extern pascal ComponentResult MusicGetInstrumentInfo(
MusicComponent mc,
long getInstrumentNamesFlags,
InstrumentInfoListHandle *infoListH)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

getInstrumentNamesFlags
Use these flags to specify whether you want a list of fixed
instruments, modifiable instruments, or all instruments. See
“Instrument Info Flags” (page 19-41).

infoListH On exit, the list of instruments (page 19-53).

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-119

Note
This handle must be disposed of by the caller.

DISCUSSION

The functions takes a music component in the mc parameter and instructions
regarding which types of instruments to get information for in the flags
parameter. It returns a handle to an instrument information list in the
*infoListH parameter.

MusicGetPart 19

The MusicGetPart function returns the MIDI channel and maximum polyphony
for a particular part in the *MIDIChannel and *polyphony parameters.

pascal ComponentResult MusicGetPart(
MusicComponent mc,
long part,
long *MIDIChannel,
long *polyphony)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The music component part requested.

*MIDIChannel Pointer to long for MIDIChannel result.

*polyphony Pointer to long for polyphony result.

function result A result code.

DISCUSSION

For non-MIDI devices, the MIDI channel pointed to by the MIDIChannel
parameter is 0.

C H A P T E R 1 9

QuickTime Music Architecture

19-120 QuickTime Music Architecture Reference

MusicSetPart 19

The MusicSetPart function sets the MIDI channel and maximum polyphony for
the specified part to the values in the MIDIChannel and polyphony parameters.

pascal ComponentResult MusicSetPart(
MusicComponent mc,
long part,
long MIDIChannel,
long polyphony)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part whose MIDI channel and polyphony are to be set.

MIDIChannel The MIDI channel to set the part to.

polyphony The maximum voices or polyphony for the part.

function result A result code.

DISCUSSION

For non-MIDI devices, set the MIDI channel pointed to by the MIDIChannel
parameter to 0.

MusicGetPartName 19

The MusicGetPartName function returns the string name of a part.

pascal ComponentResult MusicGetPartName(
MusicComponent mc,
long part,
Str31 name);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part to get name of.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-121

name On exit, the string containing the part name.

function result A result code.

DISCUSSION

The name string is used by selection dialogs or configuration information.

MusicSetPartName 19

You can use the MusicSetPartName function to change the name of an
instrument in a specified part. For example, you might want to change the
name of a modified instrument before saving it.

pascal ComponentResult MusicSetPartName(
MusicComponent mc,
long part,
Str31 name);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part to apply name to.

name Name to apply to part.

function result A result code.

DISCUSSION

The instrument name string is used by selection dialogs or in configuration
information.

C H A P T E R 1 9

QuickTime Music Architecture

19-122 QuickTime Music Architecture Reference

MusicGetPartKnob 19

The MusicGetPartKnob function gets the current value of a knob for a part.

pascal ComponentResult MusicGetPartKnob(
MusicComponent mc,
long part,
long knobNumber);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The part number.

knobNumber The knob index or ID.

function result Positive or negative integers are knob values. Result codes are
returned as 0x8000xxxx, where xxxx is the result code.

MusicSetPartKnob 19

The MusicSetPartKnob function sets a knob for a specified part.

pascal ComponentResult MusicSetPartKnob(
MusicComponent mc,
long part,
long knobNumber,
long knobValue);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The part number.

knobNumber The index or ID of the knob to be set.

knobValue The value to set the knob to.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-123

MusicResetPart 19

The MusicResetPart function silences all sounds on the specified part, and
resets all controllers on that part to their default values. The default value is
zero for all controllers except volume. Volume is set to its maximum 32767 or,
in hexadecimal, 7F.FF.

pascal ComponentResult MusicResetPart(
MusicComponent mc,
long Part);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part The number of the part.

function result A result code.

MusicGetPartController 19

The MusicGetPartController function returns the value of the specified
controller on the specified part.

pascal ComponentResult MusicGetPartController(
MusicComponent mc,
long part,
long controllerNumber);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part whose controller value you want to get.

controllerNumber
Controller number.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-124 QuickTime Music Architecture Reference

MusicSetPartController 19

The MusicSetPartController function initializes the value of the specified
controller on the specified part.

pascal ComponentResult MusicSetPartController(
MusicComponent mc,
long part,
long controllerNumber,
long controllerValue);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

part Part to apply controller to.

controllerNumber
Controller number. For valid values see “Controller Numbers”
(page 19-33).

controllerValue
Value for controller.

function result A result code.

MusicSetPartSoundLocalization 19

The MusicSetPartSoundLocalization function passes sound localization data to
a specified synthesizer part.

extern pascal ComponentResult MusicSetPartSoundLocalization(
MusicComponent mc,
long part,
Handle data)

mc Music component instance identifier.

part The part to pass the data to.

data The sound localization data.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-125

Music Component Functions: Miscellaneous 19

Use the functions described in this section to get and modify the master tuning
of the synthesizer, to play off-line, and to allow the music component to
perform tasks it must perform at foreground task time.

MusicGetMasterTune 19

The MusicGetMasterTune function returns a fixed-point value in semitones,
which is the synthesizer’s master tuning.

pascal ComponentResult MusicGetMasterTune (MusicComponent mc);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

function result The function returns a positive value representing the
synthesizer’s master tuning or a negative result code.

MusicSetMasterTune 19

The MusicSetMasterTune function alters the synthesizer’s master tuning.

pascal ComponentResult MusicSetMasterTune(
MusicComponent mc,
Fixed masterTune);

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

masterTune The amount by which to transpose the entire synthesizer in
pitch. The value is a fixed 16.16 number that allows shifts by
fractional values.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-126 QuickTime Music Architecture Reference

MusicStartOffline 19

The MusicStartOffline function informs the QuickTime music synthesizer that
the music will not be played through the speakers. Instead, audio data will be
sent to a function that will create a sound file to be played back later.

extern pascal ComponentResult MusicStartOffline(
MusicComponent mc,
unsigned long *numChannels,
UnsignedFixed *sampleRate,
unsigned short *sampleSize,
MusicOfflineDataUPP dataProc,
long dataProcRefCon)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

numChannels Number of channels in the music sample. 1 indicates monaural;
2 indicates stereo.

sampleRate The number of samples per second.

sampleSize The size of the music sample: 8-bit or 16-bit.

dataProc A function to handle the audio data.

dataProcRefCon
A reference constant to pass to the dataProc function.

function result A result code.

DISCUSSION

You pass the MusicStartOffline function the requested values for the
numChannels, sampleRate, and sampleSize parameters. When the function
returns, those parameters contain the actual values used.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-127

MusicSetOfflineTimeTo 19

The MusicSetOfflineTimeTo function advances the synthesizer clock when the
synthesizer is not running in real time (due to a call to MusicStartOffline).

extern pascal ComponentResult MusicSetOfflineTimeTo(
MusicComponent mc,
long newTimeStamp)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

newTimeStamp The number of samples to synthesize.

function result A result code.

DISCUSSION

Setting the time generates audio output from the synthesizer.

MusicTask 19

Call the MusicTask function periodically to allow a music component to
perform tasks it must perform at foreground task time.

extern pascal ComponentResult MusicTask (MusicComponent mc)

mc Music component instance identifier returned by
NAGetRegisteredMusicDevice.

function result A result code.

DISCUSSION

In the case of the QuickTime Music Synthesizer, instruments cannot be loaded
from disk at interrupt time, so if the NASetInstrumentNumberInterruptSafe
function is called, the instrument is loaded during the next MusicTask call.

C H A P T E R 1 9

QuickTime Music Architecture

19-128 QuickTime Music Architecture Reference

Instrument Component Functions 19

This section describes functions that are implemented by instrument
components.

InstrumentGetInfo 19

The InstrumentGetInfo function returns information about all the atomic
instruments supported by an instrument component.

extern pascal ComponentResult InstrumentGetInfo(
ComponentInstance ci,
InstCompInfoHandle *instInfo)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

instInfo On exit, an instrument information list (page 19-56).

function result A result code.

InstrumentGetInst 19

The InstrumentGetInst function returns an atomic instrument.

extern pascal ComponentResult InstrumentGetInst(
ComponentInstance ci,
long instID,
AtomicInstrument *atomicInst,
long flags)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-129

instID The instrument component instrument ID from the information
list structure returned by the InstrumentGetInfo function.

atomicInst On exit, the atomic instrument.

flags Specify what pieces of information about an atomic instrument
the caller is interested in. See “Atomic Instrument Information
Flags” on page 40.

function result A result code.

InstrumentInitialize 19

Used by developers of instrument components, this is a call the instrument
component makes to the base class instrument component to tell it how to
interpret the instrument component resources.

extern pascal ComponentResult InstrumentInitialize(
ComponentInstance ci,
long initFormat,
void *initParams)

ci An instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

initFormat Set to zero.

initParams Set to NULL.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-130 QuickTime Music Architecture Reference

InstrumentOpenComponentResFile 19

The InstrumentOpenComponentResFile function opens the resource file
containing the instruments in the instrument component and makes it the
current resource file.

extern pascal ComponentResult InstrumentOpenComponentResFile(
ComponentInstance ci,
short *resFile)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

resFile On exit, a resource reference.

function result A result code.

InstrumentCloseComponentResFile 19

The InstrumentCloseComponentResFile function closes a resource file.

extern pascal ComponentResult InstrumentCloseComponentResFile(
ComponentInstance ci,
short resFile)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

resFile A reference to the resource file that was returned previously by
the InstrumentOpenComponentResFile function.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-131

InstrumentGetComponentRefCon 19

The InstrumentGetComponentRefCon function gets the reference constant for an
instrument component.

extern pascal ComponentResult InstrumentGetComponentRefCon(
ComponentInstance ci,
void **refCon)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

refCon A reference constant.

function result A result code.

InstrumentSetComponentRefCon 19

Use the InstrumentSetComponentRefCon function to override the Component
Manager SetComponentRefCon function and set the instrument component’s
reference constant to a specified value.

extern pascal ComponentResult InstrumentSetComponentRefCon(
ComponentInstance ci,
void *refCon)

ci The instrument component instance. You obtain the identifier
from the Component Manager’s OpenComponent function. See
the chapter “Component Manager” in Inside Macintosh: More
Macintosh Toolbox for details.

refCon A reference constant.

function result A result code.

C H A P T E R 1 9

QuickTime Music Architecture

19-132 QuickTime Music Architecture Reference

Result Codes 19

This section lists all the result codes returned by QuickTime Music Architecture
functions.

NOTIMPLEMENTEDMUSICOSERR –2071 Call to a routine that is not
supported by a particular music
component.

CANTSENDTOSYNTHESIZEROSERR –2072 Attempt to use a synthesizer
before it has been initialized,
given a MIDI port to use, or told
which slot card to use. For
example, the MusicSetMIDIProc
function has not been called.

ILLEGALVOICEALLOCATIONOSERR –2074 Attempt to allocate more voices
than a synthesizer supports.

ILLEGALPARTOSERR –2075 Usually indicates use of a part
number parameter outside the
range 1…partcount

ILLEGALCHANNELOSERR –2076 Attempt to use a MIDI channel
outside the range 1…16

ILLEGALKNOBOSERR –2077 Attempt to use a knob index or
knob ID that is not valid

ILLEGALKNOBVALUEOSERR –2078 Attempt to set a knob outside its
allowable range, as specified in
its knob description record.

ILLEGALINSTRUMENTOSERR –2079 Attempt to use an instrument or
sound that is not available or
there is some other problem with
the instrument, such as a bad
instrument number.

ILLEGALCONTROLLEROSERR –2080 Attempt to get or set a controller
that is outside the allowable
controller number range or is not
recognized by this particular
music component.

MIDIMANAGERABSENTOSERR –2081 Attempt to use MIDI Manager
for a synthesizer when the MIDI
Manager is not installed.

SYNTHESIZERNOTRESPONDINGOSERR –2082 Various hardware problems with
a synthesizer.

SYNTHESIZEROSERR –2083 Software problem with a
synthesizer.

C H A P T E R 1 9

QuickTime Music Architecture

QuickTime Music Architecture Reference 19-133

ILLEGALNOTECHANNELOSERR –2084 Attempt to use a note channel
that is not initialized or is
otherwise errant.

NOTECHANNELNOTALLOCATEDOSERR –2085 It was not possible to allocate a
note channel.

TUNEPLAYERFULLOSERR –2086 Attempt to queue up more tune
segments (with TuneQueue) than
allowed.

TUNEPARSEOSERR –2087 TuneSetHeader or TuneQueue
encountered an absurd bit of
tune sequence data.

C H A P T E R 1 9

QuickTime Music Architecture

19-134 QuickTime Music Architecture Reference

General MIDI Instrument Numbers A-1

A P P E N D I X A

General MIDI Reference A

General MIDI Instrument Numbers A

Table A-1 General MIDI Instrument Numbers

1 Acoustic Grand Piano 33 Wood Bass

2 Bright Acoustic Piano 34 Electric Bass Fingered

3 Electric Grand Piano 35 Electric Bass Picked

4 Honky-tonk Piano 36 Fretless Bass

5 Rhodes Piano 37 Slap Bass 1

6 Chorused Piano 38 Slap Bass 2

7 Harpsichord 39 Synth Bass 1

8 Clavinet 40 Synth Bass 2

9 Celesta 41 Violin

10 Glockenspiel 42 Viola

11 Music Box 43 Cello

12 Vibraphone 44 Contrabass

13 Marimba 45 Tremolo Strings

14 Xylophone 46 Pizzicato Strings

15 Tubular bells 47 Orchestral Harp

16 Dulcimer 48 Timpani

17 Draw Organ 49 Acoustic String Ensemble 1

18 Percussive Organ 50 Acoustic String Ensemble 2

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

General MIDI Reference

A-2 General MIDI Instrument Numbers

19 Rock Organ 51 Synth Strings 1

20 Church Organ 52 Synth Strings 2

21 Reed Organ 53 Aah Choir

22 Accordion 54 Ooh Choir

23 Harmonica 55 Synvox

24 Tango Accordion 56 Orchestra Hit

25 Acoustic Nylon Guitar 57 Trumpet

26 Acoustic Steel Guitar 58 Trombone

27 Electric Jazz Guitar 59 Tuba

28 Electric clean Guitar 60 Muted Trumpet

29 Electric Guitar muted 61 French Horn

30 Overdriven Guitar 62 Brass Section

31 Distortion Guitar 63 Synth Brass 1

32 Guitar Harmonics 64 Synth Brass 2

65 Soprano Sax 97 Ice Rain

66 Alto Sax 98 Soundtracks

67 Tenor Sax 99 Crystal

68 Baritone Sax 100 Atmosphere

69 Oboe 101 Bright

70 English Horn 102 Goblin

71 Bassoon 103 Echoes

72 Clarinet 104 Space

73 Piccolo 105 Sitar

74 Flute 106 Banjo

75 Recorder 107 Shamisen

Table A-1 General MIDI Instrument Numbers (continued)

A P P E N D I X A

General MIDI Reference

General MIDI Instrument Numbers A-3

76 Pan Flute 108 Koto

77 Bottle blow 109 Kalimba

78 Shakuhachi 110 Bagpipe

79 Whistle 111 Fiddle

80 Ocarina 112 Shanai

81 Square Lead 113 Tinkle bell

82 Saw Lead 114 Agogo

83 Calliope 115 Steel Drums

84 Chiffer 116 Woodblock

85 Synth Lead 5 117 Taiko Drum

86 Synth Lead 6 118 Melodic Tom

87 Synth Lead 7 119 Synth Tom

88 Synth Lead 8 120 Reverse Cymbal

89 Synth Pad 1 121 Guitar Fret Noise

90 Synth Pad 2 122 Breath Noise

91 Synth Pad 3 123 Seashore

92 Synth Pad 4 124 Bird Tweet

93 Synth Pad 5 125 Telephone Ring

94 Synth Pad 6 126 Helicopter

95 Synth Pad 7 127 Applause

96 Synth Pad 8 128 Gunshot

Table A-1 General MIDI Instrument Numbers (continued)

A P P E N D I X A

General MIDI Reference

A-4 General MIDI Drum Kit Numbers

General MIDI Drum Kit Numbers A

Table A-2 General MIDI Drum Kit Numbers

35 Acoustic Bass Drum 51 Ride Cymbal 1

36 Bass Drum 1 52 Chinese Cymbal

37 Side Stick 53 Ride Bell

38 Acoustic Snare 54 Tambourine

39 Hand Clap 55 Splash Cymbal

40 Electric Snare 56 Cowbell

41 Lo Floor Tom 57 Crash Cymbal 2

42 Closed Hi Hat 58 Vibraslap

43 Hi Floor Tom 59 Ride Cymbal 2

44 Pedal Hi Hat 60 Hi Bongo

45 Lo Tom Tom 61 Low Bongo

46 Open Hi Hat 62 Mute Hi Conga

47 Low -Mid Tom Tom 63 Open Hi Conga

48 Hi Mid Tom Tom 64 Low Conga

49 Crash Cymbal 1 65 Hi Timbale

50 Hi Tom Tom 66 Lo Timbale

A P P E N D I X A

General MIDI Reference

General MIDI Kit Names A-5

General MIDI Kit Names A

Table A-3 General MIDI Kit Names

1 Dry Set

9 Room Set

19 Power Set

25 Electronic Set

33 Jazz Set

41 Brush Set

65-112 User Area

128 Default

A P P E N D I X A

General MIDI Reference

A-6 General MIDI Kit Names

Motion JPEG B-1

A P P E N D I X B

QuickTime File Format Changes B

This appendix contains changes and additions to the Motion JPEG and YUV
file formats as documented in QuickTime File Format Specification, May 1996.
Information about the QuickTime image file format introduced with
QuickTime 2.5 is also included.

Motion JPEG B

M-JPEG Format A B

The following two fields have been added to format A:

Field descriptions
Start of scan offset

Specifies the offset, in bytes, from the start of the field data
to the start of the scan marker. This field should never be
set to 0.

Start of data offset
Specifies the offset, in bytes, from the start of the field data
to the start of the data stream. Typically this immediately
follows the start of scan data.

M-JPEG Format B B

The following two fields have been added to format B:

Field descriptions
Start of scan offset

Specifies the offset, in bytes, from the start of the field data
to the contents of the start of scan data. This field should
never be set to 0.

Figure B-0
Listing B-0
Table B-0

A P P E N D I X B

QuickTime File Format Changes

B-2 Motion JPEG

Start of data offset
Specifies the offset, in bytes, from the start of the field data
to the start of the data stream. Typically this immediately
follows the start of scan data.

YUV B

QuickTime 1.6.1 introduced the Component Video codec, which stores data in
YUV 4:2:2 format. The compression algorithm is not lossless, but the image
quality is extremely high. The compression ratio is 3:2 (or 1.5:1). It does not
support frame differencing. This codec is useful for certain video input
solutions, such as those included in the Macintosh Quadra and Power
Macintosh AV models. The YUV format is also useful as an intermediate
storage format if you are applying multiple effects or transitions to an image.

By default, the Component Video compressor does not appear in the Standard
Compression dialog box. However, it will appear if you hold down the Option
key when clicking the compressor list to display the complete list.

Uncompressed YUV2 B

The YUV2 stream is encoded in a series of four-byte packets. Each packet
represents two adjacent pixels on the same scan line. The bytes within each
packet are ordered as follows:

y0 u y1 v

y0 is the luminance value for the left pixel; y1 the luminance for the right pixel.
u and v are chromatic values that are shared by both pixels. The conversion
into RGB space is represented by the following equations:

r = 1.402 * v + y + .5

g = y - .7143 * v - .3437 * u + .5

b = 1.77 * u + y + .5

The r, g, and b values range from 0 to 255.

A P P E N D I X B

QuickTime File Format Changes

Motion JPEG B-3

QuickTime Image File Format B

QuickTime image files are intended to provide the most useful container
for QuickTime compressed still images. The format uses the same atom-based
structure as a QuickTime movie. There are two defined atom types: 'idsc',
which contains an image description, and 'idat', which contains the image
data. For a JPEG image, the image description atom contains a QuickTime
image description describing the JPEG image’s size, resolution, depth, and so
on, and the image data atom contains the actual JPEG compressed data. A
QuickTime image file can also contain other atoms. For example, it can contain
single-fork preview atoms. Because the QuickTime image file is a single fork
format, it works well in cross-platform applications. On MacOS systems,
QuickTime image files are identified by the file type 'qtif'. Apple
recommends using the filename extension .QIF to identify QuickTime image
files on other platforms.

A P P E N D I X B

QuickTime File Format Changes

B-4 Motion JPEG

GL-1

Glossary

THIS IS A PROTOTYPE GLOSSARY !!

ambient Of a sound, to appear to be
emanating from all directions. Compare
binaural, localized.

angular attenuation The loss of a sound’s
volume due to a change in the angle
between the sound source orientation and
the vector between the source and the
listener. Compare distance attenuation,
reverberation attenuation, room
reflectivity attenuation.

angular attenuation cone A cone that
determines the direction of maximum
sound intensity and the amount of
attenuation that occurs as the angle
between the orientation vector and the
source-to-listener vector increases toward a
predefined limit.

attenuation The loss of sound volume
caused by some physical action on the
sound (such as its traveling over a distance
or reverberating off a wall). See also
angular attenuation, distance attenuation,
reverberation attenuation, room
reflectivity attenuation.

axis element A continuous control
element with or without a meaningful
center—for example, a joystick or a gas
pedal. See also button element, directional
pad element.

back buffer The buffer DrawSprocket
draws into while another image buffer is
being displayed.

bilinear interpolation Bilinear
interpolation averages the pixels and
determines a pixel value that falls between
the two original pixels.

binaural Of a sound, recorded with a
localized effect. Compare ambient,
localized.

blanking window A window with
which DrawSprocket completely covers the
display, hiding the desktop, menu bar, and
other system resources, and providing a
uniform background color for the game to
draw over.

button element A two-state element. See
also axis element, directional pad element,
movement element.

G L O S S A R Y

GL-2

IN-1

Index

A

AddEmptyTrackToMovie function 1-85
AddMediaSampleReferences function 1-93
AddTrackReference function 1-76
alpha channels 3-4
anti-alias text descriptor 11-9
asynchronous decompression, scheduled 4-3
atomic instruments 19-12 to 19-15
AutoPlay for Audio CDs 18-3

B

backColor text descriptor 11-9
BeginFullScreen function 1-87
bold text descriptor 11-8
buffers

screen and image 3-7

C

canMovieExportAuxDataHandle constant 11-16
canMovieImportInPlace constant 11-16
canMovieImportValidateFile constant 11-16
canMovieImportValidateHandles

constant 11-16
CDCodecNewImageBufferMemory 4-22
CDCodecSetTimeCode function 4-24
CDCodecSetTimeCode function 4-24
CDPreDecompress 4-18
CD ROM AutoStart 18-3
CDSequenceChangedSourceData function 3-28
CDSequenceDataSource type 4-11
CDSequenceDisposeDataSource function 3-27
CDSequenceDisposeMemory function 3-24

CDSequenceEquivalentImageDescription
function 3-21

CDSequenceFlush 3-19
CDSequenceNewDataSource function 3-26
CDSequenceNewMemory function 3-22
CDSequenceSetSourceData function 3-28
clipToTextBox text descriptor 11-8
CloseComponent function 16-42, 16-51
codecCanAsync 4-22
codecCanAsyncWhen 4-22
codecCanAsyncWhen constant 4-12
codecCanCopyPrev 4-13
codecCanManagePrevBuffer 4-12, 4-13
codecCanShieldCursor constant 4-12
CodecCapabilities structure 4-12
codecCompletionDest constant 4-37
codecCompletionDontUnshield constant 4-37
codecCompletionSource constant 4-37
CodecCompressParams type 4-14
codecConditionCatchUpDiff 4-18
codecConditionDoCursor 4-18
codecConditionFirstScreen 4-18
codecConditionMaskMayBeChanged 4-18, 4-19
codecConditions 4-15, 4-18
codecConditionToBuffer 4-18, 4-19
CodecDecompressParams 4-15
codecFlagCatchUpDiff constant 3-8, 3-15, 3-18
codecFlagDontOffscreen constant 3-13, 3-17
codecFlagDontUseNewImageBuffer

constant 3-8, 3-15, 3-18
codecFlagInterlaceUpdate constant 3-8, 3-15,

3-18
codecFlagNoScreenUpdate constant 3-13, 3-17
codecFlagOnlyScreenUpdate constant 3-14, 3-17
codecFlagUsedImageBuffer constant 3-14, 3-18
codecFlagUsedNewImageBuffer constant 3-14,

3-18
codecHasVolatileBuffer constant 4-12
codecImageBufferIsOnScreen 4-12, 4-14, 4-22

I N D E X

IN-2

codecWantsDestinationPixels 4-12
Component Manager 16-13
CloseComponent function 16-42, 16-51
component flags value 16-9, 16-14
component subtype value 16-9, 16-14
component type value 16-9, 16-14
FindNextComponent function 16-9
manufacturer value 16-9, 16-14
OpenComponent function 16-9
OpenDefaultComponent function 16-9
selector values for data handler

components 16-15
compression parameters structure 4-14
condense text descriptor 11-8
container 16-7
continuousKaraoke text descriptor 11-10
continuousScroll text descriptor 11-12
Controller event 19-24
control panel 18-3
ConvertFileToMovieFile function 1-62
ConvertMovieToFile function 1-63
CountSpriteMediaImages function 14-34
CountSpriteMediaSprites function 14-33
cursor, hiding 4-36

D

data handler components 1-11
capabilities, determining 16-10
completion function 16-12, 16-48, 16-61
component flags value 16-9, 16-14
Component Manager 16-3
component subtype value 16-7, 16-9, 16-14,

16-36
component type value 16-9, 16-14
connection, opening 16-9
creating a data handler component 16-13
data reference types 16-7
duties 16-4 to 16-8
manufacturer value 16-9, 16-14
media handler components 16-4 to 16-7
mounting volumes 16-32
movie data, reading 16-11

movie data, writing 16-50
networked-device support 16-32
pre-roll operations 16-46
priority of read requests 16-47
quality of service 16-32, 16-47
QuickTime

versions supported 16-4
QuickTime for Windows 16-3

version supported 16-4
read-ahead time, indicating preferred 16-49
reading movie data 16-11
removable volumes 16-32
retrieving movie data 16-11
selecting 16-9
selector values 16-15
sequence grabber components 16-5 to 16-6
subtype value, component 16-7, 16-9, 16-14,

16-36
type value, component 16-9, 16-14
unmounting volumes 16-32
write, asynchronous 16-53
writing movie data 16-12, 16-50

DataHCanUseDataRef function 16-10, 16-33
DataHCloseForRead function 16-42
DataHCloseForWrite function 16-51
DataHCompareDataRef function 16-10, 16-38
DataHCreateFile function 16-55
DataHFinishData function 16-11, 16-48
DataHFlushCache function 16-44, 16-47, 16-59
DataHFlushData function 16-53, 16-54, 16-59
DataHGetData function 16-11, 16-43
DataHGetDataRef function 16-10, 16-37
DataHGetDeviceIndex function 16-35
DataHGetFileSize function 16-55
DataHGetFreeSpace function 16-57
DataHGetOSFileRef function 16-40
DataHGetPreferredBlockSize function 16-56
DataHGetScheduleAheadTime function 16-49
DataHGetVolumeList function 16-10, 16-30
DataHOpenForRead function 16-11, 16-42
DataHOpenForWrite function 16-12, 16-50
DataHPlaybackHints function 16-60
DataHPreextend function 16-57
DataHPutData function 16-12, 16-52
DataHResolveDataRef function 16-38

I N D E X

IN-3

DataHScheduleData function 16-11, 16-44
DataHScheduleRecord type 16-45
DataHSetDataRef function 16-10, 16-36
DataHSetFileSize function 16-54
DataHSetOSFileRef function 16-39
DataHTask function 16-13, 16-58
DataHVolumeListRecord type 16-31
DataHWrite function 16-12, 16-53
data reference

and component subtype value 16-14, 16-36
assigning to a data handler 16-10
comparing 16-11
several in one media 1-8
types 16-9, 16-14, 16-36
working with 16-36

DataReferenceRecord type 1-52
decompression, scheduled asynchronous 4-3
decompression data source structure 4-11
DecompressSequenceBeginS function 3-10
DecompressSequenceFrameWhen function 3-13,

3-16
DeleteTrackReference function 1-77
dfAntiAlias constant 1-45
dfContinuousKaraoke constant 1-45
dfContinuousScroll constant 1-45
dfDropShadow constant 1-45
dfFlowHoriz constant 1-45
dfInverseHilite constant 1-45
dfKeyedText constant 1-45
dfTextColorHilite constant 1-45
DHCompleteProc function 16-61
DisposeAllSprites function 1-123
DisposeSprite function 1-125
DisposeSpriteWorld function 1-118
doNotAutoScale text descriptor 11-8
doNotDisplay text descriptor 11-9
dontRegisterWithEasyOpen constant 11-16
dropframe timecode 1-100, 1-103
dropShadowOffset text descriptor 11-11
dropShadowOffsetType constant 1-49
dropShadow text descriptor 11-11
dropShadowTranslucencyType constant 1-49
dropShadowTransparency text descriptor 11-11

E

EndFullScreen function 1-89
end marker 19-23
evenField1ToEvenFieldOut constant 3-37
evenField1ToOddFieldOut constant 3-37
evenField2ToEvenFieldOut constant 3-38
evenField2ToOddFieldOut constant 3-38
exporting text 11-3
Extended Controller event 19-24
Extended Note event 19-20
extend text descriptor 11-8

F

flattenFSSpecPtrIsDataRefRecordPtr
constant 1-43

FlattenMovieData function 1-64
FlattenMovie function 1-64
flowHorizontal text descriptor 11-12
font text descriptor 11-7
fullScreenAllowEvents constant 1-44, 1-88
fullScreenDontChangeMenuBar constant 1-44,

1-88
fullScreenHideCursor constant 1-44, 1-88
fullScreenPreflightSize constant 1-44, 1-88

G

GDGetScale function 3-34
GDHasScale function 3-33
GDSetScale function 3-35
General event 19-17
General MIDI A-4, A-5
General MIDI instrument A-1
GetComponentTypeModSeed function 2-8
GetCSequenceMaxCompressionSize 3-12
GetDataHandler function 1-98, 16-9
GetDisplayedSampleNumber function 14-35
GetMediaInputMap function 1-96
GetMediaPreferredChunkSize function 1-85

I N D E X

IN-4

GetMediaPropertyAtom function 1-113
GetMediaSampleReferences function 1-91
GetMovieColorTable function 1-72
GetMovieCompleteParams type 12-4
GetMovieCoverProcs function 1-70
GetMovieIndTrackType function 1-74
GetMoviePict function 1-68
GetNextTrackReferenceType function 1-79
GetSpriteMediaIndImageDescription

function 14-34
GetSpriteMediaSpriteProperty function 14-31
GetSpriteProperty function 1-127
GetTrackDisplayMatrix function 1-68
GetTrackLoadSettings function 1-67
GetTrackReferenceCount function 1-80
GetTrackReference function 1-78
GetVideoMediaStatistics function 1-94
GMInstrumentInfoHandle type 19-54
GMInstrumentInfoPtr type 19-54
GMInstrumentInfo type 19-54
grabPictCurrentImage constant 7-4, 7-12
GraphicsImportDraw function 17-26
GraphicsImporterComponentType constant 17-4
GraphicsImportGetBoundsRect function 17-16
GraphicsImportGetClip function 17-19
GraphicsImportGetDataFile function 17-6
GraphicsImportGetDataHandle function 17-7
GraphicsImportGetDataOffsetAndSize

function 17-14
GraphicsImportGetDataReference

function 17-8
GraphicsImportGetDataReferenceOffsetAndLi

mit function 17-10
GraphicsImportGetGraphicsMode

function 17-21
GraphicsImportGetGWorld function 17-26
GraphicsImportGetImageDescription

function 17-14
GraphicsImportGetMatrix function 17-18
GraphicsImportGetNaturalBounds

function 17-13
GraphicsImportGetQuality function 17-22
GraphicsImportGetSourceRect function 17-24
GraphicsImportReadData function 17-12
GraphicsImportSaveAsPicture function 17-27

GraphicsImportSaveAsQuickTimeImageFile
function 17-28

GraphicsImportSetBoundsRect function 17-15
GraphicsImportSetClip function 17-19
GraphicsImportSetDataFile function 17-5
GraphicsImportSetDataHandle function 17-6
GraphicsImportSetDataReference

function 17-8
GraphicsImportSetDataReferenceOffsetAndLi

mit function 17-9
GraphicsImportSetGraphicsMode

function 17-20
GraphicsImportSetGWorld function 17-25
GraphicsImportSetMatrix function 17-17
GraphicsImportSetQuality function 17-22
GraphicsImportSetSourceRect function 17-23
GraphicsImportValidate function 17-11
graphicsModePreBlackAlpha constant 3-5, 3-9
graphicsModePreWhiteAlpha constant 3-5, 3-9
graphicsModeStraightAlphaBlend

constant 3-5, 3-9
graphicsModeStraightAlpha constant 3-5, 3-9

H

height text descriptor 11-8
hiding the cursor 4-36
hiliteColor text descriptor 11-10
hilite text descriptor 11-10
hints, playback 1-7
HitTestSpriteMedia function 14-32
horizontalScroll text descriptor 11-12

I

ICMDecompressComplete 4-37
ICMFrameTimeRecord type 4-10
ICMFrameTime structure 3-16
ICMShieldSequenceCursor function 4-36
ICMShieldSequenceCursor function 4-38
image buffers 3-7

I N D E X

IN-5

ImageCodecBandDecompress 4-23
ImageCodecDisposeMemory function 4-29
ImageCodecExtractAndCombineFields

function 4-19
ImageCodecFlush 4-24
ImageCodecGetMaxCompressionSizeWithSource

s 4-33
ImageCodecGetSettings function 4-31
ImageCodecHitTestData 4-32
ImageCodecIsImageDescriptionEquivalent

function 4-25
ImageCodecNewImageBufferMemory 4-29
ImageCodecNewMemory 4-28
ImageCodecNewMemory function 4-26
ImageCodecPreDecompress 4-22
ImageCodecRequestSettings function 4-30
ImageCodecSetSettings function 4-31
ImageCodecSourceChanged 4-35
Image Compression Manager

decompression, scheduled asynchronous 4-3
timecode information, setting 3-20
timecode support 3-4

image compressor components
scheduled asynchronous decompression 4-3

to ??
timecode information, setting 4-24
timecode support 4-4

ImageFieldSequenceBegin function 3-36
ImageFieldSequenceEnd function 3-39
ImageFieldSequenceExtractCombine

function 3-37
ImageTranscodeDisposeFrameData

function 3-42
ImageTranscodeFrame function 3-41
ImageTranscoderBeginSequence function 5-9
ImageTranscoderConvert function 5-9
ImageTranscoderDisposeData function 5-11
ImageTranscoderEndSequence function 5-11
ImageTranscodeSequenceBegin function 3-40
ImageTranscodeSequenceEnd function 3-42
importing text 11-14
InstCompInfoHandle type 19-56
InstCompInfoPtr type 19-56
InstCompInfo type 19-56
InstKnobList type 19-47

InstKnobRec type 19-46
instrument About information structure 19-52
InstrumentAboutInfo type 19-52
InstrumentCloseComponentResFile

function 19-130
instrument component 19-12 to 19-15
InstrumentGetComponentRefCon

function 19-131
InstrumentGetInfo function 19-128
InstrumentGetInst function 19-128
InstrumentInfoListHandle type 19-54
InstrumentInfoListPtr type 19-54
InstrumentInfoList type 19-54
InstrumentInfoRecord type 19-53
instrument information list 19-53
instrument information record 19-53
InstrumentInitialize function 19-129
instrument knob list 19-47
instrument knob record 19-46
InstrumentOpenComponentResFile

function 19-130
InstrumentSetComponentRefCon

function 19-131
InstSampleDescRec type 19-47
InvalidateMovieRegion function 1-90
InvalidateSprite function 1-125
InvalidateSpriteWorld function 1-121
inverseHilite text descriptor 11-10
italic text descriptor 11-8

J

justify text descriptor 11-9

K

kaiCopyrightType constant 19-30
kaiInstInfoType constant 19-30
kaiInstRefType constant 19-30
kaiKeyRangeInfoType constant 19-30
kaiKnobListType constant 19-29

I N D E X

IN-6

kaiNoteRequestInfoType constant 19-29
kaiOtherStrType constant 19-30
kaiPictType constant 19-30
kaiSampleDataType constant 19-30
kaiSampleDescType constant 19-30
kaiToneDescType constant 19-29
kaiWriterType constant 19-30
karaoke text descriptor 11-10
kBackgroundSpriteLayerNum constant 1-49
kControllerAfterTouch constant 19-35
kControllerBalance constant 19-35
kControllerBreath constant 19-34
kControllerCeleste constant 19-35
kControllerChorus constant 19-35
kControllerEditPart constant 19-35
kControllerExpression constant 19-35
kControllerFoot constant 19-34
kControllerLever1 constant 19-35
kControllerMasterTune constant 19-35
kControllerMaximum constant 19-36
kControllerMinimum constant 19-36
kControllerModulationWheel constant 19-34
kControllerPan constant 19-35
kControllerPhaser constant 19-35
kControllerPitchBend constant 19-35
kControllerPortamentoTime constant 19-34
kControllerReverb constant 19-35
kControllerSoftPedal constant 19-35
kControllerSostenuto constant 19-35
kControllerSustain constant 19-35
kControllerTremolo constant 19-35
kControllerVolume constant 19-35
kDataHCanRead flag 16-31, 16-33
kDataHCanStreamingWrite flag 16-32, 16-34
kDataHCanWrite flag 16-31, 16-34
kDataHMustCheckDataRef flag 16-32
kDataHSpecialReadFile flag 16-31, 16-34
kDataHSpecialRead flag 16-31, 16-33
kDataHSpecialWrite flag 16-32, 16-34
kDefaultKnobValue constant 19-39
keyedText text descriptor 11-10
kFirstDrumkit constant 19-36
kGetAtomicInstAllKnobs constant 19-40
kGetAtomicInstNoExpandedSamples

constant 19-40

kGetAtomicInstNoInstrumentInfo
constant 19-40

kGetAtomicInstNoKnobList constant 19-40
kGetAtomicInstNoOriginalSamples

constant 19-40
kGetAtomicInstNoSamples constant 19-40
kGetAtomicInstOriginalKnobList

constant 19-40
kGetInstrumentInfoMidiUserInst

constant 19-42
kGetInstrumentInfoNoBuiltIn constant 19-41
kGetInstrumentInfoNoIText constant 19-42
kGMSynthConmponentSubType constant 19-32
kInputMapSubInputID constant 13-13
kInstKnobMissingDefault constant 19-31
kInstKnobMissingUnknown constant 19-31
kInstrumentExactMatch constant 19-43
kInstrumentMatchGMNumber constant 19-37
kInstrumentMatchName constant 19-37
kInstrumentMatchNumber constant 19-37
kInstrumentMatchSynthesizerName

constant 19-37
kInstrumentMatchSynthesizerType

constant 19-37
kInstrumentQualityField constant 19-43
kInstrumentRecommendedSubstitute

constant 19-43
kInstrumentRoland8BitQuality constant 19-43
kKeyFrameAndAllOverrides constant 14-27
kKeyFrameAndSingleOverride constant 14-27
kKnobFixedPoint16 constant 19-38
kKnobFixedPoint8 constant 19-38
kKnobGroupStart constant 19-38
kKnobInterruptUnsafe constant 19-38
kKnobKeyrangeOverride constant 19-38
kKnobReadOnly constant 19-38
kKnobTypeBoolean constant 19-38
kKnobTypeButton constant 19-39
kKnobTypeGroupName constant 19-38
kKnobTypeHertz constant 19-39
kKnobTypeInstrument constant 19-38
kKnobTypeMilliseconds constant 19-39
kKnobTypeNote constant 19-38
kKnobTypeNumber constant 19-38
kKnobTypePan constant 19-38

I N D E X

IN-7

kKnobTypePercentage constant 19-39
kKnobTypeSetting constant 19-38
kLastDrumkit constant 19-36
kMediaVideoParamBlackLevel constant 12-4
kMediaVideoParamBrightness constant 12-3
kMediaVideoParamContrast constant 12-3
kMediaVideoParamHue constant 12-4
kMediaVideoParamSaturation constant 12-4
kMediaVideoParamSharpness constant 12-4
kMediaVideoParamWhiteLevel constant 12-4
kMovieExportAbsoluteTime constant 11-17
kMovieExportRelativeTime constant 11-17
kMovieExportTextOnly constant 11-17
kMusicComponentType constant 19-31
kMusicPacketPortFound constant 19-39
kMusicPacketPortLost constant 19-39
kMusicPacketTimeGap constant 19-40
knob description record 19-51
KnobDescription type 19-51
Knob event 19-26
knobs 19-14
kNoteAllocatorType constant 19-44
kNoteRequestNoGM constant 19-43
kNoteRequestNoSynthType constant 19-43
kOnlyDrawToSpriteWorld constant 1-51
kParentAtomIsContainer constant 1-52
kPickDontMix constant 19-44
kPickEditAllowPick constant 19-44
kPickSameSynth constant 19-44
kPickUserInsts constant 19-44
kSetAtomicInstCallerTosses constant 19-41
kSetAtomicInstDontPreprocess constant 19-41
kSetAtomicInstKeepOriginalInstrument

constant 19-41
kSetAtomicInstShareAcrossParts

constant 19-41
kSoftSynthComponentSubType constant 19-32
kSpriteAtomType constant 14-28
kSpriteImageAtomType constant 14-28
kSpriteImageDataAtomType constant 14-28
kSpriteImagesContainerAtomType

constant 14-28
kSpriteNameAtomType constant 14-28, 14-29
kSpritePropertyGraphicsMode constant 1-50
kSpritePropertyImageDataPtr constant 1-50

kSpritePropertyImageDescription
constant 1-50

kSpritePropertyImageIndex constant 1-50
kSpritePropertyLayer constant 1-50
kSpritePropertyMatrix constant 1-50
kSpritePropertyVisible constant 1-50
kSpriteSharedDataAtomType constant 14-28
kSpriteWorldDidDraw constant 1-51
kSpriteWorldNeedsToDraw constant 1-51
kSpriteWorldPreFlight constant 1-51
kSynthesizerConnectionFMS constant 19-42
kSynthesizerConnectionMMgr constant 19-42
kSynthesizerConnectionMono constant 19-42
kSynthesizerConnectionOMS constant 19-42
kSynthesizerConnectionQT constant 19-42
kSynthesizerDynamicChannel constant 19-33
kSynthesizerDynamicVoice constant 19-32
kSynthesizerGM constant 19-33
kSynthesizerHardware constant 19-33
kSynthesizerHasSamples constant 19-33
kSynthesizerHogsSystemChannel

constant 19-33
kSynthesizerMicrotone constant 19-33
kSynthesizerMixedDrums constant 19-33
kSynthesizerOffline constant 19-33
kSynthesizerSlowSetPart constant 19-33
kSynthesizerSoftware constant 19-33
kSynthesizerUsesMIDIPort constant 19-32
kTrackModifierCameraData constant 1-48
kTrackModifierObjectGraphicsMode

constant 1-48
kTrackModifierObjectMatrix constant 1-47
kTrackModifierType3d4x4Matrix constant 1-48
kTrackModifierTypeBalance constant 1-47
kTrackModifierTypeClip constant 1-46
kTrackModifierTypeGraphicsMode

constant 1-47
kTrackModifierTypeImage constant 1-47
kTrackModifierTypeMatrix constant 1-46
kTrackModifierTypeVolume constant 1-47
kTuneDontClipNotes constant 19-46
kTuneExcludeEdgeNotes constant 19-46
kTuneLoopUntil constant 19-46
kTunePlayerType constant 19-45
kTuneQueueDepth constant 19-45

I N D E X

IN-8

kTuneQuickStart constant 19-46
kTuneStartNewMaster constant 19-46
kTuneStartNow constant 19-46
kTween3dInitialCondition constant 13-13
kTweenData constant 13-12
kTweenDuration constant 13-13
kTweenEntry constant 13-12
kTweenInterpolationStyle constant 13-13
kTweenPictureData constant 13-13
kTweenRegionData constant 13-13
kTweenStartOffset constant 13-13
kTweenType3dCameraData constant 13-16
kTweenType3dMatrix constant 13-16
kTweenType3dQuaternion constant 13-16
kTweenType3dRotateAboutAxis constant 13-16
kTweenType3dRotateAboutPoint constant 13-16
kTweenType3dRotate constant 13-16
kTweenType3dScale constant 13-15
kTweenType3dSoundLocalizationData

constant 13-16
kTweenType3dTranslate constant 13-16
kTweenType constant 13-13
kTweenTypeFixed constant 13-14
kTweenTypeGraphicsModeWithRGBColor

constant 13-15
kTweenTypeLong constant 13-14
kTweenTypeMatrix constant 13-15
kTweenTypePoint constant 13-15
kTweenTypeQDRect constant 13-15
kTweenTypeQDRegion constant 13-15
kTweenTypeRGBColor constant 13-15
kTweenTypeShort constant 13-14
kUnknownKnobValue constant 19-39

L

language text descriptor 11-7
loopTypeAlternating constant 19-31
loopTypeNormal constant 19-31

M

majorSourceChangeSeed 4-14
Marker event 19-23
mcActionGetCursorSettingEnabled

constant 6-4
mcActionGetSelectionBegin constant 6-4
mcActionGetSelectionBegin type 6-4
mcActionGetSelectionDuration constant 6-4
mcActionPrerollAndPlay constant 6-4
mcActionSetCursorSettingEnabled

constant 6-4
MCGetControllerInfo function 6-6
mcInfoMovieIsInteractive constant 6-6
MCPtInController function 6-7
MediaCompare function 12-12
MediaGetDrawingRgn function 12-20
MediaGetGraphicsMode function 12-21
MediaGetName function 12-19
MediaGetNextStepTime function 12-7
MediaGetOffscreenBufferSize function 12-18
MediaGetSampleDataPointer function 12-11
MediaGetVideoParam function 12-14
MediaGSetActiveSegment function 12-6
MediaIdle function 12-5
MediaInvalidateRegion function 12-7
MediaReleaseSampleDataPointer

function 12-12
MediaSetGraphicsMode function 12-22
MediaSetHints function 12-19
MediaSetNonPrimarySourceData function 12-14
MediaSetTrackInputMapReference

function 12-10
MediaSetVideoParam function 12-13
media structures

sample descriptions 1-91, 1-93
MediaTrackPropertyAtomChanged

function 12-10
MediaTrackReferencesChanged function 12-9
media with several data references 1-8
MIDI A-1, A-4, A-5
MIDI packet 19-52
minorSourceChangeSeed 4-14
ModifierTrackGraphicsModeRecord type 1-54
MovieExportGetAuxillaryData function 11-26

I N D E X

IN-9

MovieExportSetSampleDescription
function 11-27

movieFileSpecValid constant 1-42, 1-64
MovieImportGetAuxiliaryDataType

function 11-24
MovieImportGetFileType function 11-24
movieImportSubTypeIsFileExtension

constant 11-16
MovieImportValidate function 11-25
movies

duration of 12-6
movieToFileOnlyExport constant 1-41, 1-64
Movie Toolbox

and removable volumes 16-32
data references, multiple 1-8
forcing it to check your data handler’s

capabilities 16-32
hints 1-7
MoviesTask function 16-59
preloading tracks 1-7
read-ahead time 16-49
reads before opening data reference 16-42,

16-43, 16-47
tracking data handler components 16-29 to

16-30
track references 1-9, 1-76

music component 19-11
music events 19-15 to 19-26
MusicGetDescription function 19-103
MusicGetDeviceConnection function 19-113
MusicGetDrumKnobDescription function 19-108
MusicGetInstrumentAboutInfo function 19-118
MusicGetInstrumentInfo function 19-118
MusicGetInstrumentKnobDescription

function 19-107
MusicGetKnobDescription function 19-107
MusicGetKnob function 19-106
MusicGetKnobSettingStrings function 19-109
MusicGetMasterTune function 19-125
MusicGetMIDIPorts function 19-111
MusicGetPartAtomicInstrument

function 19-116
MusicGetPartController function 19-123
MusicGetPart function 19-119

MusicGetPartInstrumentNumber
function 19-115

MusicGetPartKnob function 19-122
MusicGetPartName function 19-120
MusicMIDIPacket type 19-52
MusicPlayNote function 19-105
MusicResetPart function 19-123
MusicSendMIDI function 19-112
MusicSetKnob function 19-106
MusicSetMasterTune function 19-125
MusicSetMIDIProc function 19-110
MusicSetOfflineTimeTo function 19-127
MusicSetPartAtomicInstrument

function 19-116
MusicSetPartController function 19-124
MusicSetPart function 19-120
MusicSetPartInstrumentNumber

function 19-115
MusicSetPartKnob function 19-122
MusicSetPartName function 19-121
MusicSetPartSoundLocalization

function 19-124
MusicStartOffline function 19-126
MusicStorePartInstrument function 19-117
MusicTask function 19-127
MusicUseDeviceConnection function 19-114

N

NACopyrightDialog function 19-95
NADisposeNoteChannel function 19-76
NAFindNoteChannelTone function 19-87
NAGetDefaultMIDIInput function 19-100
NAGetIndNoteChannel function 19-77
NAGetKnob function 19-85
NAGetMIDIPorts function 19-101
NAGetNoteChannelInfo function 19-76
NAGetNoteRequest function 19-90
NAGetRegisteredMusicDevice function 19-98
NALoseDefaultMIDIInput function 19-79
NANewNoteChannelFromAtomicInstrument

function 19-75
NANewNoteChannel function 19-74

I N D E X

IN-10

NAPickArrangement function 19-95
NAPickEditInstrument function 19-93
NAPlayNote function 19-83
NAPrerollNoteChannel function 19-79
NARegisterMusicDevice function 19-97
NAResetNoteChannel function 19-80
NASaveMusicConfiguration function 19-102
NASendMIDI function 19-90
NASetAtomicInstrument function 19-89
NASetController function 19-84
NASetDefaultMIDIInput function 19-100
NASetInstrumentNumber function 19-87
NASetInstrumentNumberInterruptSafe

function 19-88
NASetKnob function 19-86
NASetNoteChannelBalance function 19-82
NASetNoteChannelSoundLocalization

function 19-82
NASetNoteChannelVolume function 19-81
NAStuffToneDescription function 19-94
NATask function 19-102
NAUnregisterMusicDevice function 19-98
NAUnrollNoteChannel function 19-80
NAUseDefaultMIDIInput function 19-78
NewMovieFromDataRef function 1-59
NewMovieFromFile function 1-59
NewMovieFromUserProc function 1-56
NewSprite function 1-123
NewSpriteWorld function 1-117
nextTimeStep constant 1-43
nonGMInstrumentInfoHandle type 19-55
nonGMInstrumentInfoPtr type 19-55
nonGMInstrumentInfoRecord type 19-55
nonGMInstrumentInfo type 19-55
note allocator component 19-9 to 19-10
Note event 19-20
note request information structure 19-58
NoteRequestInfo type 19-58
note request structure 19-59
NoteRequest type 19-59

O

oddField1ToEvenFieldOut constant 3-37
oddField1ToOddFieldOut constant 3-38
oddField2ToEvenFieldOut constant 3-38
oddField2ToOddFieldOut constant 3-38
OpenAComponent function 2-9
OpenAComponentResFile function 2-11
OpenADefaultComponent function 2-10
outline text descriptor 11-8
outputs, sequence grabber 7-3, 7-13 to 7-21

P

PasteHandleIntoMovie function 1-83
plain text descriptor 11-8
playback hints 1-7
preferredPacketSizeInBytes 4-14, 4-15
preloading tracks 1-7
prevPixMap 4-13
PtInDSequenceData 3-25

Q

QTAtomContainer type 1-55
QTAtomID type 1-55
QTAtom type 1-55
QTAtomType type 1-55
QTCopyAtomDataToHandle function 1-145
QTCopyAtomDataToPtr function 1-146
QTCopyAtom function 1-136
QTCountChildrenOfType function 1-142
QTDisposeAtomContainer function 1-141
QTFindChildByID function 1-144
QTFindChildByIndex function 1-143
QTGetAtomDataPtr function 1-138
QTGetAtomTypeAndID function 1-147
QTGetNextChildType function 1-141
QTInsertChild function 1-130
QTInsertChildren function 1-132
QTLockContainer function 1-137

I N D E X

IN-11

QTMIDIPort type 19-58
QTNewAtomContainer function 1-129
QTNextChildAnyType function 1-144
QTRemoveAtom function 1-139
QTRemoveChildren function 1-140
QTReplaceAtom function 1-133
QTSetAtomData function 1-135
QTSetAtomID function 1-134
QTSwapAtoms function 1-134
QTtext text descriptor 11-7
QTUnlockContainer function 1-139
quality of image

spatial 9-5
temporal 9-5

QuickTime for Windows 16-3, 16-4, 16-9, 16-12,
16-13, 16-15, 16-40

QuickTime Music Synthesizer 18-4
QuickTime Settings control panel 18-3

R

ResetVideoMediaStatistics function 1-95
Rest event 19-22
reverseScroll text descriptor 11-12

S

sample description record 19-47
screen buffers 3-7
scrollDelay text descriptor 11-13
scrollIn text descriptor 11-12
scrollOut text descriptor 11-12
seqGrabSettingsPreviewOnly constant 7-5
sequence grabber channel components

maximum data rate, getting 8-5
maximum data rate, setting 8-4

sequence grabber component
output, assigning to a channel 7-17

sequence grabber components
output, configuring 7-18
output, creating a new 7-13

output, disposing of 7-16
output, getting remaining space 7-21
outputs 7-3, 7-13 to 7-21
timecode support 7-3

sequence grabber outputs 7-3, 7-13 to 7-21
SetCSequencePreferredPacketSize

function 3-32
SetDSequenceTimeCode function 3-20
SetMediaDefaultDataRefIndex function 1-83
SetMediaInputMap function 1-97
SetMediaPreferredChunkSize function 1-84
SetMediaPropertyAtom function 1-114
SetMovieColorTable function 1-71
SetMovieCoverProcs function 1-70
SetMovieDrawingCompleteProc function 1-69
SetSequenceProgressProc function 3-11
SetSpriteMediaSpriteProperty function 14-30
SetSpriteProperty function 1-128
SetSpriteWorldClip function 1-119
SetSpriteWorldMatrix function 1-119
SetTrackGWorld function 1-73
SetTrackLoadSettings function 1-65
SetTrackReference function 1-78
SGChannelGetDataSourceName function 8-7
SGChannelGetRequestedDataRate function 8-5
SGChannelSetDataSourceName function 8-6
SGChannelSetRequestedDataRate function 8-4
SGDisposeOutput function 7-16
SGGetDataOutputStorageSpaceRemaining

function 7-21
SGGetDataRef function 7-8
SGGetMode function 7-12
SGGetPreferredPacketSize function 8-6, 8-8,

8-10
SGGetTextRetToSpaceValue function 10-9
SGGrabPict function 7-11
SGNewOutput function 7-13
SGSetChannelOutput function 7-17
SGSetDataRef function 7-5
SGSetFontName function 10-6
SGSetFontSize function 10-7
SGSetJustification function 10-8
SGSetOutputFlags function 7-18
SGSetPreferredPacketSize function 8-5, 8-8,

8-9

I N D E X

IN-12

SGSetTextBackColor function 10-8
SGSetTextForeColor function 10-7
SGSetTextRetToSpaceValue function 10-10
SGSettingsDialog function 7-11
shadow text descriptor 11-8
shielding the cursor 4-36
showUserSettingsDialog constant 1-41, 1-42,

1-62, 1-64, 1-83
shrinkTextBox text descriptor 11-9
size text descriptor 11-7
SMPTE timecode information 1-99
sourceData 4-14
Speech Recognition Manager

constants for 7-4 to ??
spriteHitTestBounds constant 1-49
SpriteHitTest function 1-126
spriteHitTestImage constant 1-49
Sprite type 1-54
SpriteWorldHitTest function 1-122
SpriteWorldIdle function 1-120
SpriteWorld type 1-54
synthesizer connection structure 19-57
SynthesizerConnections type 19-57
SynthesizerDescription type 19-49
synthesizers 19-27 to 19-28

T

TCFrameNumberToTimeCode function 1-108
TCGetCurrentTimeCode function 1-105
TCGetDisplayOptions function 1-113
TCGetSourceRef function 1-110
TCGetTimeCodeAtTime function 1-106
TCGetTimeCodeFlags function 1-111
TCSetDisplayOptions function 1-112
TCSetSourceRef function 1-109
TCSetTimeCodeFlags function 1-110
TCTimeCodeToFrameNumber function 1-107
TCTimeCodeToString function 1-108
textBox text descriptor 11-8
textColorHilite text descriptor 11-10
textColor text descriptor 11-9
text descriptors 11-5

TextDisplayData type 11-17
TextExportGetDisplayData function 11-19
TextExportGetSettings function 11-22
TextExportGetTimeFraction function 11-20
TextExportSetSettings function 11-23
TextExportSetTimeFraction function 11-21
TextMediaSetTextSampleData function 1-115
timecode definition structure 1-103 to 1-104
timecode media, creating 1-101
timecode media handler 1-8, 1-99 to ??

adding samples 1-102
and track references 1-102
creating timecode media 1-101
displaying timecode information 1-100
dropframe technique 1-100, 1-103
sample description 1-102 to 1-103
source identification information 1-101
timecode definition structure 1-103 to ??
timecode record 1-104 to 1-105

timecode record 1-104 to 1-105
timeScale text descriptor 11-11
time stamps 11-13
timeStamps text descriptor 11-11
tone description structure 19-50
ToneDescription type 19-50
track

preloading 1-7
reference 1-9, 1-76

track references 1-9, 1-76
used with timecode media 1-102

TuneGetIndexedNoteChannel function 19-70
TuneGetNoteAllocator function 19-72
TuneGetStatus function 19-70
TuneGetTimeBase function 19-66
TuneGetTimeScale function 19-67
TuneGetVolume function 19-65
TuneInstant function 19-68
tune player component 19-10 to 19-11
TunePreroll function 19-69
TuneSetBalance function 19-73
TuneSetHeaderWithSize function 19-61
TuneSetNoteChannels function 19-62
TuneSetPartTranspose function 19-71
TuneSetSofter function 19-72
TuneSetSoundLocalization function 19-66

I N D E X

IN-13

TuneSetTimeScale function 19-68
TuneSetVolume function 19-65
TuneStatus type 19-59
TuneStop function 19-64
TuneTask function 19-73
TuneUnroll function 19-69
tvTunerIn constant 9-3
TweenComponentType constant 13-12
TweenerComponent type 13-16
TweenerDataUPP type 13-18
TweenerDoTween function 13-21
TweenerInitialize function 13-19
TweenerReset function 13-20
TweenRecord constant 13-17

U

underline text descriptor 11-8

V

VDGetCompressionTime function 9-4
VDGetSoundInputSource function 9-9
VDGetTimeCode function 9-8
VDSetDataRate function 9-6
VDSetPreferredPacketSize function 9-7
video digitizer components

functions in
digitization, controlling 9-6 to ??

timecode support 9-3

W, X, Y, Z

width text descriptor 11-8
Windows, QuickTime support see QuickTime for

Windows

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
were created on an Apple LaserWriter Pro
printer. Final pages were created on a
Docutek. Line art was created
using Adobe™ Illustrator and
Adobe Photoshop. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITING MANAGERS
Trish Eastman, Michael Hinkson

LEAD WRITER
Linda Kyrnitszke

WRITERS
Judy Helfand, Mimi Jones,
Linda Kyrnitszke, Gary McCue, Lori
Stipp, Mark Turner

DEVELOPMENTAL EDITOR
Wendy Krafft

ILLUSTRATOR
Deb Dennis

PRODUCTION EDITORS
Pat Christenson, Gerri Gray,
Alan Morgenegg

Special thanks to Sean Allen,
Drew Colace, Peter Hoddie, Ian Ritchie,
and Charles Wiltgen

Writer Art Director

Prod. Editor Illustrator

of Figures Draft stage

Figure # Path Name Caption Page #

December 17, 1996 5:02 pm 1

Developer Press
Art List

Figure 1-1 Art:QTM L-12 Local coordinate system of a sprite.. 1-14

Figure 1-2 Art:QTM L-13 Display coordinate system of a sprite .. 1-14

Figure 1-3 Art:QTM L-14 Sprite world coordinate system.. 1-16

Figure 1-4 Art:QTM L-05 QT atom container with parent and child atoms .. 1-17

Figure 1-5 Art:QTM L-06 QT atom container example... 1-18

Figure 1-6 Art:QTM L-07 QT atom container after inserting an atom .. 1-32

Figure 1-7 Art:QTM L-08 QT atom container after inserting a second atom .. 1-33

Figure 1-8 Art:QTM L-09 Two QT atom containers, A and B .. 1-34

Figure 1-9 Art:QTM L-10 QT atom container after child atoms have been inserted................................... 1-35

Figure 11-1 Art:QTM L-16 Text Export Settings dialog box... 11-4

Figure 11-2 Art:QTM L-15 Text Import Settings dialog box... 11-14

Figure 14-1 Art:QTM L-03 A key frame sample atom container .. 14-5

Figure 14-2 Art:QTM L-11 Atoms that describe a sprite and its properties .. 14-6

Figure 14-3 Art:QTM L-17 Atoms that describe sprite images ... 14-7

Figure 14-4 Art:QTM L-04 An example of an override sample atom container.. 14-8

Figure 16-1 Art:QTM L-01 Playing a movie.. 16-5

Figure 16-2 Art:QTM L-02 Capturing movie data ... 16-6

Figure 19-1 ART:QTMA L-01 How QuickTime Music Architecture components work together 19-9

Figure 19-2 ART:QTMA L-13 An atomic instrument atom container. ... 19-13

Figure 19-3 ART:QTMA L-03 A music fragment... 19-16

Figure 19-4 ART:QTMA L-04 Duration of notes and rests... 19-17

Figure 19-5 ART:QTMA L-05 A note request General event ... 19-18

Figure 19-6 ART:QTMA L-06 Note event .. 19-20

Figure 19-7 ART:QTMA L-07 Extended Note event .. 19-21

Figure 19-8 ART:QTMA L-08 Rest event... 19-22

Figure 19-9 ART:QTMA L-09 Marker event of subtype End ... 19-23

Figure 19-10 ART:QTMA L-10 Controller event.. 19-24

Figure 19-11 ART:QTMA L-11 Extended Controller event ... 19-25

Figure 19-12 ART:QTMA L-12 Knob event ... 19-26

Mark Turner

Pat Christenson

31

name

name

DR_seed_alpha_beta_final

QuickTime 2.5 Delta Guide

2 December 17, 1996 5:02 pm

Figure 19-13 ART:QTMA L-02 Typical synthesizer.. 19-28

	Developer’s Guide: QuickTime for Macintosh
	Contents
	Figures, Tables, and Listings
	About This Book
	Format of an Update Chapter
	Format of a New Chapter
	Conventions Used in This Book
	Special Fonts
	Types of Notes

	Development Environment
	For More Information

	Movie Toolbox
	New Features of the Movie Toolbox
	Preloading Tracks
	Hints
	Data References
	Timecode Media Handler
	Track References
	Modifier Tracks

	Data Handler Components
	Sprite Toolbox
	Sprite Characteristics
	Sprite World Characteristics

	QT Atoms

	Using the Movie Toolbox
	Loading a Movie
	Creating Movies With Modifier Tracks
	Creating and Initializing a Sprite World
	Creating and Initializing Sprites
	Animating Sprites
	Disposing of a Sprite Animation
	Sprite Hit Testing
	Creating and Disposing of Atom Containers
	Creating New Atoms
	Copying Existing Atoms
	Retrieving Atoms From an Atom Container
	Modifying Atoms
	Removing Atoms From an Atom Container

	Movie Toolbox Reference
	Constants
	Movie Exporting Flags
	Movie Importing Flags
	Flattening Flags
	Interesting Times Flags
	Full Screen Flags
	Text Sample Display Flags
	Modifier Input Types
	Text Atom Types
	Background Sprites
	Flags for Sprite Hit Testing
	Sprite Properties
	Flags for SpriteWorldIdle
	Constants for QT Atom Functions

	Data Types
	Data Reference
	Sample Reference
	Modifier Track Graphics Mode
	Sprite and Sprite World Identifiers
	QT Atom
	QT Atom Type and ID
	QT Atom Container

	Functions for Getting and Playing Movies
	Movie Functions
	Enhancing Movie Playback Performance
	Generating Pictures From Movies
	Working with Progress and Cover Functions

	Functions That Modify Movie Properties
	Working With Movie Spatial Characteristics
	Locating a Movie’s Tracks and Media Structures
	Working With Track References
	Working With Sound

	Functions for Editing Movies
	Adding Samples to Media Structures
	Editing Tracks
	Using the Full Screen
	Handling Update Events
	Handling Media Sample References
	Managing the Video Frame Playback Rate
	Manipulating Media Input Maps

	Media Functions
	Selecting Data Handlers
	Timecode Media Handler Functions
	Media Property Functions
	Text Media Handler Functions

	Sprite Toolbox Functions
	Sprite World Functions
	Sprite Functions

	QT Atom Functions
	Creating and Modifying QT Atom Containers
	Retrieving Atoms and Atom Data

	Component Manager
	New Features of the Component Manager
	PowerPC-Native Component Manager Support
	Component Manager Reference
	Dispatching to Component Routines
	Finding Components
	Opening and Closing Components
	Accessing a Component’s Resource File

	Image Compression Manager
	New Features of the Image Compression Manager
	ColorSync Support
	Asynchronous Decompression
	Timecode Support
	Data Source Support
	Working with Alpha Channels
	Working With Video Fields
	Packetization Information

	Using the Image Compression Manager
	Using Screen Buffers and Image Buffers

	Image Compression Manager Reference
	Data Types
	Image Compression Manager Function Control Flags

	Constants
	Functions
	Working With Sequences
	Working With Images
	Working With Data Sources
	Working With Image Description Records
	Changing Sequence Compression Parameters
	Controlling Hardware Scaling
	Working With Video Fields
	Image Transcoding Functions
	Working With Graphics Importers

	Image Compressor Components
	New Features of Image Compressor Components
	Asynchronous Decompression
	Hardware Cursors
	Timecode Support
	Working With Video Fields
	Accelerated Video Support
	Packetization Information

	Image Compressor Components Reference
	Data Types
	The Frame Time Structure
	The Decompression Data Source Structure
	The Compressor Capability Structure
	The Compression Parameters Structure
	The Decompression Parameters Structure

	Functions
	Image Compression Manager Utility Functions

	Image Transcoder Components
	About Image Transcoding
	Image Transcoding Support

	Using Image Transcoder Components
	Creating an Image Transcoder Component
	Example Image Transcoder Component

	Image Transcoder Components Reference
	Functions

	Movie Controller Components
	New Features of Movie Controller Components
	Using Movie Controller Components
	Changing the Shape of the Cursor

	Movie Controller Components Reference
	Movie Controller Actions
	Movie Controller Functions
	Handling Movie Events

	Sequence Grabber Components
	New Features of Sequence Grabber Components
	Improved Support for Digitizing Video in Windows

	Sequence Grabber Components Reference
	Constants
	Flags

	Sequence Grabber Component Functions
	Configuring Sequence Grabber Components
	Controlling Sequence Grabber Components
	Working with Sequence Grabber Outputs

	Sequence Grabber Channel Components
	New Features of Sequence Grabber Channel Component...
	Support for Sound Data Compression
	Support for Sound Capture at Any Sample Rate
	*Working With Channel Characteristics

	Sequence Grabber Channel Components Reference
	Functions
	Configuration Functions for All Channel Components...

	Video Digitizer Components
	New Features of Video Digitizer Components
	Video Digitizer Components Reference
	Constants
	Input Formats

	Video Digitizer Component Functions
	Controlling Compressed Source Devices
	Controlling Digitization
	Controlling Packet Size
	Utility Functions

	Text Channel Component
	About the Text Channel Component
	Text Channel Component Reference
	Text Channel Component Functions

	Movie Data Exchange Components
	New Features of Movie Data Exchange Components
	Exporting Text
	Text Descriptors
	Time Stamps
	Importing Text
	Importing In Place
	Audio CD Import Component

	Movie Data Exchange Components Reference
	Constants
	Flags for Movie Import and Export Components
	Text Export Options

	Data Types
	Text Display Data Structure

	Movie Data Exchange Components Functions
	Exporting Text
	Importing Movie Data
	Exporting Movie Data
	Configuring Movie Data Export Components

	Derived Media Handler Components
	Derived Media Handler Components Reference
	Constants
	Media Video Parameters

	Data Types
	Derived Media Handler Component Functions
	Managing Your Media Handler Component
	General Data Management
	Graphics Data Management
	Sound Data Management

	Tween Media Handler Components
	About the Tween Media Handler
	Using the Tween Media Handler
	Creating a Tween Track
	Creating a Tween Component

	Tween Media Handler Reference
	Constants
	Tween Component Constant
	Tween Atom Types
	Media Input Map
	Tween Data Types

	Data Types
	Component Instance
	Tween Record
	Value Setting Function

	Tween Component Functions

	Sprite Media Handler
	About the Sprite Media Handler
	Key Frame Samples and Override Samples
	Sprite Track Media Format
	Sprite Track Properties
	Alternate Sources for Sprite Image Data

	Using the Sprite Media Handler
	Defining a Key Frame Sample
	Creating the Movie, Sprite Track, and Media
	Adding Images to the Key Frame Sample
	Adding Sprites to the Key Frame Sample

	Defining Override Samples
	Setting Properties of the Sprite Track
	Getting Sprite Data From a Modifier Track

	Sprite Media Handler Reference
	Constants
	Sprite Track Formats
	Sprite Media Atom Types

	Sprite Media Handler Functions

	Preview Components
	New Features of Preview Components
	Single Fork Preview Support

	Preview Components Reference
	Resources
	The Preview Resource

	Data Handler Components
	About Data Handler Components
	Movie Playback
	Movie Capture
	Processing data
	Identifying Containers With Data References

	Using Data Handler Components
	Selecting a Data Handler
	Selecting by Component Type Value
	Interrogating a Data Handler’s Capabilities

	Managing Data References
	Retrieving Movie Data
	Storing Movie Data
	Managing the Data Handler

	Creating a Data Handler Component
	General Information
	A Sample Data Handler Component

	Data Handler Components Reference
	Data Handler Components Functions
	Selecting a Data Handler
	Working With Data References
	Reading Movie Data
	Writing Movie Data
	Managing Data Handler Components
	Completion Function

	Graphics Importer Components
	About Graphics Importer Components
	QuickTime Image File Format

	Graphics Importer Components Reference
	Data Types
	Functions
	Specifying the Data Source
	Validating and Retrieving Image Data
	Getting Image Characteristics
	Setting Drawing Parameters
	Drawing Images
	Saving Image Files

	QuickTime Settings Control Panel
	New Features of the Control Panel
	CD-ROM AutoStart
	AutoPlay for Audio CDs
	QuickTime Music Synthesizer

	QuickTime Music Architecture
	About QuickTime Music Architecture
	QuickTime Music Architecture Components
	Note Allocator Component
	Tune Player Component
	Music Components
	Instrument Components and Atomic Instruments

	QuickTime Music Events
	General Event
	Note Event and Extended Note Event
	Rest Event
	Marker Event
	Controller Event and Extended Controller Event
	Knob Event

	QuickTime Synthesizer Model

	QuickTime Music Architecture Reference
	Constants
	Atom Types for Atomic Instruments
	Instrument Knob Flags
	Loop Type Constants
	Music Component Type
	Synthesizer Type Constants
	Synthesizer Description Flags
	Controller Numbers
	Controller Range
	Drum Kit Numbers
	Tone Fit Flags
	Knob Flags
	Knob Value Constants
	Music Packet Status
	Atomic Instrument Information Flags
	Setting Atomic Instruments
	Instrument Info Flags
	Synthesizer Connection Type Flags
	Instrument Match Flags
	Note Request Constants
	Pick Instrument Flags
	Note Allocator Type
	Tune Queue Depth
	Tune Player Type
	Tune Queue Flags

	Data Structures
	Instrument Knob Record
	Instrument Knob List
	Atomic Instrument Sample Description Record
	Synthesizer Description Structure
	Tone Description Structure
	Knob Description Record
	Instrument About Information
	MIDI Packet
	Instrument Information Record
	Instrument Information List
	General MIDI Instrument Information Structure
	Non-General MIDI Instrument Information Record
	Non–General MIDI Instrument Information List
	Complete Instrument Information List
	Synthesizer Connections for MIDI Devices
	QuickTime MIDI Port
	Note Request Information Structure
	Note Request Structure
	Tune Status

	Functions
	Tune Player Functions
	Note Allocator Functions: Note Channel Allocation ...
	Note Allocator Functions: Miscellaneous Interface ...
	Note Allocator Functions: System Configuration and...
	Music Component Functions: Synthesizer
	Music Component Functions: Instruments and Parts
	Music Component Functions: Miscellaneous
	Instrument Component Functions

	Result Codes

	General MIDI Reference
	General MIDI Instrument Numbers
	General MIDI Drum Kit Numbers
	General MIDI Kit Names

	QuickTime File Format Changes
	Motion JPEG
	M-JPEG Format A
	M-JPEG Format B
	YUV
	Uncompressed YUV2
	QuickTime Image File Format

	Glossary
	Index

